Newspace parameters
| Level: | \( N \) | \(=\) | \( 5929 = 7^{2} \cdot 11^{2} \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 5929.a (trivial) |
Newform invariants
| Self dual: | yes |
| Analytic conductor: | \(47.3433033584\) |
| Analytic rank: | \(1\) |
| Dimension: | \(4\) |
| Coefficient field: | 4.4.6125.1 |
|
|
|
| Defining polynomial: |
\( x^{4} - x^{3} - 9x^{2} + 9x + 11 \)
|
| Coefficient ring: | \(\Z[a_1, a_2]\) |
| Coefficient ring index: | \( 1 \) |
| Twist minimal: | no (minimal twist has level 539) |
| Fricke sign: | \(+1\) |
| Sato-Tate group: | $N(\mathrm{U}(1))$ |
Embedding invariants
| Embedding label | 1.2 | ||
| Root | \(-0.746117\) of defining polynomial | ||
| Character | \(\chi\) | \(=\) | 5929.1 |
$q$-expansion
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
| \(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
|---|---|---|---|---|---|---|---|---|---|---|
| \(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
| \(2\) | −0.746117 | −0.527584 | −0.263792 | − | 0.964580i | \(-0.584973\pi\) | ||||
| −0.263792 | + | 0.964580i | \(0.584973\pi\) | |||||||
| \(3\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(4\) | −1.44331 | −0.721655 | ||||||||
| \(5\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(6\) | 0 | 0 | ||||||||
| \(7\) | 0 | 0 | ||||||||
| \(8\) | 2.56911 | 0.908318 | ||||||||
| \(9\) | −3.00000 | −1.00000 | ||||||||
| \(10\) | 0 | 0 | ||||||||
| \(11\) | 0 | 0 | ||||||||
| \(12\) | 0 | 0 | ||||||||
| \(13\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(14\) | 0 | 0 | ||||||||
| \(15\) | 0 | 0 | ||||||||
| \(16\) | 0.969764 | 0.242441 | ||||||||
| \(17\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(18\) | 2.23835 | 0.527584 | ||||||||
| \(19\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(20\) | 0 | 0 | ||||||||
| \(21\) | 0 | 0 | ||||||||
| \(22\) | 0 | 0 | ||||||||
| \(23\) | −3.36187 | −0.700998 | −0.350499 | − | 0.936563i | \(-0.613988\pi\) | ||||
| −0.350499 | + | 0.936563i | \(0.613988\pi\) | |||||||
| \(24\) | 0 | 0 | ||||||||
| \(25\) | −5.00000 | −1.00000 | ||||||||
| \(26\) | 0 | 0 | ||||||||
| \(27\) | 0 | 0 | ||||||||
| \(28\) | 0 | 0 | ||||||||
| \(29\) | 9.44700 | 1.75426 | 0.877132 | − | 0.480249i | \(-0.159454\pi\) | ||||
| 0.877132 | + | 0.480249i | \(0.159454\pi\) | |||||||
| \(30\) | 0 | 0 | ||||||||
| \(31\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(32\) | −5.86178 | −1.03623 | ||||||||
| \(33\) | 0 | 0 | ||||||||
| \(34\) | 0 | 0 | ||||||||
| \(35\) | 0 | 0 | ||||||||
| \(36\) | 4.32993 | 0.721655 | ||||||||
| \(37\) | 11.0746 | 1.82066 | 0.910330 | − | 0.413884i | \(-0.135828\pi\) | ||||
| 0.910330 | + | 0.413884i | \(0.135828\pi\) | |||||||
| \(38\) | 0 | 0 | ||||||||
| \(39\) | 0 | 0 | ||||||||
| \(40\) | 0 | 0 | ||||||||
| \(41\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(42\) | 0 | 0 | ||||||||
| \(43\) | −1.32431 | −0.201956 | −0.100978 | − | 0.994889i | \(-0.532197\pi\) | ||||
| −0.100978 | + | 0.994889i | \(0.532197\pi\) | |||||||
| \(44\) | 0 | 0 | ||||||||
| \(45\) | 0 | 0 | ||||||||
| \(46\) | 2.50835 | 0.369835 | ||||||||
| \(47\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(48\) | 0 | 0 | ||||||||
| \(49\) | 0 | 0 | ||||||||
| \(50\) | 3.73058 | 0.527584 | ||||||||
| \(51\) | 0 | 0 | ||||||||
| \(52\) | 0 | 0 | ||||||||
| \(53\) | 6.97487 | 0.958072 | 0.479036 | − | 0.877795i | \(-0.340986\pi\) | ||||
| 0.479036 | + | 0.877795i | \(0.340986\pi\) | |||||||
| \(54\) | 0 | 0 | ||||||||
| \(55\) | 0 | 0 | ||||||||
| \(56\) | 0 | 0 | ||||||||
| \(57\) | 0 | 0 | ||||||||
| \(58\) | −7.04857 | −0.925522 | ||||||||
| \(59\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(60\) | 0 | 0 | ||||||||
| \(61\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(62\) | 0 | 0 | ||||||||
| \(63\) | 0 | 0 | ||||||||
| \(64\) | 2.43404 | 0.304255 | ||||||||
| \(65\) | 0 | 0 | ||||||||
| \(66\) | 0 | 0 | ||||||||
| \(67\) | −13.8615 | −1.69345 | −0.846725 | − | 0.532031i | \(-0.821429\pi\) | ||||
| −0.846725 | + | 0.532031i | \(0.821429\pi\) | |||||||
| \(68\) | 0 | 0 | ||||||||
| \(69\) | 0 | 0 | ||||||||
| \(70\) | 0 | 0 | ||||||||
| \(71\) | −0.0882461 | −0.0104729 | −0.00523645 | − | 0.999986i | \(-0.501667\pi\) | ||||
| −0.00523645 | + | 0.999986i | \(0.501667\pi\) | |||||||
| \(72\) | −7.70733 | −0.908318 | ||||||||
| \(73\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(74\) | −8.26297 | −0.960551 | ||||||||
| \(75\) | 0 | 0 | ||||||||
| \(76\) | 0 | 0 | ||||||||
| \(77\) | 0 | 0 | ||||||||
| \(78\) | 0 | 0 | ||||||||
| \(79\) | −17.5697 | −1.97674 | −0.988372 | − | 0.152053i | \(-0.951411\pi\) | ||||
| −0.988372 | + | 0.152053i | \(0.951411\pi\) | |||||||
| \(80\) | 0 | 0 | ||||||||
| \(81\) | 9.00000 | 1.00000 | ||||||||
| \(82\) | 0 | 0 | ||||||||
| \(83\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(84\) | 0 | 0 | ||||||||
| \(85\) | 0 | 0 | ||||||||
| \(86\) | 0.988093 | 0.106549 | ||||||||
| \(87\) | 0 | 0 | ||||||||
| \(88\) | 0 | 0 | ||||||||
| \(89\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(90\) | 0 | 0 | ||||||||
| \(91\) | 0 | 0 | ||||||||
| \(92\) | 4.85222 | 0.505879 | ||||||||
| \(93\) | 0 | 0 | ||||||||
| \(94\) | 0 | 0 | ||||||||
| \(95\) | 0 | 0 | ||||||||
| \(96\) | 0 | 0 | ||||||||
| \(97\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(98\) | 0 | 0 | ||||||||
| \(99\) | 0 | 0 | ||||||||
| \(100\) | 7.21655 | 0.721655 | ||||||||
| \(101\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(102\) | 0 | 0 | ||||||||
| \(103\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(104\) | 0 | 0 | ||||||||
| \(105\) | 0 | 0 | ||||||||
| \(106\) | −5.20406 | −0.505463 | ||||||||
