Properties

Label 5929.2.a.bf.1.2
Level $5929$
Weight $2$
Character 5929.1
Self dual yes
Analytic conductor $47.343$
Analytic rank $1$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5929,2,Mod(1,5929)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5929.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5929, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 5929 = 7^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5929.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,12,0,0,0,0,-12,0,0,0,0,0,0,-4,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(18)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(47.3433033584\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{5})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 6x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(2.28825\) of defining polynomial
Character \(\chi\) \(=\) 5929.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.23607 q^{2} +3.00000 q^{4} +1.41421 q^{5} -2.23607 q^{8} -3.00000 q^{9} -3.16228 q^{10} +3.16228 q^{13} -1.00000 q^{16} -3.16228 q^{17} +6.70820 q^{18} +6.32456 q^{19} +4.24264 q^{20} -4.00000 q^{23} -3.00000 q^{25} -7.07107 q^{26} +4.47214 q^{29} -8.48528 q^{31} +6.70820 q^{32} +7.07107 q^{34} -9.00000 q^{36} +8.00000 q^{37} -14.1421 q^{38} -3.16228 q^{40} -9.48683 q^{41} +8.94427 q^{43} -4.24264 q^{45} +8.94427 q^{46} -2.82843 q^{47} +6.70820 q^{50} +9.48683 q^{52} -6.00000 q^{53} -10.0000 q^{58} +11.3137 q^{59} -3.16228 q^{61} +18.9737 q^{62} -13.0000 q^{64} +4.47214 q^{65} -8.00000 q^{67} -9.48683 q^{68} +6.70820 q^{72} -15.8114 q^{73} -17.8885 q^{74} +18.9737 q^{76} +8.94427 q^{79} -1.41421 q^{80} +9.00000 q^{81} +21.2132 q^{82} +6.32456 q^{83} -4.47214 q^{85} -20.0000 q^{86} +4.24264 q^{89} +9.48683 q^{90} -12.0000 q^{92} +6.32456 q^{94} +8.94427 q^{95} +9.89949 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 12 q^{4} - 12 q^{9} - 4 q^{16} - 16 q^{23} - 12 q^{25} - 36 q^{36} + 32 q^{37} - 24 q^{53} - 40 q^{58} - 52 q^{64} - 32 q^{67} + 36 q^{81} - 80 q^{86} - 48 q^{92}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.23607 −1.58114 −0.790569 0.612372i \(-0.790215\pi\)
−0.790569 + 0.612372i \(0.790215\pi\)
\(3\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(4\) 3.00000 1.50000
\(5\) 1.41421 0.632456 0.316228 0.948683i \(-0.397584\pi\)
0.316228 + 0.948683i \(0.397584\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) −2.23607 −0.790569
\(9\) −3.00000 −1.00000
\(10\) −3.16228 −1.00000
\(11\) 0 0
\(12\) 0 0
\(13\) 3.16228 0.877058 0.438529 0.898717i \(-0.355500\pi\)
0.438529 + 0.898717i \(0.355500\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) −3.16228 −0.766965 −0.383482 0.923548i \(-0.625275\pi\)
−0.383482 + 0.923548i \(0.625275\pi\)
\(18\) 6.70820 1.58114
\(19\) 6.32456 1.45095 0.725476 0.688247i \(-0.241620\pi\)
0.725476 + 0.688247i \(0.241620\pi\)
\(20\) 4.24264 0.948683
\(21\) 0 0
\(22\) 0 0
\(23\) −4.00000 −0.834058 −0.417029 0.908893i \(-0.636929\pi\)
−0.417029 + 0.908893i \(0.636929\pi\)
\(24\) 0 0
\(25\) −3.00000 −0.600000
\(26\) −7.07107 −1.38675
\(27\) 0 0
\(28\) 0 0
\(29\) 4.47214 0.830455 0.415227 0.909718i \(-0.363702\pi\)
0.415227 + 0.909718i \(0.363702\pi\)
\(30\) 0 0
\(31\) −8.48528 −1.52400 −0.762001 0.647576i \(-0.775783\pi\)
−0.762001 + 0.647576i \(0.775783\pi\)
\(32\) 6.70820 1.18585
\(33\) 0 0
\(34\) 7.07107 1.21268
\(35\) 0 0
\(36\) −9.00000 −1.50000
\(37\) 8.00000 1.31519 0.657596 0.753371i \(-0.271573\pi\)
0.657596 + 0.753371i \(0.271573\pi\)
\(38\) −14.1421 −2.29416
\(39\) 0 0
\(40\) −3.16228 −0.500000
\(41\) −9.48683 −1.48159 −0.740797 0.671729i \(-0.765552\pi\)
−0.740797 + 0.671729i \(0.765552\pi\)
\(42\) 0 0
\(43\) 8.94427 1.36399 0.681994 0.731357i \(-0.261113\pi\)
0.681994 + 0.731357i \(0.261113\pi\)
\(44\) 0 0
\(45\) −4.24264 −0.632456
\(46\) 8.94427 1.31876
\(47\) −2.82843 −0.412568 −0.206284 0.978492i \(-0.566137\pi\)
−0.206284 + 0.978492i \(0.566137\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 6.70820 0.948683
\(51\) 0 0
\(52\) 9.48683 1.31559
\(53\) −6.00000 −0.824163 −0.412082 0.911147i \(-0.635198\pi\)
−0.412082 + 0.911147i \(0.635198\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) −10.0000 −1.31306
\(59\) 11.3137 1.47292 0.736460 0.676481i \(-0.236496\pi\)
0.736460 + 0.676481i \(0.236496\pi\)
\(60\) 0 0
