Properties

Label 5929.2.a.bg.1.3
Level $5929$
Weight $2$
Character 5929.1
Self dual yes
Analytic conductor $47.343$
Analytic rank $1$
Dimension $4$
CM discriminant -7
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5929,2,Mod(1,5929)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5929.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5929, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 5929 = 7^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5929.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,1,0,11,0,0,0,-3,-12,0,0,0,0,0,0,21,0,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(18)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(47.3433033584\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.6125.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 9x^{2} + 9x + 11 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 539)
Fricke sign: \(+1\)
Sato-Tate group: $N(\mathrm{U}(1))$

Embedding invariants

Embedding label 1.3
Root \(2.20724\) of defining polynomial
Character \(\chi\) \(=\) 5929.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.20724 q^{2} +2.87192 q^{4} +1.92453 q^{8} -3.00000 q^{9} -1.49593 q^{16} -6.62173 q^{18} -2.56038 q^{23} -5.00000 q^{25} +7.83857 q^{29} -7.15093 q^{32} -8.61575 q^{36} -11.9191 q^{37} -12.8185 q^{43} -5.65138 q^{46} -11.0362 q^{50} +14.3107 q^{53} +17.3016 q^{58} -12.7920 q^{64} -12.5669 q^{67} -16.0545 q^{71} -5.77360 q^{72} -26.3084 q^{74} -2.85867 q^{79} +9.00000 q^{81} -28.2935 q^{86} -7.35321 q^{92} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + q^{2} + 11 q^{4} - 3 q^{8} - 12 q^{9} + 21 q^{16} - 3 q^{18} - 8 q^{23} - 20 q^{25} + 2 q^{29} - 50 q^{32} - 33 q^{36} + 6 q^{37} - 12 q^{43} - 47 q^{46} - 5 q^{50} + 10 q^{53} - 2 q^{58} + 33 q^{64}+ \cdots + 8 q^{92}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.20724 1.56076 0.780378 0.625308i \(-0.215027\pi\)
0.780378 + 0.625308i \(0.215027\pi\)
\(3\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(4\) 2.87192 1.43596
\(5\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 1.92453 0.680425
\(9\) −3.00000 −1.00000
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −1.49593 −0.373981
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) −6.62173 −1.56076
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −2.56038 −0.533877 −0.266938 0.963714i \(-0.586012\pi\)
−0.266938 + 0.963714i \(0.586012\pi\)
\(24\) 0 0
\(25\) −5.00000 −1.00000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 7.83857 1.45559 0.727793 0.685797i \(-0.240546\pi\)
0.727793 + 0.685797i \(0.240546\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) −7.15093 −1.26412
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) −8.61575 −1.43596
\(37\) −11.9191 −1.95949 −0.979747 0.200239i \(-0.935828\pi\)
−0.979747 + 0.200239i \(0.935828\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) −12.8185 −1.95480 −0.977399 0.211402i \(-0.932197\pi\)
−0.977399 + 0.211402i \(0.932197\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) −5.65138 −0.833251
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) −11.0362 −1.56076
\(51\) 0 0
\(52\) 0 0
\(53\) 14.3107 1.96573 0.982863 0.184336i \(-0.0590136\pi\)
0.982863 + 0.184336i \(0.0590136\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 17.3016 2.27181
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −12.7920 −1.59900
\(65\) 0 0
\(66\) 0 0
\(67\) −12.5669 −1.53529 −0.767644 0.640877i \(-0.778571\pi\)
−0.767644 + 0.640877i \(0.778571\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −16.0545 −1.90532 −0.952662 0.304033i \(-0.901667\pi\)
−0.952662 + 0.304033i \(0.901667\pi\)
\(72\) −5.77360 −0.680425
\(73\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(74\) −26.3084 −3.05829
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −2.85867 −0.321625 −0.160813 0.986985i \(-0.551411\pi\)
−0.160813 + 0.986985i \(0.551411\pi\)
\(80\) 0 0
\(81\) 9.00000 1.00000
\(82\) 0 0
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −28.2935 −3.05096
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −7.35321 −0.766625
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −14.3596 −1.43596
\(101\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 31.5872 3.06802
\(107\) 11.2129 1.08399 0.541994 0.840382i \(-0.317670\pi\)
0.541994 + 0.840382i \(0.317670\pi\)
\(108\) 0 0
\(109\) −15.6273 −1.49683 −0.748414 0.663232i \(-0.769184\pi\)