| \(107\) | −19.2906 | −1.86489 | −0.932447 | − | 0.361308i | \(-0.882330\pi\) | ||||
| −0.932447 | + | 0.361308i | \(0.882330\pi\) | |||||||
| \(108\) | 0 | 0 | ||||||||
| \(109\) | 20.7828 | 1.99064 | 0.995318 | − | 0.0966592i | \(-0.0308157\pi\) | ||||
| 0.995318 | + | 0.0966592i | \(0.0308157\pi\) | |||||||
| \(110\) | 0 | 0 | ||||||||
| \(111\) | 0 | 0 | ||||||||
| \(112\) | 0 | 0 | ||||||||
| \(113\) | 20.7481 | 1.95182 | 0.975909 | − | 0.218179i | \(-0.0700116\pi\) | ||||
| 0.975909 | + | 0.218179i | \(0.0700116\pi\) | |||||||
| \(114\) | 0 | 0 | ||||||||
| \(115\) | 0 | 0 | ||||||||
| \(116\) | −13.6350 | −1.26597 | ||||||||
| \(117\) | 0 | 0 | ||||||||
| \(118\) | 0 | 0 | ||||||||
| \(119\) | 0 | 0 | ||||||||
| \(120\) | 0 | 0 | ||||||||
| \(121\) | 0 | 0 | ||||||||
| \(122\) | 0 | 0 | ||||||||
| \(123\) | 0 | 0 | ||||||||
| \(124\) | 0 | 0 | ||||||||
| \(125\) | 0 | 0 | ||||||||
| \(126\) | 0 | 0 | ||||||||
| \(127\) | 22.2751 | 1.97659 | 0.988297 | − | 0.152545i | \(-0.0487468\pi\) | ||||
| 0.988297 | + | 0.152545i | \(0.0487468\pi\) | |||||||
| \(128\) | 9.90748 | 0.875706 | ||||||||
| \(129\) | 0 | 0 | ||||||||
| \(130\) | 0 | 0 | ||||||||
| \(131\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(132\) | 0 | 0 | ||||||||
| \(133\) | 0 | 0 | ||||||||
| \(134\) | 10.3423 | 0.893437 | ||||||||
| \(135\) | 0 | 0 | ||||||||
| \(136\) | 0 | 0 | ||||||||
| \(137\) | −4.35090 | −0.371722 | −0.185861 | − | 0.982576i | \(-0.559507\pi\) | ||||
| −0.185861 | + | 0.982576i | \(0.559507\pi\) | |||||||
| \(138\) | 0 | 0 | ||||||||
| \(139\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(140\) | 0 | 0 | ||||||||
| \(141\) | 0 | 0 | ||||||||
| \(142\) | 0.0658419 | 0.00552533 | ||||||||
| \(143\) | 0 | 0 | ||||||||
| \(144\) | −2.90929 | −0.242441 | ||||||||
| \(145\) | 0 | 0 | ||||||||
| \(146\) | 0 | 0 | ||||||||
| \(147\) | 0 | 0 | ||||||||
| \(148\) | −15.9841 | −1.31389 | ||||||||
| \(149\) | −22.0000 | −1.80231 | −0.901155 | − | 0.433497i | \(-0.857280\pi\) | ||||
| −0.901155 | + | 0.433497i | \(0.857280\pi\) | |||||||
| \(150\) | 0 | 0 | ||||||||
| \(151\) | −16.3061 | −1.32697 | −0.663487 | − | 0.748187i | \(-0.730924\pi\) | ||||
| −0.663487 | + | 0.748187i | \(0.730924\pi\) | |||||||
| \(152\) | 0 | 0 | ||||||||
| \(153\) | 0 | 0 | ||||||||
| \(154\) | 0 | 0 | ||||||||
| \(155\) | 0 | 0 | ||||||||
| \(156\) | 0 | 0 | ||||||||
| \(157\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(158\) | 13.1090 | 1.04290 | ||||||||
| \(159\) | 0 | 0 | ||||||||
| \(160\) | 0 | 0 | ||||||||
| \(161\) | 0 | 0 | ||||||||
| \(162\) | −6.71505 | −0.527584 | ||||||||
| \(163\) | 25.5111 | 1.99819 | 0.999093 | − | 0.0425718i | \(-0.0135551\pi\) | ||||
| 0.999093 | + | 0.0425718i | \(0.0135551\pi\) | |||||||
| \(164\) | 0 | 0 | ||||||||
| \(165\) | 0 | 0 | ||||||||
| \(166\) | 0 | 0 | ||||||||
| \(167\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(168\) | 0 | 0 | ||||||||
| \(169\) | −13.0000 | −1.00000 | ||||||||
| \(170\) | 0 | 0 | ||||||||
| \(171\) | 0 | 0 | ||||||||
| \(172\) | 1.91140 | 0.145743 | ||||||||
| \(173\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(174\) | 0 | 0 | ||||||||
| \(175\) | 0 | 0 | ||||||||
| \(176\) | 0 | 0 | ||||||||
| \(177\) | 0 | 0 | ||||||||
| \(178\) | 0 | 0 | ||||||||
| \(179\) | −18.7874 | −1.40424 | −0.702118 | − | 0.712060i | \(-0.747762\pi\) | ||||
| −0.702118 | + | 0.712060i | \(0.747762\pi\) | |||||||
| \(180\) | 0 | 0 | ||||||||
| \(181\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(182\) | 0 | 0 | ||||||||
| \(183\) | 0 | 0 | ||||||||
| \(184\) | −8.63701 | −0.636729 | ||||||||
| \(185\) | 0 | 0 | ||||||||
| \(186\) | 0 | 0 | ||||||||
| \(187\) | 0 | 0 | ||||||||
| \(188\) | 0 | 0 | ||||||||
| \(189\) | 0 | 0 | ||||||||
| \(190\) | 0 | 0 | ||||||||
| \(191\) | 27.6347 | 1.99958 | 0.999789 | − | 0.0205267i | \(-0.00653431\pi\) | ||||
| 0.999789 | + | 0.0205267i | \(0.00653431\pi\) | |||||||
| \(192\) | 0 | 0 | ||||||||
| \(193\) | −25.6924 | −1.84938 | −0.924689 | − | 0.380724i | \(-0.875675\pi\) | ||||
| −0.924689 | + | 0.380724i | \(0.875675\pi\) | |||||||
| \(194\) | 0 | 0 | ||||||||
| \(195\) | 0 | 0 | ||||||||
| \(196\) | 0 | 0 | ||||||||
| \(197\) | −14.8139 | −1.05545 | −0.527724 | − | 0.849416i | \(-0.676954\pi\) | ||||
| −0.527724 | + | 0.849416i | \(0.676954\pi\) | |||||||
| \(198\) | 0 | 0 | ||||||||
| \(199\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(200\) | −12.8456 | −0.908318 | ||||||||
| \(201\) | 0 | 0 | ||||||||
| \(202\) | 0 | 0 | ||||||||
| \(203\) | 0 | 0 | ||||||||
| \(204\) | 0 | 0 | ||||||||
| \(205\) | 0 | 0 | ||||||||
| \(206\) | 0 | 0 | ||||||||
| \(207\) | 10.0856 | 0.700998 | ||||||||
| \(208\) | 0 | 0 | ||||||||
| \(209\) | 0 | 0 | ||||||||
| \(210\) | 0 | 0 | ||||||||
| \(211\) | −25.2595 | −1.73894 | −0.869469 | − | 0.493987i | \(-0.835539\pi\) | ||||
| −0.869469 | + | 0.493987i | \(0.835539\pi\) | |||||||
| \(212\) | −10.0669 | −0.691397 | ||||||||
| \(213\) | 0 | 0 | ||||||||
| \(214\) | 14.3930 | 0.983888 | ||||||||
| \(215\) | 0 | 0 | ||||||||
| \(216\) | 0 | 0 | ||||||||
| \(217\) | 0 | 0 | ||||||||
| \(218\) | −15.5064 | −1.05023 | ||||||||
| \(219\) | 0 | 0 | ||||||||
| \(220\) | 0 | 0 | ||||||||
| \(221\) | 0 | 0 | ||||||||
| \(222\) | 0 | 0 | ||||||||
| \(223\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(224\) | 0 | 0 | ||||||||
| \(225\) | 15.0000 | 1.00000 | ||||||||
| \(226\) | −15.4805 | −1.02975 | ||||||||
| \(227\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(228\) | 0 | 0 | ||||||||
| \(229\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(230\) | 0 | 0 | ||||||||
| \(231\) | 0 | 0 | ||||||||
