Properties

Label 5929.2.a.bg.1.2
Level $5929$
Weight $2$
Character 5929.1
Self dual yes
Analytic conductor $47.343$
Analytic rank $1$
Dimension $4$
CM discriminant -7
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5929,2,Mod(1,5929)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5929.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5929, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 5929 = 7^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5929.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,1,0,11,0,0,0,-3,-12,0,0,0,0,0,0,21,0,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(18)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(47.3433033584\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.6125.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 9x^{2} + 9x + 11 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 539)
Fricke sign: \(+1\)
Sato-Tate group: $N(\mathrm{U}(1))$

Embedding invariants

Embedding label 1.2
Root \(-0.746117\) of defining polynomial
Character \(\chi\) \(=\) 5929.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.746117 q^{2} -1.44331 q^{4} +2.56911 q^{8} -3.00000 q^{9} +0.969764 q^{16} +2.23835 q^{18} -3.36187 q^{23} -5.00000 q^{25} +9.44700 q^{29} -5.86178 q^{32} +4.32993 q^{36} +11.0746 q^{37} -1.32431 q^{43} +2.50835 q^{46} +3.73058 q^{50} +6.97487 q^{53} -7.04857 q^{58} +2.43404 q^{64} -13.8615 q^{67} -0.0882461 q^{71} -7.70733 q^{72} -8.26297 q^{74} -17.5697 q^{79} +9.00000 q^{81} +0.988093 q^{86} +4.85222 q^{92} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + q^{2} + 11 q^{4} - 3 q^{8} - 12 q^{9} + 21 q^{16} - 3 q^{18} - 8 q^{23} - 20 q^{25} + 2 q^{29} - 50 q^{32} - 33 q^{36} + 6 q^{37} - 12 q^{43} - 47 q^{46} - 5 q^{50} + 10 q^{53} - 2 q^{58} + 33 q^{64}+ \cdots + 8 q^{92}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.746117 −0.527584 −0.263792 0.964580i \(-0.584973\pi\)
−0.263792 + 0.964580i \(0.584973\pi\)
\(3\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(4\) −1.44331 −0.721655
\(5\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 2.56911 0.908318
\(9\) −3.00000 −1.00000
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0.969764 0.242441
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 2.23835 0.527584
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −3.36187 −0.700998 −0.350499 0.936563i \(-0.613988\pi\)
−0.350499 + 0.936563i \(0.613988\pi\)
\(24\) 0 0
\(25\) −5.00000 −1.00000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 9.44700 1.75426 0.877132 0.480249i \(-0.159454\pi\)
0.877132 + 0.480249i \(0.159454\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) −5.86178 −1.03623
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 4.32993 0.721655
\(37\) 11.0746 1.82066 0.910330 0.413884i \(-0.135828\pi\)
0.910330 + 0.413884i \(0.135828\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) −1.32431 −0.201956 −0.100978 0.994889i \(-0.532197\pi\)
−0.100978 + 0.994889i \(0.532197\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 2.50835 0.369835
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 3.73058 0.527584
\(51\) 0 0
\(52\) 0 0
\(53\) 6.97487 0.958072 0.479036 0.877795i \(-0.340986\pi\)
0.479036 + 0.877795i \(0.340986\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) −7.04857 −0.925522
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 2.43404 0.304255
\(65\) 0 0
\(66\) 0 0
\(67\) −13.8615 −1.69345 −0.846725 0.532031i \(-0.821429\pi\)
−0.846725 + 0.532031i \(0.821429\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −0.0882461 −0.0104729 −0.00523645 0.999986i \(-0.501667\pi\)
−0.00523645 + 0.999986i \(0.501667\pi\)
\(72\) −7.70733 −0.908318
\(73\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(74\) −8.26297 −0.960551
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −17.5697 −1.97674 −0.988372 0.152053i \(-0.951411\pi\)
−0.988372 + 0.152053i \(0.951411\pi\)
\(80\) 0 0
\(81\) 9.00000 1.00000
\(82\) 0 0
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0.988093 0.106549
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 4.85222 0.505879
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 7.21655 0.721655
\(101\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −5.20406 −0.505463
\(107\) −19.2906 −1.86489 −0.932447 0.361308i \(-0.882330\pi\)
−0.932447 + 0.361308i \(0.882330\pi\)
\(108\) 0 0
\(109\) 20.7828 1.99064 0.995318 0.0966592i \(-0.0308157\pi\)