−0.748414 + 0.663232i \(0.769184\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 10.8230 1.01815 0.509073 0.860724i \(-0.329988\pi\)
0.509073 + 0.860724i \(0.329988\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 22.5117 2.09016
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −20.0418 −1.77842 −0.889212 0.457495i \(-0.848747\pi\)
−0.889212 + 0.457495i \(0.848747\pi\)
\(128\) −13.9332 −1.23153
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −27.7381 −2.39621
\(135\) 0 0
\(136\) 0 0
\(137\) 17.0399 1.45582 0.727909 0.685674i \(-0.240493\pi\)
0.727909 + 0.685674i \(0.240493\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −35.4363 −2.97374
\(143\) 0 0
\(144\) 4.48778 0.373981
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) −34.2308 −2.81375
\(149\) −22.0000 −1.80231 −0.901155 0.433497i \(-0.857280\pi\)
−0.901155 + 0.433497i \(0.857280\pi\)
\(150\) 0 0
\(151\) 2.38389 0.193998 0.0969991 0.995284i \(-0.469076\pi\)
0.0969991 + 0.995284i \(0.469076\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(158\) −6.30977 −0.501978
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 19.8652 1.56076
\(163\) −21.2779 −1.66661 −0.833307 0.552811i \(-0.813555\pi\)
−0.833307 + 0.552811i \(0.813555\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) −13.0000 −1.00000
\(170\) 0 0
\(171\) 0 0
\(172\) −36.8136 −2.80701
\(173\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 26.3987 1.97313 0.986564 0.163374i \(-0.0522378\pi\)
0.986564 + 0.163374i \(0.0522378\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −4.92754 −0.363263
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 9.07920 0.656948 0.328474 0.944513i \(-0.393466\pi\)
0.328474 + 0.944513i \(0.393466\pi\)
\(192\) 0 0
\(193\) 2.12124 0.152690 0.0763450 0.997081i \(-0.475675\pi\)
0.0763450 + 0.997081i \(0.475675\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −2.03059 −0.144674 −0.0723369 0.997380i \(-0.523046\pi\)
−0.0723369 + 0.997380i \(0.523046\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) −9.62266 −0.680425
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 7.68115 0.533877
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 28.8708 1.98755 0.993774 0.111417i \(-0.0355390\pi\)
0.993774 + 0.111417i \(0.0355390\pi\)
\(212\) 41.0992 2.82270
\(213\) 0 0
\(214\) 24.7495 1.69184
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) −34.4933 −2.33618
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(224\) 0 0
\(225\) 15.0000 1.00000
\(226\) 23.8891 1.58908
\(227\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 15.0856 0.990417
\(233\) −22.0000 −1.44127 −0.720634 0.693316i \(-0.756149\pi\)
−0.720634 + 0.693316i \(0.756149\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 28.4956 1.84323 0.921614 0.388108i \(-0.126871\pi\)
0.921614 + 0.388108i \(0.126871\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) −44.2372 −2.77569
\(255\) 0 0
\(256\) −5.16986 −0.323116
\(257\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −23.5157 −1.45559
\(262\) 0 0
\(263\) 22.7783 1.40457 0.702284 0.711897i \(-0.252164\pi\)
0.702284 + 0.711897i \(0.252164\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) −36.0910 −2.20461
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 37.6112 2.27217
\(275\) 0 0
\(276\) 0 0
\(277\) 33.2853 1.99992 0.999959 0.00902525i \(-0.00287287\pi\)
0.999959 + 0.00902525i \(0.00287287\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −33.4755 −1.99698 −0.998491 0.0549198i \(-0.982510\pi\)
−0.998491 + 0.0549198i \(0.982510\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(284\) −46.1073 −2.73597
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 21.4528 1.26412
\(289\) −17.0000 −1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −22.9388 −1.33329
\(297\) 0 0
\(298\) −48.5593 −2.81297
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 5.26182 0.302784
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) −8.20985 −0.461840
\(317\) 21.2860 1.19554 0.597772 0.801666i \(-0.296053\pi\)
0.597772 + 0.801666i \(0.296053\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 25.8473 1.43596
\(325\) 0 0
\(326\) −46.9655 −2.60118
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 16.1571 0.888076 0.444038 0.896008i \(-0.353545\pi\)
0.444038 + 0.896008i \(0.353545\pi\)
\(332\) 0 0
\(333\) 35.7574 1.95949
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 10.8596 0.591558 0.295779 0.955256i \(-0.404421\pi\)
0.295779 + 0.955256i \(0.404421\pi\)