| \(232\) | 24.2704 | 1.59343 | ||||||||
| \(233\) | −22.0000 | −1.44127 | −0.720634 | − | 0.693316i | \(-0.756149\pi\) | ||||
| −0.720634 | + | 0.693316i | \(0.756149\pi\) | |||||||
| \(234\) | 0 | 0 | ||||||||
| \(235\) | 0 | 0 | ||||||||
| \(236\) | 0 | 0 | ||||||||
| \(237\) | 0 | 0 | ||||||||
| \(238\) | 0 | 0 | ||||||||
| \(239\) | 20.2183 | 1.30781 | 0.653907 | − | 0.756575i | \(-0.273129\pi\) | ||||
| 0.653907 | + | 0.756575i | \(0.273129\pi\) | |||||||
| \(240\) | 0 | 0 | ||||||||
| \(241\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(242\) | 0 | 0 | ||||||||
| \(243\) | 0 | 0 | ||||||||
| \(244\) | 0 | 0 | ||||||||
| \(245\) | 0 | 0 | ||||||||
| \(246\) | 0 | 0 | ||||||||
| \(247\) | 0 | 0 | ||||||||
| \(248\) | 0 | 0 | ||||||||
| \(249\) | 0 | 0 | ||||||||
| \(250\) | 0 | 0 | ||||||||
| \(251\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(252\) | 0 | 0 | ||||||||
| \(253\) | 0 | 0 | ||||||||
| \(254\) | −16.6198 | −1.04282 | ||||||||
| \(255\) | 0 | 0 | ||||||||
| \(256\) | −12.2602 | −0.766264 | ||||||||
| \(257\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(258\) | 0 | 0 | ||||||||
| \(259\) | 0 | 0 | ||||||||
| \(260\) | 0 | 0 | ||||||||
| \(261\) | −28.3410 | −1.75426 | ||||||||
| \(262\) | 0 | 0 | ||||||||
| \(263\) | −14.9211 | −0.920072 | −0.460036 | − | 0.887900i | \(-0.652164\pi\) | ||||
| −0.460036 | + | 0.887900i | \(0.652164\pi\) | |||||||
| \(264\) | 0 | 0 | ||||||||
| \(265\) | 0 | 0 | ||||||||
| \(266\) | 0 | 0 | ||||||||
| \(267\) | 0 | 0 | ||||||||
| \(268\) | 20.0064 | 1.22209 | ||||||||
| \(269\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(270\) | 0 | 0 | ||||||||
| \(271\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(272\) | 0 | 0 | ||||||||
| \(273\) | 0 | 0 | ||||||||
| \(274\) | 3.24628 | 0.196115 | ||||||||
| \(275\) | 0 | 0 | ||||||||
| \(276\) | 0 | 0 | ||||||||
| \(277\) | −26.7518 | −1.60736 | −0.803679 | − | 0.595063i | \(-0.797127\pi\) | ||||
| −0.803679 | + | 0.595063i | \(0.797127\pi\) | |||||||
| \(278\) | 0 | 0 | ||||||||
| \(279\) | 0 | 0 | ||||||||
| \(280\) | 0 | 0 | ||||||||
| \(281\) | −12.0956 | −0.721565 | −0.360782 | − | 0.932650i | \(-0.617490\pi\) | ||||
| −0.360782 | + | 0.932650i | \(0.617490\pi\) | |||||||
| \(282\) | 0 | 0 | ||||||||
| \(283\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(284\) | 0.127367 | 0.00755781 | ||||||||
| \(285\) | 0 | 0 | ||||||||
| \(286\) | 0 | 0 | ||||||||
| \(287\) | 0 | 0 | ||||||||
| \(288\) | 17.5853 | 1.03623 | ||||||||
| \(289\) | −17.0000 | −1.00000 | ||||||||
| \(290\) | 0 | 0 | ||||||||
| \(291\) | 0 | 0 | ||||||||
| \(292\) | 0 | 0 | ||||||||
| \(293\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(294\) | 0 | 0 | ||||||||
| \(295\) | 0 | 0 | ||||||||
| \(296\) | 28.4520 | 1.65374 | ||||||||
| \(297\) | 0 | 0 | ||||||||
| \(298\) | 16.4146 | 0.950870 | ||||||||
| \(299\) | 0 | 0 | ||||||||
| \(300\) | 0 | 0 | ||||||||
| \(301\) | 0 | 0 | ||||||||
| \(302\) | 12.1663 | 0.700091 | ||||||||
| \(303\) | 0 | 0 | ||||||||
| \(304\) | 0 | 0 | ||||||||
| \(305\) | 0 | 0 | ||||||||
| \(306\) | 0 | 0 | ||||||||
| \(307\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(308\) | 0 | 0 | ||||||||
| \(309\) | 0 | 0 | ||||||||
| \(310\) | 0 | 0 | ||||||||
| \(311\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(312\) | 0 | 0 | ||||||||
| \(313\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(314\) | 0 | 0 | ||||||||
| \(315\) | 0 | 0 | ||||||||
| \(316\) | 25.3585 | 1.42653 | ||||||||
| \(317\) | −20.5716 | −1.15542 | −0.577708 | − | 0.816243i | \(-0.696053\pi\) | ||||
| −0.577708 | + | 0.816243i | \(0.696053\pi\) | |||||||
| \(318\) | 0 | 0 | ||||||||
| \(319\) | 0 | 0 | ||||||||
| \(320\) | 0 | 0 | ||||||||
| \(321\) | 0 | 0 | ||||||||
| \(322\) | 0 | 0 | ||||||||
| \(323\) | 0 | 0 | ||||||||
| \(324\) | −12.9898 | −0.721655 | ||||||||
| \(325\) | 0 | 0 | ||||||||
| \(326\) | −19.0343 | −1.05421 | ||||||||
| \(327\) | 0 | 0 | ||||||||
| \(328\) | 0 | 0 | ||||||||
| \(329\) | 0 | 0 | ||||||||
| \(330\) | 0 | 0 | ||||||||
| \(331\) | −32.2349 | −1.77179 | −0.885895 | − | 0.463887i | \(-0.846455\pi\) | ||||
| −0.885895 | + | 0.463887i | \(0.846455\pi\) | |||||||
| \(332\) | 0 | 0 | ||||||||
| \(333\) | −33.2239 | −1.82066 | ||||||||
| \(334\) | 0 | 0 | ||||||||
| \(335\) | 0 | 0 | ||||||||
| \(336\) | 0 | 0 | ||||||||
| \(337\) | 11.8294 | 0.644391 | 0.322195 | − | 0.946673i | \(-0.395579\pi\) | ||||
| 0.322195 | + | 0.946673i | \(0.395579\pi\) | |||||||
| \(338\) | 9.69952 | 0.527584 | ||||||||
| \(339\) | 0 | 0 | ||||||||
| \(340\) | 0 | 0 | ||||||||
| \(341\) | 0 | 0 | ||||||||
| \(342\) | 0 | 0 | ||||||||
| \(343\) | 0 | 0 | ||||||||
| \(344\) | −3.40231 | −0.183440 | ||||||||
| \(345\) | 0 | 0 | ||||||||
| \(346\) | 0 | 0 | ||||||||
| \(347\) | −36.4637 | −1.95747 | −0.978737 | − | 0.205120i | \(-0.934242\pi\) | ||||
| −0.978737 | + | 0.205120i | \(0.934242\pi\) | |||||||
| \(348\) | 0 | 0 | ||||||||
| \(349\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(350\) | 0 | 0 | ||||||||
| \(351\) | 0 | 0 | ||||||||
| \(352\) | 0 | 0 | ||||||||
| \(353\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(354\) | 0 | 0 | ||||||||
| \(355\) | 0 | 0 | ||||||||
| \(356\) | 0 | 0 | ||||||||
| \(357\) | 0 | 0 | ||||||||
| \(358\) | 14.0176 | 0.740853 | ||||||||
| \(359\) | 28.2440 | 1.49066 | 0.745331 | − | 0.666695i | \(-0.232292\pi\) | ||||
| 0.745331 | + | 0.666695i | \(0.232292\pi\) | |||||||
| \(360\) | 0 | 0 | ||||||||
| \(361\) | −19.0000 | −1.00000 | ||||||||
| \(362\) | 0 | 0 | ||||||||
| \(363\) | 0 | 0 | ||||||||
| \(364\) | 0 | 0 | ||||||||
| \(365\) | 0 | 0 | ||||||||
