Properties

Label 5929.2.a.bc.1.4
Level $5929$
Weight $2$
Character 5929.1
Self dual yes
Analytic conductor $47.343$
Analytic rank $0$
Dimension $4$
CM discriminant -7
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5929,2,Mod(1,5929)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5929.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5929, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 5929 = 7^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5929.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-1,0,11,0,0,0,3,-12,0,0,0,0,0,0,21,0,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(18)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(47.3433033584\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.6125.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 9x^{2} + 9x + 11 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 539)
Fricke sign: \(-1\)
Sato-Tate group: $N(\mathrm{U}(1))$

Embedding invariants

Embedding label 1.4
Root \(2.36415\) of defining polynomial
Character \(\chi\) \(=\) 5929.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.82528 q^{2} +5.98218 q^{4} +11.2508 q^{8} -3.00000 q^{9} +19.8222 q^{16} -8.47583 q^{18} +7.50465 q^{23} -5.00000 q^{25} +4.60250 q^{29} +33.5015 q^{32} -17.9466 q^{36} +8.21093 q^{37} +6.59794 q^{43} +21.2027 q^{46} -14.1264 q^{50} +1.86964 q^{53} +13.0033 q^{58} +55.0068 q^{64} +6.09473 q^{67} -9.83400 q^{71} -33.7523 q^{72} +23.1982 q^{74} -15.8029 q^{79} +9.00000 q^{81} +18.6410 q^{86} +44.8942 q^{92} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - q^{2} + 11 q^{4} + 3 q^{8} - 12 q^{9} + 21 q^{16} + 3 q^{18} - 8 q^{23} - 20 q^{25} - 2 q^{29} + 50 q^{32} - 33 q^{36} + 6 q^{37} + 12 q^{43} + 47 q^{46} + 5 q^{50} + 10 q^{53} - 2 q^{58} + 33 q^{64}+ \cdots + 8 q^{92}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.82528 1.99777 0.998886 0.0471903i \(-0.0150267\pi\)
0.998886 + 0.0471903i \(0.0150267\pi\)
\(3\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(4\) 5.98218 2.99109
\(5\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 11.2508 3.97775
\(9\) −3.00000 −1.00000
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 19.8222 4.95554
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) −8.47583 −1.99777
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 7.50465 1.56483 0.782414 0.622758i \(-0.213988\pi\)
0.782414 + 0.622758i \(0.213988\pi\)
\(24\) 0 0
\(25\) −5.00000 −1.00000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 4.60250 0.854663 0.427331 0.904095i \(-0.359454\pi\)
0.427331 + 0.904095i \(0.359454\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) 33.5015 5.92229
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) −17.9466 −2.99109
\(37\) 8.21093 1.34987 0.674935 0.737878i \(-0.264172\pi\)
0.674935 + 0.737878i \(0.264172\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) 6.59794 1.00618 0.503088 0.864235i \(-0.332197\pi\)
0.503088 + 0.864235i \(0.332197\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 21.2027 3.12617
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) −14.1264 −1.99777
\(51\) 0 0
\(52\) 0 0
\(53\) 1.86964 0.256814 0.128407 0.991722i \(-0.459014\pi\)
0.128407 + 0.991722i \(0.459014\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 13.0033 1.70742
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 55.0068 6.87585
\(65\) 0 0
\(66\) 0 0
\(67\) 6.09473 0.744590 0.372295 0.928114i \(-0.378571\pi\)
0.372295 + 0.928114i \(0.378571\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −9.83400 −1.16708 −0.583541 0.812084i \(-0.698333\pi\)
−0.583541 + 0.812084i \(0.698333\pi\)
\(72\) −33.7523 −3.97775
\(73\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(74\) 23.1982 2.69673
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −15.8029 −1.77797 −0.888985 0.457937i \(-0.848589\pi\)
−0.888985 + 0.457937i \(0.848589\pi\)
\(80\) 0 0
\(81\) 9.00000 1.00000
\(82\) 0 0
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 18.6410 2.01011
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 44.8942 4.68055
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −29.9109 −2.99109
\(101\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 5.28224 0.513056