0.995318 + 0.0966592i \(0.0308157\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 20.7481 1.95182 0.975909 0.218179i \(-0.0700116\pi\)
0.975909 + 0.218179i \(0.0700116\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −13.6350 −1.26597
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 22.2751 1.97659 0.988297 0.152545i \(-0.0487468\pi\)
0.988297 + 0.152545i \(0.0487468\pi\)
\(128\) 9.90748 0.875706
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 10.3423 0.893437
\(135\) 0 0
\(136\) 0 0
\(137\) −4.35090 −0.371722 −0.185861 0.982576i \(-0.559507\pi\)
−0.185861 + 0.982576i \(0.559507\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0.0658419 0.00552533
\(143\) 0 0
\(144\) −2.90929 −0.242441
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) −15.9841 −1.31389
\(149\) −22.0000 −1.80231 −0.901155 0.433497i \(-0.857280\pi\)
−0.901155 + 0.433497i \(0.857280\pi\)
\(150\) 0 0
\(151\) −16.3061 −1.32697 −0.663487 0.748187i \(-0.730924\pi\)
−0.663487 + 0.748187i \(0.730924\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(158\) 13.1090 1.04290
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) −6.71505 −0.527584
\(163\) 25.5111 1.99819 0.999093 0.0425718i \(-0.0135551\pi\)
0.999093 + 0.0425718i \(0.0135551\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) −13.0000 −1.00000
\(170\) 0 0
\(171\) 0 0
\(172\) 1.91140 0.145743
\(173\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −18.7874 −1.40424 −0.702118 0.712060i \(-0.747762\pi\)
−0.702118 + 0.712060i \(0.747762\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −8.63701 −0.636729
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 27.6347 1.99958 0.999789 0.0205267i \(-0.00653431\pi\)
0.999789 + 0.0205267i \(0.00653431\pi\)
\(192\) 0 0
\(193\) −25.6924 −1.84938 −0.924689 0.380724i \(-0.875675\pi\)
−0.924689 + 0.380724i \(0.875675\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −14.8139 −1.05545 −0.527724 0.849416i \(-0.676954\pi\)
−0.527724 + 0.849416i \(0.676954\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) −12.8456 −0.908318
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 10.0856 0.700998
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −25.2595 −1.73894 −0.869469 0.493987i \(-0.835539\pi\)
−0.869469 + 0.493987i \(0.835539\pi\)
\(212\) −10.0669 −0.691397
\(213\) 0 0
\(214\) 14.3930 0.983888
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) −15.5064 −1.05023
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(224\) 0 0
\(225\) 15.0000 1.00000
\(226\) −15.4805 −1.02975
\(227\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 24.2704 1.59343
\(233\) −22.0000 −1.44127 −0.720634 0.693316i \(-0.756149\pi\)
−0.720634 + 0.693316i \(0.756149\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 20.2183 1.30781 0.653907 0.756575i \(-0.273129\pi\)
0.653907 + 0.756575i \(0.273129\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) −16.6198 −1.04282
\(255\) 0 0
\(256\) −12.2602 −0.766264
\(257\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −28.3410 −1.75426
\(262\) 0 0
\(263\) −14.9211 −0.920072 −0.460036 0.887900i \(-0.652164\pi\)
−0.460036 + 0.887900i \(0.652164\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 20.0064 1.22209
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 3.24628 0.196115
\(275\) 0 0
\(276\) 0 0
\(277\) −26.7518 −1.60736 −0.803679 0.595063i \(-0.797127\pi\)
−0.803679 + 0.595063i \(0.797127\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −12.0956 −0.721565 −0.360782 0.932650i \(-0.617490\pi\)
−0.360782 + 0.932650i \(0.617490\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(284\) 0.127367 0.00755781
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 17.5853 1.03623
\(289\) −17.0000 −1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 28.4520 1.65374
\(297\) 0 0
\(298\) 16.4146 0.950870
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 12.1663 0.700091
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 25.3585 1.42653
\(317\) −20.5716 −1.15542 −0.577708 0.816243i \(-0.696053\pi\)
−0.577708 + 0.816243i \(0.696053\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) −12.9898 −0.721655
\(325\) 0 0
\(326\) −19.0343 −1.05421
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −32.2349 −1.77179 −0.885895 0.463887i \(-0.846455\pi\)
−0.885895 + 0.463887i \(0.846455\pi\)
\(332\) 0 0
\(333\) −33.2239 −1.82066
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 11.8294 0.644391 0.322195 0.946673i \(-0.395579\pi\)