\(61\) −3.16228 −0.404888 −0.202444 0.979294i \(-0.564888\pi\)
−0.202444 + 0.979294i \(0.564888\pi\)
\(62\) 18.9737 2.40966
\(63\) 0 0
\(64\) −13.0000 −1.62500
\(65\) 4.47214 0.554700
\(66\) 0 0
\(67\) −8.00000 −0.977356 −0.488678 0.872464i \(-0.662521\pi\)
−0.488678 + 0.872464i \(0.662521\pi\)
\(68\) −9.48683 −1.15045
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 6.70820 0.790569
\(73\) −15.8114 −1.85058 −0.925292 0.379257i \(-0.876180\pi\)
−0.925292 + 0.379257i \(0.876180\pi\)
\(74\) −17.8885 −2.07950
\(75\) 0 0
\(76\) 18.9737 2.17643
\(77\) 0 0
\(78\) 0 0
\(79\) 8.94427 1.00631 0.503155 0.864196i \(-0.332173\pi\)
0.503155 + 0.864196i \(0.332173\pi\)
\(80\) −1.41421 −0.158114
\(81\) 9.00000 1.00000
\(82\) 21.2132 2.34261
\(83\) 6.32456 0.694210 0.347105 0.937826i \(-0.387165\pi\)
0.347105 + 0.937826i \(0.387165\pi\)
\(84\) 0 0
\(85\) −4.47214 −0.485071
\(86\) −20.0000 −2.15666
\(87\) 0 0
\(88\) 0 0
\(89\) 4.24264 0.449719 0.224860 0.974391i \(-0.427808\pi\)
0.224860 + 0.974391i \(0.427808\pi\)
\(90\) 9.48683 1.00000
\(91\) 0 0
\(92\) −12.0000 −1.25109
\(93\) 0 0
\(94\) 6.32456 0.652328
\(95\) 8.94427 0.917663
\(96\) 0 0
\(97\) 9.89949 1.00514 0.502571 0.864536i \(-0.332388\pi\)
0.502571 + 0.864536i \(0.332388\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −9.00000 −0.900000
\(101\) −9.48683 −0.943975 −0.471988 0.881605i \(-0.656463\pi\)
−0.471988 + 0.881605i \(0.656463\pi\)
\(102\) 0 0
\(103\) −8.48528 −0.836080 −0.418040 0.908429i \(-0.637283\pi\)
−0.418040 + 0.908429i \(0.637283\pi\)
\(104\) −7.07107 −0.693375
\(105\) 0 0
\(106\) 13.4164 1.30312
\(107\) −8.94427 −0.864675 −0.432338 0.901712i \(-0.642311\pi\)
−0.432338 + 0.901712i \(0.642311\pi\)
\(108\) 0 0
\(109\) 13.4164 1.28506 0.642529 0.766261i \(-0.277885\pi\)
0.642529 + 0.766261i \(0.277885\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −6.00000 −0.564433 −0.282216 0.959351i \(-0.591070\pi\)
−0.282216 + 0.959351i \(0.591070\pi\)
\(114\) 0 0
\(115\) −5.65685 −0.527504
\(116\) 13.4164 1.24568
\(117\) −9.48683 −0.877058
\(118\) −25.2982 −2.32889
\(119\) 0 0
\(120\) 0 0
\(121\) 0 0
\(122\) 7.07107 0.640184
\(123\) 0 0
\(124\) −25.4558 −2.28600
\(125\) −11.3137 −1.01193
\(126\) 0 0
\(127\) −8.94427 −0.793676 −0.396838 0.917889i \(-0.629892\pi\)
−0.396838 + 0.917889i \(0.629892\pi\)
\(128\) 15.6525 1.38350
\(129\) 0 0
\(130\) −10.0000 −0.877058
\(131\) −18.9737 −1.65774 −0.828868 0.559444i \(-0.811015\pi\)
−0.828868 + 0.559444i \(0.811015\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 17.8885 1.54533
\(135\) 0 0
\(136\) 7.07107 0.606339
\(137\) −8.00000 −0.683486 −0.341743 0.939793i \(-0.611017\pi\)
−0.341743 + 0.939793i \(0.611017\pi\)
\(138\) 0 0
\(139\) 18.9737 1.60933 0.804663 0.593732i \(-0.202346\pi\)
0.804663 + 0.593732i \(0.202346\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 3.00000 0.250000
\(145\) 6.32456 0.525226
\(146\) 35.3553 2.92603
\(147\) 0 0
\(148\) 24.0000 1.97279
\(149\) −17.8885 −1.46549 −0.732743 0.680505i \(-0.761760\pi\)
−0.732743 + 0.680505i \(0.761760\pi\)
\(150\) 0 0
\(151\) −17.8885 −1.45575 −0.727875 0.685710i \(-0.759492\pi\)
−0.727875 + 0.685710i \(0.759492\pi\)
\(152\) −14.1421 −1.14708
\(153\) 9.48683 0.766965
\(154\) 0 0
\(155\) −12.0000 −0.963863
\(156\) 0 0
\(157\) 7.07107 0.564333 0.282166 0.959366i \(-0.408947\pi\)
0.282166 + 0.959366i \(0.408947\pi\)
\(158\) −20.0000 −1.59111
\(159\) 0 0
\(160\) 9.48683 0.750000
\(161\) 0 0
\(162\) −20.1246 −1.58114
\(163\) 4.00000 0.313304 0.156652 0.987654i \(-0.449930\pi\)
0.156652 + 0.987654i \(0.449930\pi\)
\(164\) −28.4605 −2.22239
\(165\) 0 0
\(166\) −14.1421 −1.09764
\(167\) 12.6491 0.978818 0.489409 0.872054i \(-0.337213\pi\)
0.489409 + 0.872054i \(0.337213\pi\)
\(168\) 0 0
\(169\) −3.00000 −0.230769
\(170\) 10.0000 0.766965
\(171\) −18.9737 −1.45095
\(172\) 26.8328 2.04598
\(173\) −3.16228 −0.240424 −0.120212 0.992748i \(-0.538357\pi\)
−0.120212 + 0.992748i \(0.538357\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) −9.48683 −0.711068
\(179\) 4.00000 0.298974 0.149487 0.988764i \(-0.452238\pi\)
0.149487 + 0.988764i \(0.452238\pi\)
\(180\) −12.7279 −0.948683
\(181\) −12.7279 −0.946059 −0.473029 0.881047i \(-0.656840\pi\)
−0.473029 + 0.881047i \(0.656840\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 8.94427 0.659380
\(185\) 11.3137 0.831800