\(338\) −28.6941 −1.56076
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) −24.6696 −1.33009
\(345\) 0 0
\(346\) 0 0
\(347\) −18.5358 −0.995054 −0.497527 0.867448i \(-0.665758\pi\)
−0.497527 + 0.867448i \(0.665758\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 58.2682 3.07957
\(359\) −37.6998 −1.98972 −0.994859 0.101273i \(-0.967708\pi\)
−0.994859 + 0.101273i \(0.967708\pi\)
\(360\) 0 0
\(361\) −19.0000 −1.00000
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(368\) 3.83014 0.199660
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −22.0000 −1.13912 −0.569558 0.821951i \(-0.692886\pi\)
−0.569558 + 0.821951i \(0.692886\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 31.5194 1.61904 0.809522 0.587090i \(-0.199726\pi\)
0.809522 + 0.587090i \(0.199726\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 20.0400 1.02534
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 4.68208 0.238312
\(387\) 38.4554 1.95480
\(388\) 0 0
\(389\) −1.67761 −0.0850582 −0.0425291 0.999095i \(-0.513542\pi\)
−0.0425291 + 0.999095i \(0.513542\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) −4.48201 −0.225801
\(395\) 0 0
\(396\) 0 0
\(397\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 7.47963 0.373981
\(401\) −30.6367 −1.52992 −0.764961 0.644077i \(-0.777242\pi\)
−0.764961 + 0.644077i \(0.777242\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 16.9541 0.833251
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) 22.1607 1.08004 0.540022 0.841651i \(-0.318416\pi\)
0.540022 + 0.841651i \(0.318416\pi\)
\(422\) 63.7248 3.10208
\(423\) 0 0
\(424\) 27.5414 1.33753
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 32.2024 1.55656
\(429\) 0 0
\(430\) 0 0
\(431\) 15.2740 0.735725 0.367862 0.929880i \(-0.380090\pi\)
0.367862 + 0.929880i \(0.380090\pi\)
\(432\) 0 0
\(433\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −44.8804 −2.14938
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −5.59153 −0.265662 −0.132831 0.991139i \(-0.542407\pi\)
−0.132831 + 0.991139i \(0.542407\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 40.8782 1.92916 0.964580 0.263790i \(-0.0849724\pi\)
0.964580 + 0.263790i \(0.0849724\pi\)
\(450\) 33.1086 1.56076
\(451\) 0 0
\(452\) 31.0829 1.46201
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 42.1142 1.97002 0.985011 0.172493i \(-0.0551823\pi\)
0.985011 + 0.172493i \(0.0551823\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(462\) 0 0
\(463\) 23.0299 1.07029 0.535145 0.844760i \(-0.320257\pi\)
0.535145 + 0.844760i \(0.320257\pi\)
\(464\) −11.7259 −0.544362
\(465\) 0 0
\(466\) −48.5593 −2.24947
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −42.9321 −1.96573
\(478\) 62.8967 2.87683
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 41.1883 1.86642 0.933210 0.359333i \(-0.116996\pi\)
0.933210 + 0.359333i \(0.116996\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −44.0000 −1.98569 −0.992846 0.119401i \(-0.961903\pi\)
−0.992846 + 0.119401i \(0.961903\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −44.6759 −1.99997 −0.999985 0.00546838i \(-0.998259\pi\)
−0.999985 + 0.00546838i \(0.998259\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) −57.5585 −2.55374
\(509\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 16.4552 0.727223
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(522\) −51.9049 −2.27181
\(523\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 50.2772 2.19219
\(527\) 0 0
\(528\) 0 0
\(529\) −16.4444 −0.714976
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) −24.1854 −1.04465
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −19.6885 −0.846476 −0.423238 0.906019i \(-0.639107\pi\)
−0.423238 + 0.906019i \(0.639107\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −44.0000 −1.88130 −0.940652 0.339372i \(-0.889785\pi\)
−0.940652 + 0.339372i \(0.889785\pi\)
\(548\) 48.9372 2.09049
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 73.4687 3.12138
\(555\) 0 0
\(556\) 0 0
\(557\) 43.4353 1.84041 0.920207 0.391433i \(-0.128020\pi\)
0.920207 + 0.391433i \(0.128020\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) −73.8886 −3.11680
\(563\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) −30.8975 −1.29643
\(569\) −22.0000 −0.922288 −0.461144 0.887325i \(-0.652561\pi\)
−0.461144 + 0.887325i \(0.652561\pi\)
\(570\) 0 0
\(571\) −46.5287 −1.94717 −0.973583 0.228332i \(-0.926673\pi\)