0.322195 + 0.946673i \(0.395579\pi\)
\(338\) 9.69952 0.527584
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) −3.40231 −0.183440
\(345\) 0 0
\(346\) 0 0
\(347\) −36.4637 −1.95747 −0.978737 0.205120i \(-0.934242\pi\)
−0.978737 + 0.205120i \(0.934242\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 14.0176 0.740853
\(359\) 28.2440 1.49066 0.745331 0.666695i \(-0.232292\pi\)
0.745331 + 0.666695i \(0.232292\pi\)
\(360\) 0 0
\(361\) −19.0000 −1.00000
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(368\) −3.26022 −0.169951
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −22.0000 −1.13912 −0.569558 0.821951i \(-0.692886\pi\)
−0.569558 + 0.821951i \(0.692886\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −12.0637 −0.619669 −0.309834 0.950791i \(-0.600274\pi\)
−0.309834 + 0.950791i \(0.600274\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −20.6187 −1.05495
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 19.1695 0.975702
\(387\) 3.97294 0.201956
\(388\) 0 0
\(389\) 24.5221 1.24332 0.621660 0.783287i \(-0.286458\pi\)
0.621660 + 0.783287i \(0.286458\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 11.0529 0.556837
\(395\) 0 0
\(396\) 0 0
\(397\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −4.84882 −0.242441
\(401\) 39.9476 1.99489 0.997445 0.0714367i \(-0.0227584\pi\)
0.997445 + 0.0714367i \(0.0227584\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) −7.52504 −0.369835
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) 2.37284 0.115645 0.0578225 0.998327i \(-0.481584\pi\)
0.0578225 + 0.998327i \(0.481584\pi\)
\(422\) 18.8466 0.917436
\(423\) 0 0
\(424\) 17.9192 0.870233
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 27.8423 1.34581
\(429\) 0 0
\(430\) 0 0
\(431\) 10.3372 0.497926 0.248963 0.968513i \(-0.419910\pi\)
0.248963 + 0.968513i \(0.419910\pi\)
\(432\) 0 0
\(433\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −29.9961 −1.43655
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −41.4080 −1.96735 −0.983676 0.179949i \(-0.942407\pi\)
−0.983676 + 0.179949i \(0.942407\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −26.5002 −1.25062 −0.625310 0.780376i \(-0.715028\pi\)
−0.625310 + 0.780376i \(0.715028\pi\)
\(450\) −11.1917 −0.527584
\(451\) 0 0
\(452\) −29.9459 −1.40854
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −29.7362 −1.39100 −0.695501 0.718525i \(-0.744818\pi\)
−0.695501 + 0.718525i \(0.744818\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(462\) 0 0
\(463\) −27.4582 −1.27609 −0.638046 0.769998i \(-0.720257\pi\)
−0.638046 + 0.769998i \(0.720257\pi\)
\(464\) 9.16136 0.425305
\(465\) 0 0
\(466\) 16.4146 0.760390
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −20.9246 −0.958072
\(478\) −15.0852 −0.689982
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 27.8112 1.26025 0.630123 0.776495i \(-0.283004\pi\)
0.630123 + 0.776495i \(0.283004\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −44.0000 −1.98569 −0.992846 0.119401i \(-0.961903\pi\)
−0.992846 + 0.119401i \(0.961903\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −14.0380 −0.628426 −0.314213 0.949352i \(-0.601741\pi\)
−0.314213 + 0.949352i \(0.601741\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) −32.1498 −1.42642
\(509\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −10.6674 −0.471437
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(522\) 21.1457 0.925522
\(523\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 11.1329 0.485415
\(527\) 0 0
\(528\) 0 0
\(529\) −11.6978 −0.508602
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) −35.6117 −1.53819
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −8.84497 −0.380275 −0.190138 0.981757i \(-0.560893\pi\)
−0.190138 + 0.981757i \(0.560893\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −44.0000 −1.88130 −0.940652 0.339372i \(-0.889785\pi\)
−0.940652 + 0.339372i \(0.889785\pi\)
\(548\) 6.27970 0.268255
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 19.9599 0.848017
\(555\) 0 0
\(556\) 0 0
\(557\) −4.14975 −0.175830 −0.0879152 0.996128i \(-0.528020\pi\)
−0.0879152 + 0.996128i \(0.528020\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 9.02475 0.380686
\(563\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) −0.226714 −0.00951271
\(569\) −22.0000 −0.922288 −0.461144 0.887325i \(-0.652561\pi\)
−0.461144 + 0.887325i \(0.652561\pi\)
\(570\) 0 0
\(571\) 31.2285 1.30687 0.653435 0.756982i \(-0.273327\pi\)