\(186\) 0 0
\(187\) 0 0
\(188\) −8.48528 −0.618853
\(189\) 0 0
\(190\) −20.0000 −1.45095
\(191\) −20.0000 −1.44715 −0.723575 0.690246i \(-0.757502\pi\)
−0.723575 + 0.690246i \(0.757502\pi\)
\(192\) 0 0
\(193\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(194\) −22.1359 −1.58927
\(195\) 0 0
\(196\) 0 0
\(197\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(198\) 0 0
\(199\) −2.82843 −0.200502 −0.100251 0.994962i \(-0.531965\pi\)
−0.100251 + 0.994962i \(0.531965\pi\)
\(200\) 6.70820 0.474342
\(201\) 0 0
\(202\) 21.2132 1.49256
\(203\) 0 0
\(204\) 0 0
\(205\) −13.4164 −0.937043
\(206\) 18.9737 1.32196
\(207\) 12.0000 0.834058
\(208\) −3.16228 −0.219265
\(209\) 0 0
\(210\) 0 0
\(211\) 8.94427 0.615749 0.307875 0.951427i \(-0.400382\pi\)
0.307875 + 0.951427i \(0.400382\pi\)
\(212\) −18.0000 −1.23625
\(213\) 0 0
\(214\) 20.0000 1.36717
\(215\) 12.6491 0.862662
\(216\) 0 0
\(217\) 0 0
\(218\) −30.0000 −2.03186
\(219\) 0 0
\(220\) 0 0
\(221\) −10.0000 −0.672673
\(222\) 0 0
\(223\) −14.1421 −0.947027 −0.473514 0.880786i \(-0.657015\pi\)
−0.473514 + 0.880786i \(0.657015\pi\)
\(224\) 0 0
\(225\) 9.00000 0.600000
\(226\) 13.4164 0.892446
\(227\) −6.32456 −0.419775 −0.209888 0.977725i \(-0.567310\pi\)
−0.209888 + 0.977725i \(0.567310\pi\)
\(228\) 0 0
\(229\) −24.0416 −1.58872 −0.794358 0.607450i \(-0.792192\pi\)
−0.794358 + 0.607450i \(0.792192\pi\)
\(230\) 12.6491 0.834058
\(231\) 0 0
\(232\) −10.0000 −0.656532
\(233\) −13.4164 −0.878938 −0.439469 0.898258i \(-0.644833\pi\)
−0.439469 + 0.898258i \(0.644833\pi\)
\(234\) 21.2132 1.38675
\(235\) −4.00000 −0.260931
\(236\) 33.9411 2.20938
\(237\) 0 0
\(238\) 0 0
\(239\) −8.94427 −0.578557 −0.289278 0.957245i \(-0.593415\pi\)
−0.289278 + 0.957245i \(0.593415\pi\)
\(240\) 0 0
\(241\) 22.1359 1.42590 0.712951 0.701214i \(-0.247358\pi\)
0.712951 + 0.701214i \(0.247358\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) −9.48683 −0.607332
\(245\) 0 0
\(246\) 0 0
\(247\) 20.0000 1.27257
\(248\) 18.9737 1.20483
\(249\) 0 0
\(250\) 25.2982 1.60000
\(251\) −5.65685 −0.357057 −0.178529 0.983935i \(-0.557134\pi\)
−0.178529 + 0.983935i \(0.557134\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 20.0000 1.25491
\(255\) 0 0
\(256\) −9.00000 −0.562500
\(257\) 24.0416 1.49968 0.749838 0.661622i \(-0.230131\pi\)
0.749838 + 0.661622i \(0.230131\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 13.4164 0.832050
\(261\) −13.4164 −0.830455
\(262\) 42.4264 2.62111
\(263\) 17.8885 1.10305 0.551527 0.834157i \(-0.314045\pi\)
0.551527 + 0.834157i \(0.314045\pi\)
\(264\) 0 0
\(265\) −8.48528 −0.521247
\(266\) 0 0
\(267\) 0 0
\(268\) −24.0000 −1.46603
\(269\) 18.3848 1.12094 0.560470 0.828175i \(-0.310621\pi\)
0.560470 + 0.828175i \(0.310621\pi\)
\(270\) 0 0
\(271\) 25.2982 1.53676 0.768379 0.639995i \(-0.221064\pi\)
0.768379 + 0.639995i \(0.221064\pi\)
\(272\) 3.16228 0.191741
\(273\) 0 0
\(274\) 17.8885 1.08069
\(275\) 0 0
\(276\) 0 0
\(277\) 17.8885 1.07482 0.537409 0.843322i \(-0.319403\pi\)
0.537409 + 0.843322i \(0.319403\pi\)
\(278\) −42.4264 −2.54457
\(279\) 25.4558 1.52400
\(280\) 0 0
\(281\) 22.3607 1.33393 0.666963 0.745091i \(-0.267594\pi\)
0.666963 + 0.745091i \(0.267594\pi\)
\(282\) 0 0
\(283\) −6.32456 −0.375956 −0.187978 0.982173i \(-0.560193\pi\)
−0.187978 + 0.982173i \(0.560193\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) −20.1246 −1.18585
\(289\) −7.00000 −0.411765
\(290\) −14.1421 −0.830455
\(291\) 0 0
\(292\) −47.4342 −2.77587
\(293\) 9.48683 0.554227 0.277113 0.960837i \(-0.410622\pi\)
0.277113 + 0.960837i \(0.410622\pi\)
\(294\) 0 0
\(295\) 16.0000 0.931556
\(296\) −17.8885 −1.03975
\(297\) 0 0
\(298\) 40.0000 2.31714
\(299\) −12.6491 −0.731517
\(300\) 0 0
\(301\) 0 0
\(302\) 40.0000 2.30174
\(303\) 0 0
\(304\) −6.32456 −0.362738
\(305\) −4.47214 −0.256074
\(306\) −21.2132 −1.21268
\(307\) −18.9737 −1.08288 −0.541442 0.840738i \(-0.682121\pi\)
−0.541442 + 0.840738i \(0.682121\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 26.8328 1.52400
\(311\) 8.48528 0.481156 0.240578 0.970630i \(-0.422663\pi\)
0.240578 + 0.970630i \(0.422663\pi\)
\(312\) 0 0
\(313\) −15.5563 −0.879297 −0.439648 0.898170i \(-0.644897\pi\)
−0.439648 + 0.898170i \(0.644897\pi\)
\(314\) −15.8114 −0.892288
\(315\) 0 0
\(316\) 26.8328 1.50946
\(317\) 18.0000 1.01098 0.505490 0.862832i \(-0.331312\pi\)