−0.973583 + 0.228332i \(0.926673\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 12.8019 0.533877
\(576\) 38.3760 1.59900
\(577\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(578\) −37.5231 −1.56076
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 17.8301 0.732814
\(593\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −63.1822 −2.58804
\(597\) 0 0
\(598\) 0 0
\(599\) 45.1162 1.84340 0.921698 0.387907i \(-0.126802\pi\)
0.921698 + 0.387907i \(0.126802\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(602\) 0 0
\(603\) 37.7006 1.53529
\(604\) 6.84633 0.278573
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −12.0810 −0.487949 −0.243974 0.969782i \(-0.578451\pi\)
−0.243974 + 0.969782i \(0.578451\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −3.84770 −0.154902 −0.0774512 0.996996i \(-0.524678\pi\)
−0.0774512 + 0.996996i \(0.524678\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 25.0000 1.00000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 50.2369 1.99990 0.999950 0.00996082i \(-0.00317068\pi\)
0.999950 + 0.00996082i \(0.00317068\pi\)
\(632\) −5.50160 −0.218842
\(633\) 0 0
\(634\) 46.9834 1.86595
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 48.1636 1.90532
\(640\) 0 0
\(641\) −24.7737 −0.978503 −0.489251 0.872143i \(-0.662730\pi\)
−0.489251 + 0.872143i \(0.662730\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) 17.3208 0.680425
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) −61.1084 −2.39319
\(653\) 25.5159 0.998514 0.499257 0.866454i \(-0.333606\pi\)
0.499257 + 0.866454i \(0.333606\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −44.0000 −1.71400 −0.856998 0.515319i \(-0.827673\pi\)
−0.856998 + 0.515319i \(0.827673\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(662\) 35.6627 1.38607
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 78.9253 3.05829
\(667\) −20.0697 −0.777103
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 49.1526 1.89470 0.947348 0.320207i \(-0.103752\pi\)
0.947348 + 0.320207i \(0.103752\pi\)
\(674\) 23.9697 0.923278
\(675\) 0 0
\(676\) −37.3349 −1.43596
\(677\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −11.0364 −0.422295 −0.211147 0.977454i \(-0.567720\pi\)
−0.211147 + 0.977454i \(0.567720\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 19.1755 0.731058
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) −40.9130 −1.55304
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −50.9432 −1.92410 −0.962049 0.272876i \(-0.912025\pi\)
−0.962049 + 0.272876i \(0.912025\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 35.9568 1.35038 0.675192 0.737642i \(-0.264061\pi\)
0.675192 + 0.737642i \(0.264061\pi\)
\(710\) 0 0
\(711\) 8.57600 0.321625
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 75.8148 2.83333
\(717\) 0 0
\(718\) −83.2125 −3.10546
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −41.9376 −1.56076
\(723\) 0 0
\(724\) 0 0
\(725\) −39.1928 −1.45559
\(726\) 0 0
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) 0 0
\(729\) −27.0000 −1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 18.3091 0.674883
\(737\) 0 0
\(738\) 0 0
\(739\) −32.7381 −1.20429 −0.602145 0.798387i \(-0.705687\pi\)
−0.602145 + 0.798387i \(0.705687\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −54.1326 −1.98593 −0.992965 0.118405i \(-0.962222\pi\)
−0.992965 + 0.118405i \(0.962222\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −48.5593 −1.77788
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −39.9954 −1.45945 −0.729727 0.683739i \(-0.760353\pi\)
−0.729727 + 0.683739i \(0.760353\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 49.9075 1.81392 0.906959 0.421220i \(-0.138398\pi\)
0.906959 + 0.421220i \(0.138398\pi\)
\(758\) 69.5710 2.52693
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 26.0747 0.943350
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 6.09202 0.219257
\(773\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(774\) 84.8804 3.05096
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) −3.70289 −0.132755
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(788\) −5.83170 −0.207746
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 35.7547 1.26412
\(801\) 0 0
\(802\) −67.6225 −2.38783
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −28.5175 −1.00262 −0.501311 0.865267i \(-0.667149\pi\)
−0.501311 + 0.865267i \(0.667149\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −22.0000 −0.767805 −0.383903 0.923374i \(-0.625420\pi\)