0.653435 + 0.756982i \(0.273327\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 16.8093 0.700998
\(576\) −7.30213 −0.304255
\(577\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(578\) 12.6840 0.527584
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 10.7398 0.441402
\(593\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 31.7528 1.30065
\(597\) 0 0
\(598\) 0 0
\(599\) −47.6604 −1.94735 −0.973676 0.227937i \(-0.926802\pi\)
−0.973676 + 0.227937i \(0.926802\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(602\) 0 0
\(603\) 41.5845 1.69345
\(604\) 23.5348 0.957618
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 41.9378 1.69385 0.846925 0.531712i \(-0.178451\pi\)
0.846925 + 0.531712i \(0.178451\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −48.2946 −1.94427 −0.972133 0.234428i \(-0.924678\pi\)
−0.972133 + 0.234428i \(0.924678\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 25.0000 1.00000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −40.9367 −1.62966 −0.814832 0.579698i \(-0.803171\pi\)
−0.814832 + 0.579698i \(0.803171\pi\)
\(632\) −45.1385 −1.79551
\(633\) 0 0
\(634\) 15.3488 0.609580
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0.264738 0.0104729
\(640\) 0 0
\(641\) 34.3449 1.35654 0.678270 0.734813i \(-0.262730\pi\)
0.678270 + 0.734813i \(0.262730\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) 23.1220 0.908318
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) −36.8205 −1.44200
\(653\) −46.6714 −1.82639 −0.913196 0.407520i \(-0.866394\pi\)
−0.913196 + 0.407520i \(0.866394\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −44.0000 −1.71400 −0.856998 0.515319i \(-0.827673\pi\)
−0.856998 + 0.515319i \(0.827673\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(662\) 24.0510 0.934768
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 24.7889 0.960551
\(667\) −31.7596 −1.22974
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 30.9896 1.19456 0.597281 0.802032i \(-0.296248\pi\)
0.597281 + 0.802032i \(0.296248\pi\)
\(674\) −8.82614 −0.339970
\(675\) 0 0
\(676\) 18.7630 0.721655
\(677\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 38.9586 1.49071 0.745355 0.666668i \(-0.232280\pi\)
0.745355 + 0.666668i \(0.232280\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) −1.28427 −0.0489624
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 27.2062 1.03273
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 32.7207 1.23584 0.617922 0.786239i \(-0.287975\pi\)
0.617922 + 0.786239i \(0.287975\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 48.4711 1.82037 0.910185 0.414202i \(-0.135939\pi\)
0.910185 + 0.414202i \(0.135939\pi\)
\(710\) 0 0
\(711\) 52.7091 1.97674
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 27.1160 1.01337
\(717\) 0 0
\(718\) −21.0733 −0.786449
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 14.1762 0.527584
\(723\) 0 0
\(724\) 0 0
\(725\) −47.2350 −1.75426
\(726\) 0 0
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) 0 0
\(729\) −27.0000 −1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 19.7065 0.726392
\(737\) 0 0
\(738\) 0 0
\(739\) 31.1664 1.14648 0.573238 0.819389i \(-0.305687\pi\)
0.573238 + 0.819389i \(0.305687\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −22.8669 −0.838907 −0.419453 0.907777i \(-0.637778\pi\)
−0.419453 + 0.907777i \(0.637778\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 16.4146 0.600980
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 54.3842 1.98451 0.992253 0.124234i \(-0.0396474\pi\)
0.992253 + 0.124234i \(0.0396474\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −6.62188 −0.240676 −0.120338 0.992733i \(-0.538398\pi\)
−0.120338 + 0.992733i \(0.538398\pi\)
\(758\) 9.00090 0.326927
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −39.8855 −1.44301
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 37.0821 1.33461
\(773\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(774\) −2.96428 −0.106549
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) −18.2964 −0.655956
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(788\) 21.3811 0.761669
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 29.3089 1.03623
\(801\) 0 0
\(802\) −29.8056 −1.05247
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −5.86051 −0.206044 −0.103022 0.994679i \(-0.532851\pi\)
−0.103022 + 0.994679i \(0.532851\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −22.0000 −0.767805 −0.383903 0.923374i \(-0.625420\pi\)