0.505490 + 0.862832i \(0.331312\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −18.3848 −1.02774
\(321\) 0 0
\(322\) 0 0
\(323\) −20.0000 −1.11283
\(324\) 27.0000 1.50000
\(325\) −9.48683 −0.526235
\(326\) −8.94427 −0.495377
\(327\) 0 0
\(328\) 21.2132 1.17130
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(332\) 18.9737 1.04132
\(333\) −24.0000 −1.31519
\(334\) −28.2843 −1.54765
\(335\) −11.3137 −0.618134
\(336\) 0 0
\(337\) −4.47214 −0.243613 −0.121806 0.992554i \(-0.538869\pi\)
−0.121806 + 0.992554i \(0.538869\pi\)
\(338\) 6.70820 0.364878
\(339\) 0 0
\(340\) −13.4164 −0.727607
\(341\) 0 0
\(342\) 42.4264 2.29416
\(343\) 0 0
\(344\) −20.0000 −1.07833
\(345\) 0 0
\(346\) 7.07107 0.380143
\(347\) −26.8328 −1.44046 −0.720231 0.693735i \(-0.755964\pi\)
−0.720231 + 0.693735i \(0.755964\pi\)
\(348\) 0 0
\(349\) 3.16228 0.169273 0.0846364 0.996412i \(-0.473027\pi\)
0.0846364 + 0.996412i \(0.473027\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 35.3553 1.88177 0.940887 0.338719i \(-0.109994\pi\)
0.940887 + 0.338719i \(0.109994\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 12.7279 0.674579
\(357\) 0 0
\(358\) −8.94427 −0.472719
\(359\) −17.8885 −0.944121 −0.472061 0.881566i \(-0.656490\pi\)
−0.472061 + 0.881566i \(0.656490\pi\)
\(360\) 9.48683 0.500000
\(361\) 21.0000 1.10526
\(362\) 28.4605 1.49585
\(363\) 0 0
\(364\) 0 0
\(365\) −22.3607 −1.17041
\(366\) 0 0
\(367\) −25.4558 −1.32878 −0.664392 0.747384i \(-0.731309\pi\)
−0.664392 + 0.747384i \(0.731309\pi\)
\(368\) 4.00000 0.208514
\(369\) 28.4605 1.48159
\(370\) −25.2982 −1.31519
\(371\) 0 0
\(372\) 0 0
\(373\) 35.7771 1.85247 0.926234 0.376950i \(-0.123027\pi\)
0.926234 + 0.376950i \(0.123027\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 6.32456 0.326164
\(377\) 14.1421 0.728357
\(378\) 0 0
\(379\) 4.00000 0.205466 0.102733 0.994709i \(-0.467241\pi\)
0.102733 + 0.994709i \(0.467241\pi\)
\(380\) 26.8328 1.37649
\(381\) 0 0
\(382\) 44.7214 2.28814
\(383\) −14.1421 −0.722629 −0.361315 0.932444i \(-0.617672\pi\)
−0.361315 + 0.932444i \(0.617672\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −26.8328 −1.36399
\(388\) 29.6985 1.50771
\(389\) −24.0000 −1.21685 −0.608424 0.793612i \(-0.708198\pi\)
−0.608424 + 0.793612i \(0.708198\pi\)
\(390\) 0 0
\(391\) 12.6491 0.639693
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 12.6491 0.636446
\(396\) 0 0
\(397\) −18.3848 −0.922705 −0.461353 0.887217i \(-0.652636\pi\)
−0.461353 + 0.887217i \(0.652636\pi\)
\(398\) 6.32456 0.317021
\(399\) 0 0
\(400\) 3.00000 0.150000
\(401\) −8.00000 −0.399501 −0.199750 0.979847i \(-0.564013\pi\)
−0.199750 + 0.979847i \(0.564013\pi\)
\(402\) 0 0
\(403\) −26.8328 −1.33664
\(404\) −28.4605 −1.41596
\(405\) 12.7279 0.632456
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 9.48683 0.469094 0.234547 0.972105i \(-0.424639\pi\)
0.234547 + 0.972105i \(0.424639\pi\)
\(410\) 30.0000 1.48159
\(411\) 0 0
\(412\) −25.4558 −1.25412
\(413\) 0 0
\(414\) −26.8328 −1.31876
\(415\) 8.94427 0.439057
\(416\) 21.2132 1.04006
\(417\) 0 0
\(418\) 0 0
\(419\) −39.5980 −1.93449 −0.967244 0.253849i \(-0.918303\pi\)
−0.967244 + 0.253849i \(0.918303\pi\)
\(420\) 0 0
\(421\) −22.0000 −1.07221 −0.536107 0.844150i \(-0.680106\pi\)
−0.536107 + 0.844150i \(0.680106\pi\)
\(422\) −20.0000 −0.973585
\(423\) 8.48528 0.412568
\(424\) 13.4164 0.651558
\(425\) 9.48683 0.460179
\(426\) 0 0
\(427\) 0 0
\(428\) −26.8328 −1.29701
\(429\) 0 0
\(430\) −28.2843 −1.36399
\(431\) −35.7771 −1.72332 −0.861661 0.507485i \(-0.830575\pi\)
−0.861661 + 0.507485i \(0.830575\pi\)
\(432\) 0 0
\(433\) 1.41421 0.0679628 0.0339814 0.999422i \(-0.489181\pi\)
0.0339814 + 0.999422i \(0.489181\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 40.2492 1.92759
\(437\) −25.2982 −1.21018
\(438\) 0 0
\(439\) 12.6491 0.603709 0.301855 0.953354i \(-0.402394\pi\)
0.301855 + 0.953354i \(0.402394\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 22.3607 1.06359
\(443\) 4.00000 0.190046 0.0950229 0.995475i \(-0.469708\pi\)
0.0950229 + 0.995475i \(0.469708\pi\)
\(444\) 0 0
\(445\) 6.00000 0.284427
\(446\) 31.6228 1.49738
\(447\) 0 0
\(448\) 0 0
\(449\) −10.0000 −0.471929 −0.235965 0.971762i \(-0.575825\pi\)
−0.235965 + 0.971762i \(0.575825\pi\)
\(450\) −20.1246 −0.948683
\(451\) 0 0
\(452\) −18.0000 −0.846649