\(107\) −1.14782 −0.110964 −0.0554821 0.998460i \(-0.517670\pi\)
−0.0554821 + 0.998460i \(0.517670\pi\)
\(108\) 0 0
\(109\) −4.50273 −0.431283 −0.215642 0.976473i \(-0.569184\pi\)
−0.215642 + 0.976473i \(0.569184\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −14.0591 −1.32257 −0.661285 0.750135i \(-0.729988\pi\)
−0.661285 + 0.750135i \(0.729988\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 27.5330 2.55638
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −10.1533 −0.900958 −0.450479 0.892787i \(-0.648747\pi\)
−0.450479 + 0.892787i \(0.648747\pi\)
\(128\) 88.4062 7.81408
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 17.2193 1.48752
\(135\) 0 0
\(136\) 0 0
\(137\) −23.2202 −1.98384 −0.991920 0.126868i \(-0.959507\pi\)
−0.991920 + 0.126868i \(0.959507\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −27.7838 −2.33156
\(143\) 0 0
\(144\) −59.4665 −4.95554
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 49.1193 4.03758
\(149\) 22.0000 1.80231 0.901155 0.433497i \(-0.142720\pi\)
0.901155 + 0.433497i \(0.142720\pi\)
\(150\) 0 0
\(151\) −12.4489 −1.01308 −0.506540 0.862217i \(-0.669076\pi\)
−0.506540 + 0.862217i \(0.669076\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(158\) −44.6477 −3.55198
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 25.4275 1.99777
\(163\) 8.91721 0.698450 0.349225 0.937039i \(-0.386445\pi\)
0.349225 + 0.937039i \(0.386445\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) −13.0000 −1.00000
\(170\) 0 0
\(171\) 0 0
\(172\) 39.4701 3.00957
\(173\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −23.9265 −1.78835 −0.894176 0.447715i \(-0.852238\pi\)
−0.894176 + 0.447715i \(0.852238\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 84.4331 6.22449
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −22.0235 −1.59356 −0.796781 0.604268i \(-0.793466\pi\)
−0.796781 + 0.604268i \(0.793466\pi\)
\(192\) 0 0
\(193\) −27.0034 −1.94375 −0.971873 0.235507i \(-0.924325\pi\)
−0.971873 + 0.235507i \(0.924325\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −18.0995 −1.28953 −0.644767 0.764379i \(-0.723046\pi\)
−0.644767 + 0.764379i \(0.723046\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) −56.2539 −3.97775
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −22.5140 −1.56483
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 21.4544 1.47698 0.738490 0.674264i \(-0.235539\pi\)
0.738490 + 0.674264i \(0.235539\pi\)
\(212\) 11.1845 0.768155
\(213\) 0 0
\(214\) −3.24291 −0.221681
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) −12.7215 −0.861606
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(224\) 0 0
\(225\) 15.0000 1.00000
\(226\) −39.7208 −2.64219
\(227\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 51.7817 3.39963
\(233\) 22.0000 1.44127 0.720634 0.693316i \(-0.243851\pi\)
0.720634 + 0.693316i \(0.243851\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 2.60706 0.168637 0.0843185 0.996439i \(-0.473129\pi\)
0.0843185 + 0.996439i \(0.473129\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) −28.6858 −1.79991
\(255\) 0 0
\(256\) 139.758 8.73490
\(257\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −13.8075 −0.854663
\(262\) 0 0
\(263\) −28.9988 −1.78814 −0.894072 0.447924i \(-0.852164\pi\)
−0.894072 + 0.447924i \(0.852164\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 36.4598 2.22714
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) −65.6036 −3.96326
\(275\) 0 0
\(276\) 0 0
\(277\) 27.1049 1.62858 0.814289 0.580460i \(-0.197127\pi\)
0.814289 + 0.580460i \(0.197127\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 8.59337 0.512638 0.256319 0.966592i \(-0.417490\pi\)
0.256319 + 0.966592i \(0.417490\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(284\) −58.8288 −3.49085
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) −100.505 −5.92229
\(289\) −17.0000 −1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 92.3793 5.36944
\(297\) 0 0
\(298\) 62.1561 3.60060
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) −35.1717 −2.02390
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) −94.5361 −5.31807
\(317\) 33.7271 1.89430 0.947152 0.320786i \(-0.103947\pi\)