−0.383903 + 0.923374i \(0.625420\pi\)
\(822\) 0 0
\(823\) 2.10386 0.0733360 0.0366680 0.999328i \(-0.488326\pi\)
0.0366680 + 0.999328i \(0.488326\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −44.0000 −1.53003 −0.765015 0.644013i \(-0.777268\pi\)
−0.765015 + 0.644013i \(0.777268\pi\)
\(828\) 22.0596 0.766625
\(829\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) 32.4432 1.11873
\(842\) 48.9140 1.68569
\(843\) 0 0
\(844\) 82.9145 2.85404
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) −21.4077 −0.735145
\(849\) 0 0
\(850\) 0 0
\(851\) 30.5175 1.04613
\(852\) 0 0
\(853\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 21.5795 0.737573
\(857\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 33.7135 1.14829
\(863\) 8.00000 0.272323 0.136162 0.990687i \(-0.456523\pi\)
0.136162 + 0.990687i \(0.456523\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) −30.0753 −1.01848
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 59.1125 1.99609 0.998043 0.0625337i \(-0.0199181\pi\)
0.998043 + 0.0625337i \(0.0199181\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(882\) 0 0
\(883\) −12.0000 −0.403832 −0.201916 0.979403i \(-0.564717\pi\)
−0.201916 + 0.979403i \(0.564717\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −12.3419 −0.414633
\(887\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 90.2280 3.01095
\(899\) 0 0
\(900\) 43.0788 1.43596
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 20.8293 0.692772
\(905\) 0 0
\(906\) 0 0
\(907\) −51.6513 −1.71505 −0.857526 0.514440i \(-0.828000\pi\)
−0.857526 + 0.514440i \(0.828000\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 16.0000 0.530104 0.265052 0.964234i \(-0.414611\pi\)
0.265052 + 0.964234i \(0.414611\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 92.9563 3.07472
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −17.0609 −0.562789 −0.281394 0.959592i \(-0.590797\pi\)
−0.281394 + 0.959592i \(0.590797\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 59.5957 1.95949
\(926\) 50.8325 1.67046
\(927\) 0 0
\(928\) −56.0531 −1.84003
\(929\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −63.1822 −2.06960
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −20.0000 −0.649913 −0.324956 0.945729i \(-0.605350\pi\)
−0.324956 + 0.945729i \(0.605350\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −38.0531 −1.23266 −0.616330 0.787488i \(-0.711381\pi\)
−0.616330 + 0.787488i \(0.711381\pi\)
\(954\) −94.7616 −3.06802
\(955\) 0 0
\(956\) 81.8370 2.64680
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −31.0000 −1.00000
\(962\) 0 0
\(963\) −33.6386 −1.08399
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −32.9320 −1.05902 −0.529511 0.848303i \(-0.677624\pi\)
−0.529511 + 0.848303i \(0.677624\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 90.9125 2.91302
\(975\) 0 0
\(976\) 0 0
\(977\) 54.4749 1.74281 0.871404 0.490567i \(-0.163210\pi\)
0.871404 + 0.490567i \(0.163210\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 46.8820 1.49683
\(982\) −97.1186 −3.09918
\(983\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 32.8202 1.04362
\(990\) 0 0
\(991\) −24.0000 −0.762385 −0.381193 0.924496i \(-0.624487\pi\)
−0.381193 + 0.924496i \(0.624487\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(998\) −98.6106 −3.12146
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5929.2.a.bg.1.3 4
7.6 odd 2 CM 5929.2.a.bg.1.3 4
11.2 odd 10 539.2.f.c.246.2 8
11.6 odd 10 539.2.f.c.344.2 yes 8
11.10 odd 2 5929.2.a.bc.1.2 4
77.2 odd 30 539.2.q.d.312.2 16
77.6 even 10 539.2.f.c.344.2 yes 8
77.13 even 10 539.2.f.c.246.2 8
77.17 even 30 539.2.q.d.520.2 16
77.24 even 30 539.2.q.d.422.1 16
77.39 odd 30 539.2.q.d.520.2 16
77.46 odd 30 539.2.q.d.422.1 16
77.61 even 30 539.2.q.d.410.1 16
77.68 even 30 539.2.q.d.312.2 16
77.72 odd 30 539.2.q.d.410.1 16
77.76 even 2 5929.2.a.bc.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
539.2.f.c.246.2 8 11.2 odd 10
539.2.f.c.246.2 8 77.13 even 10
539.2.f.c.344.2 yes 8 11.6 odd 10
539.2.f.c.344.2 yes 8 77.6 even 10
539.2.q.d.312.2 16 77.2 odd 30
539.2.q.d.312.2 16 77.68 even 30
539.2.q.d.410.1 16 77.61 even 30
539.2.q.d.410.1 16 77.72 odd 30
539.2.q.d.422.1 16 77.24 even 30
539.2.q.d.422.1 16 77.46 odd 30
539.2.q.d.520.2 16 77.17 even 30
539.2.q.d.520.2 16 77.39 odd 30
5929.2.a.bc.1.2 4 11.10 odd 2
5929.2.a.bc.1.2 4 77.76 even 2
5929.2.a.bg.1.3 4 1.1 even 1 trivial
5929.2.a.bg.1.3 4 7.6 odd 2 CM