\(453\) 0 0
\(454\) 14.1421 0.663723
\(455\) 0 0
\(456\) 0 0
\(457\) −35.7771 −1.67358 −0.836791 0.547523i \(-0.815571\pi\)
−0.836791 + 0.547523i \(0.815571\pi\)
\(458\) 53.7587 2.51198
\(459\) 0 0
\(460\) −16.9706 −0.791257
\(461\) −22.1359 −1.03097 −0.515487 0.856897i \(-0.672389\pi\)
−0.515487 + 0.856897i \(0.672389\pi\)
\(462\) 0 0
\(463\) 16.0000 0.743583 0.371792 0.928316i \(-0.378744\pi\)
0.371792 + 0.928316i \(0.378744\pi\)
\(464\) −4.47214 −0.207614
\(465\) 0 0
\(466\) 30.0000 1.38972
\(467\) 39.5980 1.83238 0.916188 0.400749i \(-0.131250\pi\)
0.916188 + 0.400749i \(0.131250\pi\)
\(468\) −28.4605 −1.31559
\(469\) 0 0
\(470\) 8.94427 0.412568
\(471\) 0 0
\(472\) −25.2982 −1.16445
\(473\) 0 0
\(474\) 0 0
\(475\) −18.9737 −0.870572
\(476\) 0 0
\(477\) 18.0000 0.824163
\(478\) 20.0000 0.914779
\(479\) −25.2982 −1.15591 −0.577953 0.816070i \(-0.696148\pi\)
−0.577953 + 0.816070i \(0.696148\pi\)
\(480\) 0 0
\(481\) 25.2982 1.15350
\(482\) −49.4975 −2.25455
\(483\) 0 0
\(484\) 0 0
\(485\) 14.0000 0.635707
\(486\) 0 0
\(487\) −12.0000 −0.543772 −0.271886 0.962329i \(-0.587647\pi\)
−0.271886 + 0.962329i \(0.587647\pi\)
\(488\) 7.07107 0.320092
\(489\) 0 0
\(490\) 0 0
\(491\) −17.8885 −0.807299 −0.403649 0.914914i \(-0.632258\pi\)
−0.403649 + 0.914914i \(0.632258\pi\)
\(492\) 0 0
\(493\) −14.1421 −0.636930
\(494\) −44.7214 −2.01211
\(495\) 0 0
\(496\) 8.48528 0.381000
\(497\) 0 0
\(498\) 0 0
\(499\) −16.0000 −0.716258 −0.358129 0.933672i \(-0.616585\pi\)
−0.358129 + 0.933672i \(0.616585\pi\)
\(500\) −33.9411 −1.51789
\(501\) 0 0
\(502\) 12.6491 0.564557
\(503\) 37.9473 1.69199 0.845994 0.533192i \(-0.179008\pi\)
0.845994 + 0.533192i \(0.179008\pi\)
\(504\) 0 0
\(505\) −13.4164 −0.597022
\(506\) 0 0
\(507\) 0 0
\(508\) −26.8328 −1.19051
\(509\) −4.24264 −0.188052 −0.0940259 0.995570i \(-0.529974\pi\)
−0.0940259 + 0.995570i \(0.529974\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −11.1803 −0.494106
\(513\) 0 0
\(514\) −53.7587 −2.37120
\(515\) −12.0000 −0.528783
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) −10.0000 −0.438529
\(521\) 15.5563 0.681536 0.340768 0.940147i \(-0.389313\pi\)
0.340768 + 0.940147i \(0.389313\pi\)
\(522\) 30.0000 1.31306
\(523\) −6.32456 −0.276553 −0.138277 0.990394i \(-0.544156\pi\)
−0.138277 + 0.990394i \(0.544156\pi\)
\(524\) −56.9210 −2.48661
\(525\) 0 0
\(526\) −40.0000 −1.74408
\(527\) 26.8328 1.16886
\(528\) 0 0
\(529\) −7.00000 −0.304348
\(530\) 18.9737 0.824163
\(531\) −33.9411 −1.47292
\(532\) 0 0
\(533\) −30.0000 −1.29944
\(534\) 0 0
\(535\) −12.6491 −0.546869
\(536\) 17.8885 0.772667
\(537\) 0 0
\(538\) −41.1096 −1.77236
\(539\) 0 0
\(540\) 0 0
\(541\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(542\) −56.5685 −2.42983
\(543\) 0 0
\(544\) −21.2132 −0.909509
\(545\) 18.9737 0.812743
\(546\) 0 0
\(547\) 35.7771 1.52972 0.764859 0.644198i \(-0.222809\pi\)
0.764859 + 0.644198i \(0.222809\pi\)
\(548\) −24.0000 −1.02523
\(549\) 9.48683 0.404888
\(550\) 0 0
\(551\) 28.2843 1.20495
\(552\) 0 0
\(553\) 0 0
\(554\) −40.0000 −1.69944
\(555\) 0 0
\(556\) 56.9210 2.41399
\(557\) −35.7771 −1.51592 −0.757962 0.652299i \(-0.773805\pi\)
−0.757962 + 0.652299i \(0.773805\pi\)
\(558\) −56.9210 −2.40966
\(559\) 28.2843 1.19630
\(560\) 0 0
\(561\) 0 0
\(562\) −50.0000 −2.10912
\(563\) −18.9737 −0.799645 −0.399822 0.916593i \(-0.630928\pi\)
−0.399822 + 0.916593i \(0.630928\pi\)
\(564\) 0 0
\(565\) −8.48528 −0.356978
\(566\) 14.1421 0.594438
\(567\) 0 0
\(568\) 0 0
\(569\) −13.4164 −0.562445 −0.281223 0.959643i \(-0.590740\pi\)
−0.281223 + 0.959643i \(0.590740\pi\)
\(570\) 0 0
\(571\) −17.8885 −0.748612 −0.374306 0.927305i \(-0.622119\pi\)
−0.374306 + 0.927305i \(0.622119\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 12.0000 0.500435
\(576\) 39.0000 1.62500
\(577\) −21.2132 −0.883117 −0.441559 0.897232i \(-0.645574\pi\)
−0.441559 + 0.897232i \(0.645574\pi\)
\(578\) 15.6525 0.651057
\(579\) 0 0
\(580\) 18.9737 0.787839
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 35.3553 1.46301
\(585\) −13.4164 −0.554700
\(586\) −21.2132 −0.876309
\(587\) −45.2548 −1.86787 −0.933933 0.357447i \(-0.883647\pi\)
−0.933933 + 0.357447i \(0.883647\pi\)
\(588\) 0 0
\(589\) −53.6656 −2.21125
\(590\) −35.7771 −1.47292
\(591\) 0 0
\(592\) −8.00000 −0.328798