0.947152 + 0.320786i \(0.103947\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 53.8397 2.99109
\(325\) 0 0
\(326\) 25.1936 1.39534
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 6.09209 0.334852 0.167426 0.985885i \(-0.446455\pi\)
0.167426 + 0.985885i \(0.446455\pi\)
\(332\) 0 0
\(333\) −24.6328 −1.34987
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 29.4006 1.60155 0.800776 0.598964i \(-0.204421\pi\)
0.800776 + 0.598964i \(0.204421\pi\)
\(338\) −36.7286 −1.99777
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 74.2319 4.00231
\(345\) 0 0
\(346\) 0 0
\(347\) −25.0079 −1.34250 −0.671248 0.741233i \(-0.734242\pi\)
−0.671248 + 0.741233i \(0.734242\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) −67.5990 −3.57272
\(359\) −32.7555 −1.72877 −0.864384 0.502832i \(-0.832292\pi\)
−0.864384 + 0.502832i \(0.832292\pi\)
\(360\) 0 0
\(361\) −19.0000 −1.00000
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(368\) 148.758 7.75457
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 22.0000 1.13912 0.569558 0.821951i \(-0.307114\pi\)
0.569558 + 0.821951i \(0.307114\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −38.9358 −2.00000 −1.00000 0.000859657i \(-0.999726\pi\)
−1.00000 0.000859657i \(0.999726\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −62.2224 −3.18357
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −76.2920 −3.88316
\(387\) −19.7938 −1.00618
\(388\) 0 0
\(389\) −21.8077 −1.10569 −0.552847 0.833283i \(-0.686458\pi\)
−0.552847 + 0.833283i \(0.686458\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) −51.1360 −2.57620
\(395\) 0 0
\(396\) 0 0
\(397\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −99.1108 −4.95554
\(401\) 9.62349 0.480574 0.240287 0.970702i \(-0.422758\pi\)
0.240287 + 0.970702i \(0.422758\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) −63.6082 −3.12617
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) −38.2296 −1.86319 −0.931597 0.363492i \(-0.881584\pi\)
−0.931597 + 0.363492i \(0.881584\pi\)
\(422\) 60.6146 2.95067
\(423\) 0 0
\(424\) 21.0348 1.02154
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) −6.86648 −0.331904
\(429\) 0 0
\(430\) 0 0
\(431\) 35.0511 1.68835 0.844177 0.536065i \(-0.180090\pi\)
0.844177 + 0.536065i \(0.180090\pi\)
\(432\) 0 0
\(433\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −26.9362 −1.29001
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 37.9522 1.80316 0.901582 0.432608i \(-0.142407\pi\)
0.901582 + 0.432608i \(0.142407\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −39.6421 −1.87083 −0.935413 0.353556i \(-0.884972\pi\)
−0.935413 + 0.353556i \(0.884972\pi\)
\(450\) 42.3791 1.99777
\(451\) 0 0
\(452\) −84.1041 −3.95593
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 38.4060 1.79656 0.898279 0.439425i \(-0.144818\pi\)
0.898279 + 0.439425i \(0.144818\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(462\) 0 0
\(463\) 41.6915 1.93757 0.968784 0.247907i \(-0.0797429\pi\)
0.968784 + 0.247907i \(0.0797429\pi\)
\(464\) 91.2315 4.23532
\(465\) 0 0
\(466\) 62.1561 2.87932
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −5.60891 −0.256814
\(478\) 7.36568 0.336898
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −2.35546 −0.106736 −0.0533681 0.998575i \(-0.516996\pi\)
−0.0533681 + 0.998575i \(0.516996\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 44.0000 1.98569 0.992846 0.119401i \(-0.0380974\pi\)
0.992846 + 0.119401i \(0.0380974\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −13.5733 −0.607623 −0.303812 0.952732i \(-0.598259\pi\)
−0.303812 + 0.952732i \(0.598259\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) −60.7388 −2.69485
\(509\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 218.044 9.63627
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(522\) −39.0100 −1.70742
\(523\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) −81.9296 −3.57230
\(527\) 0 0
\(528\) 0 0
\(529\) 33.3198 1.44869
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 68.5705 2.96179
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −40.7017 −1.74990 −0.874951 0.484211i \(-0.839107\pi\)