| \(366\) | 0 | 0 | ||||||||
| \(367\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(368\) | −3.26022 | −0.169951 | ||||||||
| \(369\) | 0 | 0 | ||||||||
| \(370\) | 0 | 0 | ||||||||
| \(371\) | 0 | 0 | ||||||||
| \(372\) | 0 | 0 | ||||||||
| \(373\) | −22.0000 | −1.13912 | −0.569558 | − | 0.821951i | \(-0.692886\pi\) | ||||
| −0.569558 | + | 0.821951i | \(0.692886\pi\) | |||||||
| \(374\) | 0 | 0 | ||||||||
| \(375\) | 0 | 0 | ||||||||
| \(376\) | 0 | 0 | ||||||||
| \(377\) | 0 | 0 | ||||||||
| \(378\) | 0 | 0 | ||||||||
| \(379\) | −12.0637 | −0.619669 | −0.309834 | − | 0.950791i | \(-0.600274\pi\) | ||||
| −0.309834 | + | 0.950791i | \(0.600274\pi\) | |||||||
| \(380\) | 0 | 0 | ||||||||
| \(381\) | 0 | 0 | ||||||||
| \(382\) | −20.6187 | −1.05495 | ||||||||
| \(383\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(384\) | 0 | 0 | ||||||||
| \(385\) | 0 | 0 | ||||||||
| \(386\) | 19.1695 | 0.975702 | ||||||||
| \(387\) | 3.97294 | 0.201956 | ||||||||
| \(388\) | 0 | 0 | ||||||||
| \(389\) | 24.5221 | 1.24332 | 0.621660 | − | 0.783287i | \(-0.286458\pi\) | ||||
| 0.621660 | + | 0.783287i | \(0.286458\pi\) | |||||||
| \(390\) | 0 | 0 | ||||||||
| \(391\) | 0 | 0 | ||||||||
| \(392\) | 0 | 0 | ||||||||
| \(393\) | 0 | 0 | ||||||||
| \(394\) | 11.0529 | 0.556837 | ||||||||
| \(395\) | 0 | 0 | ||||||||
| \(396\) | 0 | 0 | ||||||||
| \(397\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(398\) | 0 | 0 | ||||||||
| \(399\) | 0 | 0 | ||||||||
| \(400\) | −4.84882 | −0.242441 | ||||||||
| \(401\) | 39.9476 | 1.99489 | 0.997445 | − | 0.0714367i | \(-0.0227584\pi\) | ||||
| 0.997445 | + | 0.0714367i | \(0.0227584\pi\) | |||||||
| \(402\) | 0 | 0 | ||||||||
| \(403\) | 0 | 0 | ||||||||
| \(404\) | 0 | 0 | ||||||||
| \(405\) | 0 | 0 | ||||||||
| \(406\) | 0 | 0 | ||||||||
| \(407\) | 0 | 0 | ||||||||
| \(408\) | 0 | 0 | ||||||||
| \(409\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(410\) | 0 | 0 | ||||||||
| \(411\) | 0 | 0 | ||||||||
| \(412\) | 0 | 0 | ||||||||
| \(413\) | 0 | 0 | ||||||||
| \(414\) | −7.52504 | −0.369835 | ||||||||
| \(415\) | 0 | 0 | ||||||||
| \(416\) | 0 | 0 | ||||||||
| \(417\) | 0 | 0 | ||||||||
| \(418\) | 0 | 0 | ||||||||
| \(419\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(420\) | 0 | 0 | ||||||||
| \(421\) | 2.37284 | 0.115645 | 0.0578225 | − | 0.998327i | \(-0.481584\pi\) | ||||
| 0.0578225 | + | 0.998327i | \(0.481584\pi\) | |||||||
| \(422\) | 18.8466 | 0.917436 | ||||||||
| \(423\) | 0 | 0 | ||||||||
| \(424\) | 17.9192 | 0.870233 | ||||||||
| \(425\) | 0 | 0 | ||||||||
| \(426\) | 0 | 0 | ||||||||
| \(427\) | 0 | 0 | ||||||||
| \(428\) | 27.8423 | 1.34581 | ||||||||
| \(429\) | 0 | 0 | ||||||||
| \(430\) | 0 | 0 | ||||||||
| \(431\) | 10.3372 | 0.497926 | 0.248963 | − | 0.968513i | \(-0.419910\pi\) | ||||
| 0.248963 | + | 0.968513i | \(0.419910\pi\) | |||||||
| \(432\) | 0 | 0 | ||||||||
| \(433\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(434\) | 0 | 0 | ||||||||
| \(435\) | 0 | 0 | ||||||||
| \(436\) | −29.9961 | −1.43655 | ||||||||
| \(437\) | 0 | 0 | ||||||||
| \(438\) | 0 | 0 | ||||||||
| \(439\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(440\) | 0 | 0 | ||||||||
| \(441\) | 0 | 0 | ||||||||
| \(442\) | 0 | 0 | ||||||||
| \(443\) | −41.4080 | −1.96735 | −0.983676 | − | 0.179949i | \(-0.942407\pi\) | ||||
| −0.983676 | + | 0.179949i | \(0.942407\pi\) | |||||||
| \(444\) | 0 | 0 | ||||||||
| \(445\) | 0 | 0 | ||||||||
| \(446\) | 0 | 0 | ||||||||
| \(447\) | 0 | 0 | ||||||||
| \(448\) | 0 | 0 | ||||||||
| \(449\) | −26.5002 | −1.25062 | −0.625310 | − | 0.780376i | \(-0.715028\pi\) | ||||
| −0.625310 | + | 0.780376i | \(0.715028\pi\) | |||||||
| \(450\) | −11.1917 | −0.527584 | ||||||||
| \(451\) | 0 | 0 | ||||||||
| \(452\) | −29.9459 | −1.40854 | ||||||||
| \(453\) | 0 | 0 | ||||||||
| \(454\) | 0 | 0 | ||||||||
| \(455\) | 0 | 0 | ||||||||
| \(456\) | 0 | 0 | ||||||||
| \(457\) | −29.7362 | −1.39100 | −0.695501 | − | 0.718525i | \(-0.744818\pi\) | ||||
| −0.695501 | + | 0.718525i | \(0.744818\pi\) | |||||||
| \(458\) | 0 | 0 | ||||||||
| \(459\) | 0 | 0 | ||||||||
| \(460\) | 0 | 0 | ||||||||
| \(461\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(462\) | 0 | 0 | ||||||||
| \(463\) | −27.4582 | −1.27609 | −0.638046 | − | 0.769998i | \(-0.720257\pi\) | ||||
| −0.638046 | + | 0.769998i | \(0.720257\pi\) | |||||||
| \(464\) | 9.16136 | 0.425305 | ||||||||
| \(465\) | 0 | 0 | ||||||||
| \(466\) | 16.4146 | 0.760390 | ||||||||
| \(467\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(468\) | 0 | 0 | ||||||||
| \(469\) | 0 | 0 | ||||||||
| \(470\) | 0 | 0 | ||||||||
| \(471\) | 0 | 0 | ||||||||
| \(472\) | 0 | 0 | ||||||||
| \(473\) | 0 | 0 | ||||||||
| \(474\) | 0 | 0 | ||||||||
| \(475\) | 0 | 0 | ||||||||
| \(476\) | 0 | 0 | ||||||||
| \(477\) | −20.9246 | −0.958072 | ||||||||
| \(478\) | −15.0852 | −0.689982 | ||||||||
| \(479\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(480\) | 0 | 0 | ||||||||
| \(481\) | 0 | 0 | ||||||||
| \(482\) | 0 | 0 | ||||||||
| \(483\) | 0 | 0 | ||||||||
| \(484\) | 0 | 0 | ||||||||
| \(485\) | 0 | 0 | ||||||||
| \(486\) | 0 | 0 | ||||||||
| \(487\) | 27.8112 | 1.26025 | 0.630123 | − | 0.776495i | \(-0.283004\pi\) | ||||
| 0.630123 | + | 0.776495i | \(0.283004\pi\) | |||||||
| \(488\) | 0 | 0 | ||||||||
| \(489\) | 0 | 0 | ||||||||
| \(490\) | 0 | 0 | ||||||||
| \(491\) | −44.0000 | −1.98569 | −0.992846 | − | 0.119401i | \(-0.961903\pi\) | ||||
| −0.992846 | + | 0.119401i | \(0.961903\pi\) | |||||||
| \(492\) | 0 | 0 | ||||||||
| \(493\) | 0 | 0 | ||||||||
| \(494\) | 0 | 0 | ||||||||
| \(495\) | 0 | 0 | ||||||||