\(593\) −22.1359 −0.909014 −0.454507 0.890743i \(-0.650185\pi\)
−0.454507 + 0.890743i \(0.650185\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −53.6656 −2.19823
\(597\) 0 0
\(598\) 28.2843 1.15663
\(599\) −40.0000 −1.63436 −0.817178 0.576386i \(-0.804463\pi\)
−0.817178 + 0.576386i \(0.804463\pi\)
\(600\) 0 0
\(601\) −34.7851 −1.41891 −0.709456 0.704750i \(-0.751059\pi\)
−0.709456 + 0.704750i \(0.751059\pi\)
\(602\) 0 0
\(603\) 24.0000 0.977356
\(604\) −53.6656 −2.18362
\(605\) 0 0
\(606\) 0 0
\(607\) 25.2982 1.02682 0.513412 0.858143i \(-0.328381\pi\)
0.513412 + 0.858143i \(0.328381\pi\)
\(608\) 42.4264 1.72062
\(609\) 0 0
\(610\) 10.0000 0.404888
\(611\) −8.94427 −0.361847
\(612\) 28.4605 1.15045
\(613\) 13.4164 0.541884 0.270942 0.962596i \(-0.412665\pi\)
0.270942 + 0.962596i \(0.412665\pi\)
\(614\) 42.4264 1.71219
\(615\) 0 0
\(616\) 0 0
\(617\) −48.0000 −1.93241 −0.966204 0.257780i \(-0.917009\pi\)
−0.966204 + 0.257780i \(0.917009\pi\)
\(618\) 0 0
\(619\) 16.9706 0.682105 0.341052 0.940044i \(-0.389217\pi\)
0.341052 + 0.940044i \(0.389217\pi\)
\(620\) −36.0000 −1.44579
\(621\) 0 0
\(622\) −18.9737 −0.760775
\(623\) 0 0
\(624\) 0 0
\(625\) −1.00000 −0.0400000
\(626\) 34.7851 1.39029
\(627\) 0 0
\(628\) 21.2132 0.846499
\(629\) −25.2982 −1.00871
\(630\) 0 0
\(631\) −12.0000 −0.477712 −0.238856 0.971055i \(-0.576772\pi\)
−0.238856 + 0.971055i \(0.576772\pi\)
\(632\) −20.0000 −0.795557
\(633\) 0 0
\(634\) −40.2492 −1.59850
\(635\) −12.6491 −0.501965
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 22.1359 0.875000
\(641\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(642\) 0 0
\(643\) 5.65685 0.223085 0.111542 0.993760i \(-0.464421\pi\)
0.111542 + 0.993760i \(0.464421\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 44.7214 1.75954
\(647\) −31.1127 −1.22317 −0.611583 0.791180i \(-0.709467\pi\)
−0.611583 + 0.791180i \(0.709467\pi\)
\(648\) −20.1246 −0.790569
\(649\) 0 0
\(650\) 21.2132 0.832050
\(651\) 0 0
\(652\) 12.0000 0.469956
\(653\) 24.0000 0.939193 0.469596 0.882881i \(-0.344399\pi\)
0.469596 + 0.882881i \(0.344399\pi\)
\(654\) 0 0
\(655\) −26.8328 −1.04844
\(656\) 9.48683 0.370399
\(657\) 47.4342 1.85058
\(658\) 0 0
\(659\) −8.94427 −0.348419 −0.174210 0.984709i \(-0.555737\pi\)
−0.174210 + 0.984709i \(0.555737\pi\)
\(660\) 0 0
\(661\) 12.7279 0.495059 0.247529 0.968880i \(-0.420381\pi\)
0.247529 + 0.968880i \(0.420381\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) −14.1421 −0.548821
\(665\) 0 0
\(666\) 53.6656 2.07950
\(667\) −17.8885 −0.692647
\(668\) 37.9473 1.46823
\(669\) 0 0
\(670\) 25.2982 0.977356
\(671\) 0 0
\(672\) 0 0
\(673\) 40.2492 1.55149 0.775747 0.631044i \(-0.217373\pi\)
0.775747 + 0.631044i \(0.217373\pi\)
\(674\) 10.0000 0.385186
\(675\) 0 0
\(676\) −9.00000 −0.346154
\(677\) 9.48683 0.364609 0.182304 0.983242i \(-0.441644\pi\)
0.182304 + 0.983242i \(0.441644\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 10.0000 0.383482
\(681\) 0 0
\(682\) 0 0
\(683\) −36.0000 −1.37750 −0.688751 0.724998i \(-0.741841\pi\)
−0.688751 + 0.724998i \(0.741841\pi\)
\(684\) −56.9210 −2.17643
\(685\) −11.3137 −0.432275
\(686\) 0 0
\(687\) 0 0
\(688\) −8.94427 −0.340997
\(689\) −18.9737 −0.722839
\(690\) 0 0
\(691\) 33.9411 1.29118 0.645591 0.763684i \(-0.276611\pi\)
0.645591 + 0.763684i \(0.276611\pi\)
\(692\) −9.48683 −0.360635
\(693\) 0 0
\(694\) 60.0000 2.27757
\(695\) 26.8328 1.01783
\(696\) 0 0
\(697\) 30.0000 1.13633
\(698\) −7.07107 −0.267644
\(699\) 0 0
\(700\) 0 0
\(701\) −13.4164 −0.506731 −0.253365 0.967371i \(-0.581537\pi\)
−0.253365 + 0.967371i \(0.581537\pi\)
\(702\) 0 0
\(703\) 50.5964 1.90828
\(704\) 0 0
\(705\) 0 0
\(706\) −79.0569 −2.97535
\(707\) 0 0
\(708\) 0 0
\(709\) −40.0000 −1.50223 −0.751116 0.660171i \(-0.770484\pi\)
−0.751116 + 0.660171i \(0.770484\pi\)
\(710\) 0 0
\(711\) −26.8328 −1.00631
\(712\) −9.48683 −0.355534
\(713\) 33.9411 1.27111
\(714\) 0 0
\(715\) 0 0
\(716\) 12.0000 0.448461
\(717\) 0 0
\(718\) 40.0000 1.49279
\(719\) −2.82843 −0.105483 −0.0527413 0.998608i \(-0.516796\pi\)
−0.0527413 + 0.998608i \(0.516796\pi\)
\(720\) 4.24264 0.158114
\(721\) 0 0
\(722\) −46.9574 −1.74757
\(723\) 0 0
\(724\) −38.1838 −1.41909
\(725\) −13.4164 −0.498273
\(726\) 0 0
\(727\) 2.82843 0.104901 0.0524503 0.998624i \(-0.483297\pi\)
0.0524503 + 0.998624i \(0.483297\pi\)
\(728\) 0 0