−0.383903 + 0.923374i \(0.625420\pi\)
\(822\) 0 0
\(823\) 55.1812 1.92350 0.961748 0.273936i \(-0.0883256\pi\)
0.961748 + 0.273936i \(0.0883256\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −44.0000 −1.53003 −0.765015 0.644013i \(-0.777268\pi\)
−0.765015 + 0.644013i \(0.777268\pi\)
\(828\) −14.5567 −0.505879
\(829\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) 60.2458 2.07744
\(842\) −1.77041 −0.0610125
\(843\) 0 0
\(844\) 36.4573 1.25491
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) 6.76397 0.232276
\(849\) 0 0
\(850\) 0 0
\(851\) −37.2315 −1.27628
\(852\) 0 0
\(853\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −49.5597 −1.69392
\(857\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −7.71276 −0.262698
\(863\) 8.00000 0.272323 0.136162 0.990687i \(-0.456523\pi\)
0.136162 + 0.990687i \(0.456523\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 53.3934 1.80813
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 14.7443 0.497878 0.248939 0.968519i \(-0.419918\pi\)
0.248939 + 0.968519i \(0.419918\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(882\) 0 0
\(883\) −12.0000 −0.403832 −0.201916 0.979403i \(-0.564717\pi\)
−0.201916 + 0.979403i \(0.564717\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 30.8952 1.03794
\(887\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 19.7722 0.659807
\(899\) 0 0
\(900\) −21.6497 −0.721655
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 53.3042 1.77287
\(905\) 0 0
\(906\) 0 0
\(907\) 13.5085 0.448542 0.224271 0.974527i \(-0.428000\pi\)
0.224271 + 0.974527i \(0.428000\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 16.0000 0.530104 0.265052 0.964234i \(-0.414611\pi\)
0.265052 + 0.964234i \(0.414611\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 22.1867 0.733871
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 50.0604 1.65134 0.825671 0.564152i \(-0.190797\pi\)
0.825671 + 0.564152i \(0.190797\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −55.3732 −1.82066
\(926\) 20.4870 0.673246
\(927\) 0 0
\(928\) −55.3762 −1.81781
\(929\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 31.7528 1.04010
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −20.0000 −0.649913 −0.324956 0.945729i \(-0.605350\pi\)
−0.324956 + 0.945729i \(0.605350\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 59.3641 1.92299 0.961495 0.274822i \(-0.0886189\pi\)
0.961495 + 0.274822i \(0.0886189\pi\)
\(954\) 15.6122 0.505463
\(955\) 0 0
\(956\) −29.1813 −0.943791
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −31.0000 −1.00000
\(962\) 0 0
\(963\) 57.8718 1.86489
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −4.36827 −0.140474 −0.0702371 0.997530i \(-0.522376\pi\)
−0.0702371 + 0.997530i \(0.522376\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −20.7504 −0.664886
\(975\) 0 0
\(976\) 0 0
\(977\) −62.0969 −1.98666 −0.993328 0.115321i \(-0.963210\pi\)
−0.993328 + 0.115321i \(0.963210\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −62.3485 −1.99064
\(982\) 32.8291 1.04762
\(983\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 4.45217 0.141571
\(990\) 0 0
\(991\) −24.0000 −0.762385 −0.381193 0.924496i \(-0.624487\pi\)
−0.381193 + 0.924496i \(0.624487\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(998\) 10.4740 0.331548
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5929.2.a.bg.1.2 4
7.6 odd 2 CM 5929.2.a.bg.1.2 4
11.7 odd 10 539.2.f.c.148.2 8
11.8 odd 10 539.2.f.c.295.2 yes 8
11.10 odd 2 5929.2.a.bc.1.3 4
77.18 odd 30 539.2.q.d.324.1 16
77.19 even 30 539.2.q.d.361.1 16
77.30 odd 30 539.2.q.d.361.1 16
77.40 even 30 539.2.q.d.214.2 16
77.41 even 10 539.2.f.c.295.2 yes 8
77.51 odd 30 539.2.q.d.214.2 16
77.52 even 30 539.2.q.d.471.2 16
77.62 even 10 539.2.f.c.148.2 8
77.73 even 30 539.2.q.d.324.1 16
77.74 odd 30 539.2.q.d.471.2 16
77.76 even 2 5929.2.a.bc.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
539.2.f.c.148.2 8 11.7 odd 10
539.2.f.c.148.2 8 77.62 even 10
539.2.f.c.295.2 yes 8 11.8 odd 10
539.2.f.c.295.2 yes 8 77.41 even 10
539.2.q.d.214.2 16 77.40 even 30
539.2.q.d.214.2 16 77.51 odd 30
539.2.q.d.324.1 16 77.18 odd 30
539.2.q.d.324.1 16 77.73 even 30
539.2.q.d.361.1 16 77.19 even 30
539.2.q.d.361.1 16 77.30 odd 30
539.2.q.d.471.2 16 77.52 even 30
539.2.q.d.471.2 16 77.74 odd 30
5929.2.a.bc.1.3 4 11.10 odd 2
5929.2.a.bc.1.3 4 77.76 even 2
5929.2.a.bg.1.2 4 1.1 even 1 trivial
5929.2.a.bg.1.2 4 7.6 odd 2 CM