| \(496\) | 0 | 0 | ||||||||
| \(497\) | 0 | 0 | ||||||||
| \(498\) | 0 | 0 | ||||||||
| \(499\) | −14.0380 | −0.628426 | −0.314213 | − | 0.949352i | \(-0.601741\pi\) | ||||
| −0.314213 | + | 0.949352i | \(0.601741\pi\) | |||||||
| \(500\) | 0 | 0 | ||||||||
| \(501\) | 0 | 0 | ||||||||
| \(502\) | 0 | 0 | ||||||||
| \(503\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(504\) | 0 | 0 | ||||||||
| \(505\) | 0 | 0 | ||||||||
| \(506\) | 0 | 0 | ||||||||
| \(507\) | 0 | 0 | ||||||||
| \(508\) | −32.1498 | −1.42642 | ||||||||
| \(509\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(510\) | 0 | 0 | ||||||||
| \(511\) | 0 | 0 | ||||||||
| \(512\) | −10.6674 | −0.471437 | ||||||||
| \(513\) | 0 | 0 | ||||||||
| \(514\) | 0 | 0 | ||||||||
| \(515\) | 0 | 0 | ||||||||
| \(516\) | 0 | 0 | ||||||||
| \(517\) | 0 | 0 | ||||||||
| \(518\) | 0 | 0 | ||||||||
| \(519\) | 0 | 0 | ||||||||
| \(520\) | 0 | 0 | ||||||||
| \(521\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(522\) | 21.1457 | 0.925522 | ||||||||
| \(523\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(524\) | 0 | 0 | ||||||||
| \(525\) | 0 | 0 | ||||||||
| \(526\) | 11.1329 | 0.485415 | ||||||||
| \(527\) | 0 | 0 | ||||||||
| \(528\) | 0 | 0 | ||||||||
| \(529\) | −11.6978 | −0.508602 | ||||||||
| \(530\) | 0 | 0 | ||||||||
| \(531\) | 0 | 0 | ||||||||
| \(532\) | 0 | 0 | ||||||||
| \(533\) | 0 | 0 | ||||||||
| \(534\) | 0 | 0 | ||||||||
| \(535\) | 0 | 0 | ||||||||
| \(536\) | −35.6117 | −1.53819 | ||||||||
| \(537\) | 0 | 0 | ||||||||
| \(538\) | 0 | 0 | ||||||||
| \(539\) | 0 | 0 | ||||||||
| \(540\) | 0 | 0 | ||||||||
| \(541\) | −8.84497 | −0.380275 | −0.190138 | − | 0.981757i | \(-0.560893\pi\) | ||||
| −0.190138 | + | 0.981757i | \(0.560893\pi\) | |||||||
| \(542\) | 0 | 0 | ||||||||
| \(543\) | 0 | 0 | ||||||||
| \(544\) | 0 | 0 | ||||||||
| \(545\) | 0 | 0 | ||||||||
| \(546\) | 0 | 0 | ||||||||
| \(547\) | −44.0000 | −1.88130 | −0.940652 | − | 0.339372i | \(-0.889785\pi\) | ||||
| −0.940652 | + | 0.339372i | \(0.889785\pi\) | |||||||
| \(548\) | 6.27970 | 0.268255 | ||||||||
| \(549\) | 0 | 0 | ||||||||
| \(550\) | 0 | 0 | ||||||||
| \(551\) | 0 | 0 | ||||||||
| \(552\) | 0 | 0 | ||||||||
| \(553\) | 0 | 0 | ||||||||
| \(554\) | 19.9599 | 0.848017 | ||||||||
| \(555\) | 0 | 0 | ||||||||
| \(556\) | 0 | 0 | ||||||||
| \(557\) | −4.14975 | −0.175830 | −0.0879152 | − | 0.996128i | \(-0.528020\pi\) | ||||
| −0.0879152 | + | 0.996128i | \(0.528020\pi\) | |||||||
| \(558\) | 0 | 0 | ||||||||
| \(559\) | 0 | 0 | ||||||||
| \(560\) | 0 | 0 | ||||||||
| \(561\) | 0 | 0 | ||||||||
| \(562\) | 9.02475 | 0.380686 | ||||||||
| \(563\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(564\) | 0 | 0 | ||||||||
| \(565\) | 0 | 0 | ||||||||
| \(566\) | 0 | 0 | ||||||||
| \(567\) | 0 | 0 | ||||||||
| \(568\) | −0.226714 | −0.00951271 | ||||||||
| \(569\) | −22.0000 | −0.922288 | −0.461144 | − | 0.887325i | \(-0.652561\pi\) | ||||
| −0.461144 | + | 0.887325i | \(0.652561\pi\) | |||||||
| \(570\) | 0 | 0 | ||||||||
| \(571\) | 31.2285 | 1.30687 | 0.653435 | − | 0.756982i | \(-0.273327\pi\) | ||||
| 0.653435 | + | 0.756982i | \(0.273327\pi\) | |||||||
| \(572\) | 0 | 0 | ||||||||
| \(573\) | 0 | 0 | ||||||||
| \(574\) | 0 | 0 | ||||||||
| \(575\) | 16.8093 | 0.700998 | ||||||||
| \(576\) | −7.30213 | −0.304255 | ||||||||
| \(577\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(578\) | 12.6840 | 0.527584 | ||||||||
| \(579\) | 0 | 0 | ||||||||
| \(580\) | 0 | 0 | ||||||||
| \(581\) | 0 | 0 | ||||||||
| \(582\) | 0 | 0 | ||||||||
| \(583\) | 0 | 0 | ||||||||
| \(584\) | 0 | 0 | ||||||||
| \(585\) | 0 | 0 | ||||||||
| \(586\) | 0 | 0 | ||||||||
| \(587\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(588\) | 0 | 0 | ||||||||
| \(589\) | 0 | 0 | ||||||||
| \(590\) | 0 | 0 | ||||||||
| \(591\) | 0 | 0 | ||||||||
| \(592\) | 10.7398 | 0.441402 | ||||||||
| \(593\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(594\) | 0 | 0 | ||||||||
| \(595\) | 0 | 0 | ||||||||
| \(596\) | 31.7528 | 1.30065 | ||||||||
| \(597\) | 0 | 0 | ||||||||
| \(598\) | 0 | 0 | ||||||||
| \(599\) | −47.6604 | −1.94735 | −0.973676 | − | 0.227937i | \(-0.926802\pi\) | ||||
| −0.973676 | + | 0.227937i | \(0.926802\pi\) | |||||||
| \(600\) | 0 | 0 | ||||||||
| \(601\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(602\) | 0 | 0 | ||||||||
| \(603\) | 41.5845 | 1.69345 | ||||||||
| \(604\) | 23.5348 | 0.957618 | ||||||||
| \(605\) | 0 | 0 | ||||||||
| \(606\) | 0 | 0 | ||||||||
| \(607\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(608\) | 0 | 0 | ||||||||
| \(609\) | 0 | 0 | ||||||||
| \(610\) | 0 | 0 | ||||||||
| \(611\) | 0 | 0 | ||||||||
| \(612\) | 0 | 0 | ||||||||
| \(613\) | 41.9378 | 1.69385 | 0.846925 | − | 0.531712i | \(-0.178451\pi\) | ||||
| 0.846925 | + | 0.531712i | \(0.178451\pi\) | |||||||
| \(614\) | 0 | 0 | ||||||||
| \(615\) | 0 | 0 | ||||||||
| \(616\) | 0 | 0 | ||||||||
| \(617\) | −48.2946 | −1.94427 | −0.972133 | − | 0.234428i | \(-0.924678\pi\) | ||||
| −0.972133 | + | 0.234428i | \(0.924678\pi\) | |||||||
| \(618\) | 0 | 0 | ||||||||
| \(619\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(620\) | 0 | 0 | ||||||||
| \(621\) | 0 | 0 | ||||||||
| \(622\) | 0 | 0 | ||||||||
| \(623\) | 0 | 0 | ||||||||
| \(624\) | 0 | 0 | ||||||||
| \(625\) | 25.0000 | 1.00000 | ||||||||
| \(626\) | 0 | 0 | ||||||||
| \(627\) | 0 | 0 | ||||||||
| \(628\) | 0 | 0 | ||||||||
| \(629\) | 0 | 0 | ||||||||
| \(630\) | 0 | 0 | ||||||||
| \(631\) | −40.9367 | −1.62966 | −0.814832 | − | 0.579698i | \(-0.803171\pi\) | ||||
| −0.814832 | + | 0.579698i | \(0.803171\pi\) | |||||||