\(729\) −27.0000 −1.00000
\(730\) 50.0000 1.85058
\(731\) −28.2843 −1.04613
\(732\) 0 0
\(733\) 28.4605 1.05121 0.525606 0.850728i \(-0.323839\pi\)
0.525606 + 0.850728i \(0.323839\pi\)
\(734\) 56.9210 2.10099
\(735\) 0 0
\(736\) −26.8328 −0.989071
\(737\) 0 0
\(738\) −63.6396 −2.34261
\(739\) 17.8885 0.658041 0.329020 0.944323i \(-0.393282\pi\)
0.329020 + 0.944323i \(0.393282\pi\)
\(740\) 33.9411 1.24770
\(741\) 0 0
\(742\) 0 0
\(743\) 8.94427 0.328134 0.164067 0.986449i \(-0.447539\pi\)
0.164067 + 0.986449i \(0.447539\pi\)
\(744\) 0 0
\(745\) −25.2982 −0.926855
\(746\) −80.0000 −2.92901
\(747\) −18.9737 −0.694210
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −20.0000 −0.729810 −0.364905 0.931045i \(-0.618899\pi\)
−0.364905 + 0.931045i \(0.618899\pi\)
\(752\) 2.82843 0.103142
\(753\) 0 0
\(754\) −31.6228 −1.15163
\(755\) −25.2982 −0.920697
\(756\) 0 0
\(757\) −8.00000 −0.290765 −0.145382 0.989376i \(-0.546441\pi\)
−0.145382 + 0.989376i \(0.546441\pi\)
\(758\) −8.94427 −0.324871
\(759\) 0 0
\(760\) −20.0000 −0.725476
\(761\) 15.8114 0.573162 0.286581 0.958056i \(-0.407481\pi\)
0.286581 + 0.958056i \(0.407481\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −60.0000 −2.17072
\(765\) 13.4164 0.485071
\(766\) 31.6228 1.14258
\(767\) 35.7771 1.29184
\(768\) 0 0
\(769\) −22.1359 −0.798243 −0.399121 0.916898i \(-0.630685\pi\)
−0.399121 + 0.916898i \(0.630685\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −35.3553 −1.27164 −0.635822 0.771836i \(-0.719339\pi\)
−0.635822 + 0.771836i \(0.719339\pi\)
\(774\) 60.0000 2.15666
\(775\) 25.4558 0.914401
\(776\) −22.1359 −0.794634
\(777\) 0 0
\(778\) 53.6656 1.92401
\(779\) −60.0000 −2.14972
\(780\) 0 0
\(781\) 0 0
\(782\) −28.2843 −1.01144
\(783\) 0 0
\(784\) 0 0
\(785\) 10.0000 0.356915
\(786\) 0 0
\(787\) 6.32456 0.225446 0.112723 0.993626i \(-0.464043\pi\)
0.112723 + 0.993626i \(0.464043\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) −28.2843 −1.00631
\(791\) 0 0
\(792\) 0 0
\(793\) −10.0000 −0.355110
\(794\) 41.1096 1.45893
\(795\) 0 0
\(796\) −8.48528 −0.300753
\(797\) −18.3848 −0.651222 −0.325611 0.945504i \(-0.605570\pi\)
−0.325611 + 0.945504i \(0.605570\pi\)
\(798\) 0 0
\(799\) 8.94427 0.316426
\(800\) −20.1246 −0.711512
\(801\) −12.7279 −0.449719
\(802\) 17.8885 0.631666
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 60.0000 2.11341
\(807\) 0 0
\(808\) 21.2132 0.746278
\(809\) −35.7771 −1.25786 −0.628928 0.777464i \(-0.716506\pi\)
−0.628928 + 0.777464i \(0.716506\pi\)
\(810\) −28.4605 −1.00000
\(811\) −31.6228 −1.11043 −0.555213 0.831708i \(-0.687363\pi\)
−0.555213 + 0.831708i \(0.687363\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 5.65685 0.198151
\(816\) 0 0
\(817\) 56.5685 1.97908
\(818\) −21.2132 −0.741702
\(819\) 0 0
\(820\) −40.2492 −1.40556
\(821\) −17.8885 −0.624314 −0.312157 0.950030i \(-0.601052\pi\)
−0.312157 + 0.950030i \(0.601052\pi\)
\(822\) 0 0
\(823\) 44.0000 1.53374 0.766872 0.641800i \(-0.221812\pi\)
0.766872 + 0.641800i \(0.221812\pi\)
\(824\) 18.9737 0.660979
\(825\) 0 0
\(826\) 0 0
\(827\) −17.8885 −0.622046 −0.311023 0.950402i \(-0.600672\pi\)
−0.311023 + 0.950402i \(0.600672\pi\)
\(828\) 36.0000 1.25109
\(829\) 38.1838 1.32618 0.663089 0.748541i \(-0.269245\pi\)
0.663089 + 0.748541i \(0.269245\pi\)
\(830\) −20.0000 −0.694210
\(831\) 0 0
\(832\) −41.1096 −1.42522
\(833\) 0 0
\(834\) 0 0
\(835\) 17.8885 0.619059
\(836\) 0 0
\(837\) 0 0
\(838\) 88.5438 3.05869
\(839\) 2.82843 0.0976481 0.0488241 0.998807i \(-0.484453\pi\)
0.0488241 + 0.998807i \(0.484453\pi\)
\(840\) 0 0
\(841\) −9.00000 −0.310345
\(842\) 49.1935 1.69532
\(843\) 0 0
\(844\) 26.8328 0.923624
\(845\) −4.24264 −0.145951
\(846\) −18.9737 −0.652328
\(847\) 0 0
\(848\) 6.00000 0.206041
\(849\) 0 0
\(850\) −21.2132 −0.727607
\(851\) −32.0000 −1.09695
\(852\) 0 0
\(853\) 9.48683 0.324823 0.162411 0.986723i \(-0.448073\pi\)
0.162411 + 0.986723i \(0.448073\pi\)
\(854\) 0 0
\(855\) −26.8328 −0.917663
\(856\) 20.0000 0.683586
\(857\) 15.8114 0.540107 0.270053 0.962845i \(-0.412959\pi\)
0.270053 + 0.962845i \(0.412959\pi\)
\(858\) 0 0
\(859\) 39.5980 1.35107 0.675533 0.737330i \(-0.263914\pi\)
0.675533 + 0.737330i \(0.263914\pi\)
\(860\) 37.9473 1.29399
\(861\) 0 0
\(862\) 80.0000 2.72481
\(863\) −36.0000 −1.22545 −0.612727 0.790295i \(-0.709928\pi\)