| \(632\) | −45.1385 | −1.79551 | ||||||||
| \(633\) | 0 | 0 | ||||||||
| \(634\) | 15.3488 | 0.609580 | ||||||||
| \(635\) | 0 | 0 | ||||||||
| \(636\) | 0 | 0 | ||||||||
| \(637\) | 0 | 0 | ||||||||
| \(638\) | 0 | 0 | ||||||||
| \(639\) | 0.264738 | 0.0104729 | ||||||||
| \(640\) | 0 | 0 | ||||||||
| \(641\) | 34.3449 | 1.35654 | 0.678270 | − | 0.734813i | \(-0.262730\pi\) | ||||
| 0.678270 | + | 0.734813i | \(0.262730\pi\) | |||||||
| \(642\) | 0 | 0 | ||||||||
| \(643\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(644\) | 0 | 0 | ||||||||
| \(645\) | 0 | 0 | ||||||||
| \(646\) | 0 | 0 | ||||||||
| \(647\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(648\) | 23.1220 | 0.908318 | ||||||||
| \(649\) | 0 | 0 | ||||||||
| \(650\) | 0 | 0 | ||||||||
| \(651\) | 0 | 0 | ||||||||
| \(652\) | −36.8205 | −1.44200 | ||||||||
| \(653\) | −46.6714 | −1.82639 | −0.913196 | − | 0.407520i | \(-0.866394\pi\) | ||||
| −0.913196 | + | 0.407520i | \(0.866394\pi\) | |||||||
| \(654\) | 0 | 0 | ||||||||
| \(655\) | 0 | 0 | ||||||||
| \(656\) | 0 | 0 | ||||||||
| \(657\) | 0 | 0 | ||||||||
| \(658\) | 0 | 0 | ||||||||
| \(659\) | −44.0000 | −1.71400 | −0.856998 | − | 0.515319i | \(-0.827673\pi\) | ||||
| −0.856998 | + | 0.515319i | \(0.827673\pi\) | |||||||
| \(660\) | 0 | 0 | ||||||||
| \(661\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(662\) | 24.0510 | 0.934768 | ||||||||
| \(663\) | 0 | 0 | ||||||||
| \(664\) | 0 | 0 | ||||||||
| \(665\) | 0 | 0 | ||||||||
| \(666\) | 24.7889 | 0.960551 | ||||||||
| \(667\) | −31.7596 | −1.22974 | ||||||||
| \(668\) | 0 | 0 | ||||||||
| \(669\) | 0 | 0 | ||||||||
| \(670\) | 0 | 0 | ||||||||
| \(671\) | 0 | 0 | ||||||||
| \(672\) | 0 | 0 | ||||||||
| \(673\) | 30.9896 | 1.19456 | 0.597281 | − | 0.802032i | \(-0.296248\pi\) | ||||
| 0.597281 | + | 0.802032i | \(0.296248\pi\) | |||||||
| \(674\) | −8.82614 | −0.339970 | ||||||||
| \(675\) | 0 | 0 | ||||||||
| \(676\) | 18.7630 | 0.721655 | ||||||||
| \(677\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(678\) | 0 | 0 | ||||||||
| \(679\) | 0 | 0 | ||||||||
| \(680\) | 0 | 0 | ||||||||
| \(681\) | 0 | 0 | ||||||||
| \(682\) | 0 | 0 | ||||||||
| \(683\) | 38.9586 | 1.49071 | 0.745355 | − | 0.666668i | \(-0.232280\pi\) | ||||
| 0.745355 | + | 0.666668i | \(0.232280\pi\) | |||||||
| \(684\) | 0 | 0 | ||||||||
| \(685\) | 0 | 0 | ||||||||
| \(686\) | 0 | 0 | ||||||||
| \(687\) | 0 | 0 | ||||||||
| \(688\) | −1.28427 | −0.0489624 | ||||||||
| \(689\) | 0 | 0 | ||||||||
| \(690\) | 0 | 0 | ||||||||
| \(691\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(692\) | 0 | 0 | ||||||||
| \(693\) | 0 | 0 | ||||||||
| \(694\) | 27.2062 | 1.03273 | ||||||||
| \(695\) | 0 | 0 | ||||||||
| \(696\) | 0 | 0 | ||||||||
| \(697\) | 0 | 0 | ||||||||
| \(698\) | 0 | 0 | ||||||||
| \(699\) | 0 | 0 | ||||||||
| \(700\) | 0 | 0 | ||||||||
| \(701\) | 32.7207 | 1.23584 | 0.617922 | − | 0.786239i | \(-0.287975\pi\) | ||||
| 0.617922 | + | 0.786239i | \(0.287975\pi\) | |||||||
| \(702\) | 0 | 0 | ||||||||
| \(703\) | 0 | 0 | ||||||||
| \(704\) | 0 | 0 | ||||||||
| \(705\) | 0 | 0 | ||||||||
| \(706\) | 0 | 0 | ||||||||
| \(707\) | 0 | 0 | ||||||||
| \(708\) | 0 | 0 | ||||||||
| \(709\) | 48.4711 | 1.82037 | 0.910185 | − | 0.414202i | \(-0.135939\pi\) | ||||
| 0.910185 | + | 0.414202i | \(0.135939\pi\) | |||||||
| \(710\) | 0 | 0 | ||||||||
| \(711\) | 52.7091 | 1.97674 | ||||||||
| \(712\) | 0 | 0 | ||||||||
| \(713\) | 0 | 0 | ||||||||
| \(714\) | 0 | 0 | ||||||||
| \(715\) | 0 | 0 | ||||||||
| \(716\) | 27.1160 | 1.01337 | ||||||||
| \(717\) | 0 | 0 | ||||||||
| \(718\) | −21.0733 | −0.786449 | ||||||||
| \(719\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(720\) | 0 | 0 | ||||||||
| \(721\) | 0 | 0 | ||||||||
| \(722\) | 14.1762 | 0.527584 | ||||||||
| \(723\) | 0 | 0 | ||||||||
| \(724\) | 0 | 0 | ||||||||
| \(725\) | −47.2350 | −1.75426 | ||||||||
| \(726\) | 0 | 0 | ||||||||
| \(727\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(728\) | 0 | 0 | ||||||||
| \(729\) | −27.0000 | −1.00000 | ||||||||
| \(730\) | 0 | 0 | ||||||||
| \(731\) | 0 | 0 | ||||||||
| \(732\) | 0 | 0 | ||||||||
| \(733\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(734\) | 0 | 0 | ||||||||
| \(735\) | 0 | 0 | ||||||||
| \(736\) | 19.7065 | 0.726392 | ||||||||
| \(737\) | 0 | 0 | ||||||||
| \(738\) | 0 | 0 | ||||||||
| \(739\) | 31.1664 | 1.14648 | 0.573238 | − | 0.819389i | \(-0.305687\pi\) | ||||
| 0.573238 | + | 0.819389i | \(0.305687\pi\) | |||||||
| \(740\) | 0 | 0 | ||||||||
| \(741\) | 0 | 0 | ||||||||
| \(742\) | 0 | 0 | ||||||||
| \(743\) | −22.8669 | −0.838907 | −0.419453 | − | 0.907777i | \(-0.637778\pi\) | ||||
| −0.419453 | + | 0.907777i | \(0.637778\pi\) | |||||||
| \(744\) | 0 | 0 | ||||||||
| \(745\) | 0 | 0 | ||||||||
| \(746\) | 16.4146 | 0.600980 | ||||||||
| \(747\) | 0 | 0 | ||||||||
| \(748\) | 0 | 0 | ||||||||
| \(749\) | 0 | 0 | ||||||||
| \(750\) | 0 | 0 | ||||||||
| \(751\) | 54.3842 | 1.98451 | 0.992253 | − | 0.124234i | \(-0.0396474\pi\) | ||||
| 0.992253 | + | 0.124234i | \(0.0396474\pi\) | |||||||
| \(752\) | 0 | 0 | ||||||||
| \(753\) | 0 | 0 | ||||||||
| \(754\) | 0 | 0 | ||||||||
| \(755\) | 0 | 0 | ||||||||
| \(756\) | 0 | 0 | ||||||||
| \(757\) | −6.62188 | −0.240676 | −0.120338 | − | 0.992733i | \(-0.538398\pi\) | ||||
| −0.120338 | + | 0.992733i | \(0.538398\pi\) | |||||||
| \(758\) | 9.00090 | 0.326927 | ||||||||
| \(759\) | 0 | 0 | ||||||||
| \(760\) | 0 | 0 | ||||||||
| \(761\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(762\) | 0 | 0 | ||||||||
| \(763\) | 0 | 0 | ||||||||
| \(764\) | −39.8855 | −1.44301 | ||||||||