−0.612727 + 0.790295i \(0.709928\pi\)
\(864\) 0 0
\(865\) −4.47214 −0.152057
\(866\) −3.16228 −0.107459
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) −25.2982 −0.857198
\(872\) −30.0000 −1.01593
\(873\) −29.6985 −1.00514
\(874\) 56.5685 1.91346
\(875\) 0 0
\(876\) 0 0
\(877\) 13.4164 0.453040 0.226520 0.974007i \(-0.427265\pi\)
0.226520 + 0.974007i \(0.427265\pi\)
\(878\) −28.2843 −0.954548
\(879\) 0 0
\(880\) 0 0
\(881\) −43.8406 −1.47703 −0.738514 0.674238i \(-0.764472\pi\)
−0.738514 + 0.674238i \(0.764472\pi\)
\(882\) 0 0
\(883\) −4.00000 −0.134611 −0.0673054 0.997732i \(-0.521440\pi\)
−0.0673054 + 0.997732i \(0.521440\pi\)
\(884\) −30.0000 −1.00901
\(885\) 0 0
\(886\) −8.94427 −0.300489
\(887\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −13.4164 −0.449719
\(891\) 0 0
\(892\) −42.4264 −1.42054
\(893\) −17.8885 −0.598617
\(894\) 0 0
\(895\) 5.65685 0.189088
\(896\) 0 0
\(897\) 0 0
\(898\) 22.3607 0.746186
\(899\) −37.9473 −1.26561
\(900\) 27.0000 0.900000
\(901\) 18.9737 0.632104
\(902\) 0 0
\(903\) 0 0
\(904\) 13.4164 0.446223
\(905\) −18.0000 −0.598340
\(906\) 0 0
\(907\) −8.00000 −0.265636 −0.132818 0.991140i \(-0.542403\pi\)
−0.132818 + 0.991140i \(0.542403\pi\)
\(908\) −18.9737 −0.629663
\(909\) 28.4605 0.943975
\(910\) 0 0
\(911\) 12.0000 0.397578 0.198789 0.980042i \(-0.436299\pi\)
0.198789 + 0.980042i \(0.436299\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 80.0000 2.64616
\(915\) 0 0
\(916\) −72.1249 −2.38307
\(917\) 0 0
\(918\) 0 0
\(919\) −53.6656 −1.77027 −0.885133 0.465338i \(-0.845933\pi\)
−0.885133 + 0.465338i \(0.845933\pi\)
\(920\) 12.6491 0.417029
\(921\) 0 0
\(922\) 49.4975 1.63011
\(923\) 0 0
\(924\) 0 0
\(925\) −24.0000 −0.789115
\(926\) −35.7771 −1.17571
\(927\) 25.4558 0.836080
\(928\) 30.0000 0.984798
\(929\) −32.5269 −1.06717 −0.533587 0.845745i \(-0.679156\pi\)
−0.533587 + 0.845745i \(0.679156\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −40.2492 −1.31841
\(933\) 0 0
\(934\) −88.5438 −2.89724
\(935\) 0 0
\(936\) 21.2132 0.693375
\(937\) 34.7851 1.13638 0.568189 0.822898i \(-0.307644\pi\)
0.568189 + 0.822898i \(0.307644\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −12.0000 −0.391397
\(941\) −53.7587 −1.75248 −0.876242 0.481871i \(-0.839957\pi\)
−0.876242 + 0.481871i \(0.839957\pi\)
\(942\) 0 0
\(943\) 37.9473 1.23574
\(944\) −11.3137 −0.368230
\(945\) 0 0
\(946\) 0 0
\(947\) −48.0000 −1.55979 −0.779895 0.625910i \(-0.784728\pi\)
−0.779895 + 0.625910i \(0.784728\pi\)
\(948\) 0 0
\(949\) −50.0000 −1.62307
\(950\) 42.4264 1.37649
\(951\) 0 0
\(952\) 0 0
\(953\) −35.7771 −1.15893 −0.579467 0.814996i \(-0.696739\pi\)
−0.579467 + 0.814996i \(0.696739\pi\)
\(954\) −40.2492 −1.30312
\(955\) −28.2843 −0.915258
\(956\) −26.8328 −0.867835
\(957\) 0 0
\(958\) 56.5685 1.82765
\(959\) 0 0
\(960\) 0 0
\(961\) 41.0000 1.32258
\(962\) −56.5685 −1.82384
\(963\) 26.8328 0.864675
\(964\) 66.4078 2.13885
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) −31.3050 −1.00514
\(971\) 5.65685 0.181537 0.0907685 0.995872i \(-0.471068\pi\)
0.0907685 + 0.995872i \(0.471068\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 26.8328 0.859779
\(975\) 0 0
\(976\) 3.16228 0.101222
\(977\) 32.0000 1.02377 0.511885 0.859054i \(-0.328947\pi\)
0.511885 + 0.859054i \(0.328947\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −40.2492 −1.28506
\(982\) 40.0000 1.27645
\(983\) −8.48528 −0.270638 −0.135319 0.990802i \(-0.543206\pi\)
−0.135319 + 0.990802i \(0.543206\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 31.6228 1.00707
\(987\) 0 0
\(988\) 60.0000 1.90885
\(989\) −35.7771 −1.13765
\(990\) 0 0
\(991\) −8.00000 −0.254128 −0.127064 0.991894i \(-0.540555\pi\)
−0.127064 + 0.991894i \(0.540555\pi\)
\(992\) −56.9210 −1.80724
\(993\) 0 0
\(994\) 0 0
\(995\) −4.00000 −0.126809
\(996\) 0 0
\(997\) 9.48683 0.300451 0.150226 0.988652i \(-0.452000\pi\)
0.150226 + 0.988652i \(0.452000\pi\)
\(998\) 35.7771 1.13250
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5929.2.a.bf.1.2 yes 4
7.6 odd 2 inner 5929.2.a.bf.1.1 4
11.10 odd 2 inner 5929.2.a.bf.1.4 yes 4
77.76 even 2 inner 5929.2.a.bf.1.3 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
5929.2.a.bf.1.1 4 7.6 odd 2 inner
5929.2.a.bf.1.2 yes 4 1.1 even 1 trivial
5929.2.a.bf.1.3 yes 4 77.76 even 2 inner
5929.2.a.bf.1.4 yes 4 11.10 odd 2 inner