| \(765\) | 0 | 0 | ||||||||
| \(766\) | 0 | 0 | ||||||||
| \(767\) | 0 | 0 | ||||||||
| \(768\) | 0 | 0 | ||||||||
| \(769\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(770\) | 0 | 0 | ||||||||
| \(771\) | 0 | 0 | ||||||||
| \(772\) | 37.0821 | 1.33461 | ||||||||
| \(773\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(774\) | −2.96428 | −0.106549 | ||||||||
| \(775\) | 0 | 0 | ||||||||
| \(776\) | 0 | 0 | ||||||||
| \(777\) | 0 | 0 | ||||||||
| \(778\) | −18.2964 | −0.655956 | ||||||||
| \(779\) | 0 | 0 | ||||||||
| \(780\) | 0 | 0 | ||||||||
| \(781\) | 0 | 0 | ||||||||
| \(782\) | 0 | 0 | ||||||||
| \(783\) | 0 | 0 | ||||||||
| \(784\) | 0 | 0 | ||||||||
| \(785\) | 0 | 0 | ||||||||
| \(786\) | 0 | 0 | ||||||||
| \(787\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(788\) | 21.3811 | 0.761669 | ||||||||
| \(789\) | 0 | 0 | ||||||||
| \(790\) | 0 | 0 | ||||||||
| \(791\) | 0 | 0 | ||||||||
| \(792\) | 0 | 0 | ||||||||
| \(793\) | 0 | 0 | ||||||||
| \(794\) | 0 | 0 | ||||||||
| \(795\) | 0 | 0 | ||||||||
| \(796\) | 0 | 0 | ||||||||
| \(797\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(798\) | 0 | 0 | ||||||||
| \(799\) | 0 | 0 | ||||||||
| \(800\) | 29.3089 | 1.03623 | ||||||||
| \(801\) | 0 | 0 | ||||||||
| \(802\) | −29.8056 | −1.05247 | ||||||||
| \(803\) | 0 | 0 | ||||||||
| \(804\) | 0 | 0 | ||||||||
| \(805\) | 0 | 0 | ||||||||
| \(806\) | 0 | 0 | ||||||||
| \(807\) | 0 | 0 | ||||||||
| \(808\) | 0 | 0 | ||||||||
| \(809\) | −5.86051 | −0.206044 | −0.103022 | − | 0.994679i | \(-0.532851\pi\) | ||||
| −0.103022 | + | 0.994679i | \(0.532851\pi\) | |||||||
| \(810\) | 0 | 0 | ||||||||
| \(811\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(812\) | 0 | 0 | ||||||||
| \(813\) | 0 | 0 | ||||||||
| \(814\) | 0 | 0 | ||||||||
| \(815\) | 0 | 0 | ||||||||
| \(816\) | 0 | 0 | ||||||||
| \(817\) | 0 | 0 | ||||||||
| \(818\) | 0 | 0 | ||||||||
| \(819\) | 0 | 0 | ||||||||
| \(820\) | 0 | 0 | ||||||||
| \(821\) | −22.0000 | −0.767805 | −0.383903 | − | 0.923374i | \(-0.625420\pi\) | ||||
| −0.383903 | + | 0.923374i | \(0.625420\pi\) | |||||||
| \(822\) | 0 | 0 | ||||||||
| \(823\) | 55.1812 | 1.92350 | 0.961748 | − | 0.273936i | \(-0.0883256\pi\) | ||||
| 0.961748 | + | 0.273936i | \(0.0883256\pi\) | |||||||
| \(824\) | 0 | 0 | ||||||||
| \(825\) | 0 | 0 | ||||||||
| \(826\) | 0 | 0 | ||||||||
| \(827\) | −44.0000 | −1.53003 | −0.765015 | − | 0.644013i | \(-0.777268\pi\) | ||||
| −0.765015 | + | 0.644013i | \(0.777268\pi\) | |||||||
| \(828\) | −14.5567 | −0.505879 | ||||||||
| \(829\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(830\) | 0 | 0 | ||||||||
| \(831\) | 0 | 0 | ||||||||
| \(832\) | 0 | 0 | ||||||||
| \(833\) | 0 | 0 | ||||||||
| \(834\) | 0 | 0 | ||||||||
| \(835\) | 0 | 0 | ||||||||
| \(836\) | 0 | 0 | ||||||||
| \(837\) | 0 | 0 | ||||||||
| \(838\) | 0 | 0 | ||||||||
| \(839\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(840\) | 0 | 0 | ||||||||
| \(841\) | 60.2458 | 2.07744 | ||||||||
| \(842\) | −1.77041 | −0.0610125 | ||||||||
| \(843\) | 0 | 0 | ||||||||
| \(844\) | 36.4573 | 1.25491 | ||||||||
| \(845\) | 0 | 0 | ||||||||
| \(846\) | 0 | 0 | ||||||||
| \(847\) | 0 | 0 | ||||||||
| \(848\) | 6.76397 | 0.232276 | ||||||||
| \(849\) | 0 | 0 | ||||||||
| \(850\) | 0 | 0 | ||||||||
| \(851\) | −37.2315 | −1.27628 | ||||||||
| \(852\) | 0 | 0 | ||||||||
| \(853\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(854\) | 0 | 0 | ||||||||
| \(855\) | 0 | 0 | ||||||||
| \(856\) | −49.5597 | −1.69392 | ||||||||
| \(857\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(858\) | 0 | 0 | ||||||||
| \(859\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(860\) | 0 | 0 | ||||||||
| \(861\) | 0 | 0 | ||||||||
| \(862\) | −7.71276 | −0.262698 | ||||||||
| \(863\) | 8.00000 | 0.272323 | 0.136162 | − | 0.990687i | \(-0.456523\pi\) | ||||
| 0.136162 | + | 0.990687i | \(0.456523\pi\) | |||||||
| \(864\) | 0 | 0 | ||||||||
| \(865\) | 0 | 0 | ||||||||
| \(866\) | 0 | 0 | ||||||||
| \(867\) | 0 | 0 | ||||||||
| \(868\) | 0 | 0 | ||||||||
| \(869\) | 0 | 0 | ||||||||
| \(870\) | 0 | 0 | ||||||||
| \(871\) | 0 | 0 | ||||||||
| \(872\) | 53.3934 | 1.80813 | ||||||||
| \(873\) | 0 | 0 | ||||||||
| \(874\) | 0 | 0 | ||||||||
| \(875\) | 0 | 0 | ||||||||
| \(876\) | 0 | 0 | ||||||||
| \(877\) | 14.7443 | 0.497878 | 0.248939 | − | 0.968519i | \(-0.419918\pi\) | ||||
| 0.248939 | + | 0.968519i | \(0.419918\pi\) | |||||||
| \(878\) | 0 | 0 | ||||||||
| \(879\) | 0 | 0 | ||||||||
| \(880\) | 0 | 0 | ||||||||
| \(881\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(882\) | 0 | 0 | ||||||||
| \(883\) | −12.0000 | −0.403832 | −0.201916 | − | 0.979403i | \(-0.564717\pi\) | ||||
| −0.201916 | + | 0.979403i | \(0.564717\pi\) | |||||||
| \(884\) | 0 | 0 | ||||||||
| \(885\) | 0 | 0 | ||||||||
| \(886\) | 30.8952 | 1.03794 | ||||||||
| \(887\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(888\) | 0 | 0 | ||||||||
| \(889\) | 0 | 0 | ||||||||
| \(890\) | 0 | 0 | ||||||||
| \(891\) | 0 | 0 | ||||||||
| \(892\) | 0 | 0 | ||||||||
| \(893\) | 0 | 0 | ||||||||
| \(894\) | 0 | 0 | ||||||||
| \(895\) | 0 | 0 | ||||||||
| \(896\) | 0 | 0 | ||||||||
| \(897\) | 0 | 0 | ||||||||
| \(898\) | 19.7722 | 0.659807 | ||||||||
| \(899\) | 0 | 0 | ||||||||
| \(900\) | −21.6497 | −0.721655 | ||||||||
| \(901\) | 0 | 0 | ||||||||
| \(902\) | 0 | 0 | ||||||||
| \(903\) | 0 | 0 | ||||||||
| \(904\) | 53.3042 | 1.77287 | ||||||||
| \(905\) | 0 | 0 | ||||||||
| \(906\) | 0 | 0 | ||||||||
| \(907\) | 13.5085 | 0.448542 | 0.224271 | − | 0.974527i | \(-0.428000\pi\) | ||||
| 0.224271 | + | 0.974527i | \(0.428000\pi\) | |||||||
| \(908\) | 0 | 0 | ||||||||
| \(909\) | 0 | 0 | ||||||||
| \(910\) | 0 | 0 | ||||||||
| \(911\) | 16.0000 | 0.530104 | 0.265052 | − | 0.964234i | \(-0.414611\pi\) | ||||
| 0.265052 | + | 0.964234i | \(0.414611\pi\) | |||||||
| \(912\) | 0 | 0 | ||||||||
| \(913\) | 0 | 0 | ||||||||
| \(914\) | 22.1867 | 0.733871 | ||||||||
| \(915\) | 0 | 0 | ||||||||
| \(916\) | 0 | 0 | ||||||||
| \(917\) | 0 | 0 | ||||||||
| \(918\) | 0 | 0 | ||||||||
| \(919\) | 50.0604 | 1.65134 | 0.825671 | − | 0.564152i | \(-0.190797\pi\) | ||||
| 0.825671 | + | 0.564152i | \(0.190797\pi\) | |||||||
| \(920\) | 0 | 0 | ||||||||
| \(921\) | 0 | 0 | ||||||||
| \(922\) | 0 | 0 | ||||||||
| \(923\) | 0 | 0 | ||||||||
| \(924\) | 0 | 0 | ||||||||
| \(925\) | −55.3732 | −1.82066 | ||||||||
| \(926\) | 20.4870 | 0.673246 | ||||||||
| \(927\) | 0 | 0 | ||||||||
| \(928\) | −55.3762 | −1.81781 | ||||||||
| \(929\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(930\) | 0 | 0 | ||||||||
| \(931\) | 0 | 0 | ||||||||
| \(932\) | 31.7528 | 1.04010 | ||||||||
| \(933\) | 0 | 0 | ||||||||
| \(934\) | 0 | 0 | ||||||||
| \(935\) | 0 | 0 | ||||||||
| \(936\) | 0 | 0 | ||||||||
| \(937\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(938\) | 0 | 0 | ||||||||
| \(939\) | 0 | 0 | ||||||||
| \(940\) | 0 | 0 | ||||||||
| \(941\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(942\) | 0 | 0 | ||||||||
| \(943\) | 0 | 0 | ||||||||
| \(944\) | 0 | 0 | ||||||||
| \(945\) | 0 | 0 | ||||||||
| \(946\) | 0 | 0 | ||||||||
| \(947\) | −20.0000 | −0.649913 | −0.324956 | − | 0.945729i | \(-0.605350\pi\) | ||||
| −0.324956 | + | 0.945729i | \(0.605350\pi\) | |||||||
| \(948\) | 0 | 0 | ||||||||
| \(949\) | 0 | 0 | ||||||||
| \(950\) | 0 | 0 | ||||||||
| \(951\) | 0 | 0 | ||||||||
| \(952\) | 0 | 0 | ||||||||
| \(953\) | 59.3641 | 1.92299 | 0.961495 | − | 0.274822i | \(-0.0886189\pi\) | ||||
| 0.961495 | + | 0.274822i | \(0.0886189\pi\) | |||||||
| \(954\) | 15.6122 | 0.505463 | ||||||||
| \(955\) | 0 | 0 | ||||||||
| \(956\) | −29.1813 | −0.943791 | ||||||||
| \(957\) | 0 | 0 | ||||||||
| \(958\) | 0 | 0 | ||||||||
| \(959\) | 0 | 0 | ||||||||
| \(960\) | 0 | 0 | ||||||||
| \(961\) | −31.0000 | −1.00000 | ||||||||
| \(962\) | 0 | 0 | ||||||||
| \(963\) | 57.8718 | 1.86489 | ||||||||
| \(964\) | 0 | 0 | ||||||||
| \(965\) | 0 | 0 | ||||||||
| \(966\) | 0 | 0 | ||||||||
| \(967\) | −4.36827 | −0.140474 | −0.0702371 | − | 0.997530i | \(-0.522376\pi\) | ||||
| −0.0702371 | + | 0.997530i | \(0.522376\pi\) | |||||||
| \(968\) | 0 | 0 | ||||||||
| \(969\) | 0 | 0 | ||||||||
| \(970\) | 0 | 0 | ||||||||
| \(971\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(972\) | 0 | 0 | ||||||||
| \(973\) | 0 | 0 | ||||||||
| \(974\) | −20.7504 | −0.664886 | ||||||||
| \(975\) | 0 | 0 | ||||||||
| \(976\) | 0 | 0 | ||||||||
| \(977\) | −62.0969 | −1.98666 | −0.993328 | − | 0.115321i | \(-0.963210\pi\) | ||||
| −0.993328 | + | 0.115321i | \(0.963210\pi\) | |||||||
| \(978\) | 0 | 0 | ||||||||
| \(979\) | 0 | 0 | ||||||||
| \(980\) | 0 | 0 | ||||||||
| \(981\) | −62.3485 | −1.99064 | ||||||||
| \(982\) | 32.8291 | 1.04762 | ||||||||
| \(983\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(984\) | 0 | 0 | ||||||||
| \(985\) | 0 | 0 | ||||||||
| \(986\) | 0 | 0 | ||||||||
| \(987\) | 0 | 0 | ||||||||
| \(988\) | 0 | 0 | ||||||||
| \(989\) | 4.45217 | 0.141571 | ||||||||
| \(990\) | 0 | 0 | ||||||||
| \(991\) | −24.0000 | −0.762385 | −0.381193 | − | 0.924496i | \(-0.624487\pi\) | ||||
| −0.381193 | + | 0.924496i | \(0.624487\pi\) | |||||||
| \(992\) | 0 | 0 | ||||||||
| \(993\) | 0 | 0 | ||||||||
| \(994\) | 0 | 0 | ||||||||
| \(995\) | 0 | 0 | ||||||||
| \(996\) | 0 | 0 | ||||||||
| \(997\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(998\) | 10.4740 | 0.331548 | ||||||||
| \(999\) | 0 | 0 | ||||||||
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
Twists
| By twisting character | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Type | Twist | Min | Dim | |
| 1.1 | even | 1 | trivial | 5929.2.a.bg.1.2 | 4 | ||
| 7.6 | odd | 2 | CM | 5929.2.a.bg.1.2 | 4 | ||
| 11.7 | odd | 10 | 539.2.f.c.148.2 | ✓ | 8 | ||
| 11.8 | odd | 10 | 539.2.f.c.295.2 | yes | 8 | ||
| 11.10 | odd | 2 | 5929.2.a.bc.1.3 | 4 | |||
| 77.18 | odd | 30 | 539.2.q.d.324.1 | 16 | |||
| 77.19 | even | 30 | 539.2.q.d.361.1 | 16 | |||
| 77.30 | odd | 30 | 539.2.q.d.361.1 | 16 | |||
| 77.40 | even | 30 | 539.2.q.d.214.2 | 16 | |||
| 77.41 | even | 10 | 539.2.f.c.295.2 | yes | 8 | ||
| 77.51 | odd | 30 | 539.2.q.d.214.2 | 16 | |||
| 77.52 | even | 30 | 539.2.q.d.471.2 | 16 | |||
| 77.62 | even | 10 | 539.2.f.c.148.2 | ✓ | 8 | ||
| 77.73 | even | 30 | 539.2.q.d.324.1 | 16 | |||
| 77.74 | odd | 30 | 539.2.q.d.471.2 | 16 | |||
| 77.76 | even | 2 | 5929.2.a.bc.1.3 | 4 | |||
| By twisted newform | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Type | |
| 539.2.f.c.148.2 | ✓ | 8 | 11.7 | odd | 10 | ||
| 539.2.f.c.148.2 | ✓ | 8 | 77.62 | even | 10 | ||
| 539.2.f.c.295.2 | yes | 8 | 11.8 | odd | 10 | ||
| 539.2.f.c.295.2 | yes | 8 | 77.41 | even | 10 | ||
| 539.2.q.d.214.2 | 16 | 77.40 | even | 30 | |||
| 539.2.q.d.214.2 | 16 | 77.51 | odd | 30 | |||
| 539.2.q.d.324.1 | 16 | 77.18 | odd | 30 | |||
| 539.2.q.d.324.1 | 16 | 77.73 | even | 30 | |||
| 539.2.q.d.361.1 | 16 | 77.19 | even | 30 | |||
| 539.2.q.d.361.1 | 16 | 77.30 | odd | 30 | |||
| 539.2.q.d.471.2 | 16 | 77.52 | even | 30 | |||
| 539.2.q.d.471.2 | 16 | 77.74 | odd | 30 | |||
| 5929.2.a.bc.1.3 | 4 | 11.10 | odd | 2 | |||
| 5929.2.a.bc.1.3 | 4 | 77.76 | even | 2 | |||
| 5929.2.a.bg.1.2 | 4 | 1.1 | even | 1 | trivial | ||
| 5929.2.a.bg.1.2 | 4 | 7.6 | odd | 2 | CM | ||