−0.874951 + 0.484211i \(0.839107\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 44.0000 1.88130 0.940652 0.339372i \(-0.110215\pi\)
0.940652 + 0.339372i \(0.110215\pi\)
\(548\) −138.908 −5.93385
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 76.5789 3.25353
\(555\) 0 0
\(556\) 0 0
\(557\) −30.9942 −1.31327 −0.656634 0.754209i \(-0.728020\pi\)
−0.656634 + 0.754209i \(0.728020\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 24.2787 1.02413
\(563\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) −110.640 −4.64236
\(569\) 22.0000 0.922288 0.461144 0.887325i \(-0.347439\pi\)
0.461144 + 0.887325i \(0.347439\pi\)
\(570\) 0 0
\(571\) −44.0566 −1.84371 −0.921856 0.387534i \(-0.873327\pi\)
−0.921856 + 0.387534i \(0.873327\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −37.5233 −1.56483
\(576\) −165.020 −6.87585
\(577\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(578\) −48.0297 −1.99777
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 162.758 6.68933
\(593\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 131.608 5.39088
\(597\) 0 0
\(598\) 0 0
\(599\) −25.3391 −1.03533 −0.517663 0.855584i \(-0.673198\pi\)
−0.517663 + 0.855584i \(0.673198\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(602\) 0 0
\(603\) −18.2842 −0.744590
\(604\) −74.4718 −3.03021
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 49.4042 1.99542 0.997709 0.0676456i \(-0.0215487\pi\)
0.997709 + 0.0676456i \(0.0215487\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 45.9166 1.84853 0.924266 0.381749i \(-0.124678\pi\)
0.924266 + 0.381749i \(0.124678\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 25.0000 1.00000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −40.3484 −1.60624 −0.803122 0.595815i \(-0.796829\pi\)
−0.803122 + 0.595815i \(0.796829\pi\)
\(632\) −177.795 −7.07231
\(633\) 0 0
\(634\) 95.2884 3.78439
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 29.5020 1.16708
\(640\) 0 0
\(641\) −49.6559 −1.96129 −0.980644 0.195799i \(-0.937270\pi\)
−0.980644 + 0.195799i \(0.937270\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) 101.257 3.97775
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 53.3444 2.08913
\(653\) 5.38581 0.210763 0.105382 0.994432i \(-0.466394\pi\)
0.105382 + 0.994432i \(0.466394\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 44.0000 1.71400 0.856998 0.515319i \(-0.172327\pi\)
0.856998 + 0.515319i \(0.172327\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(662\) 17.2118 0.668957
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) −69.5945 −2.69673
\(667\) 34.5402 1.33740
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0.611628 0.0235765 0.0117883 0.999931i \(-0.496248\pi\)
0.0117883 + 0.999931i \(0.496248\pi\)
\(674\) 83.0648 3.19953
\(675\) 0 0
\(676\) −77.7684 −2.99109
\(677\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −21.1014 −0.807423 −0.403711 0.914886i \(-0.632280\pi\)
−0.403711 + 0.914886i \(0.632280\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 130.785 4.98615
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) −70.6543 −2.68200
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −49.7071 −1.87741 −0.938707 0.344717i \(-0.887975\pi\)
−0.938707 + 0.344717i \(0.887975\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −26.2486 −0.985786 −0.492893 0.870090i \(-0.664061\pi\)
−0.492893 + 0.870090i \(0.664061\pi\)
\(710\) 0 0
\(711\) 47.4088 1.77797
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) −143.133 −5.34913
\(717\) 0 0
\(718\) −92.5433 −3.45369
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −53.6802 −1.99777
\(723\) 0 0
\(724\) 0 0
\(725\) −23.0125 −0.854663
\(726\) 0 0
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) 0 0
\(729\) −27.0000 −1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 251.417 9.26737
\(737\) 0 0
\(738\) 0 0
\(739\) 51.3997 1.89077 0.945384 0.325959i \(-0.105687\pi\)
0.945384 + 0.325959i \(0.105687\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 10.5888 0.388466 0.194233 0.980955i \(-0.437778\pi\)
0.194233 + 0.980955i \(0.437778\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 62.1561 2.27570
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 10.3298 0.376939 0.188469 0.982079i \(-0.439647\pi\)
0.188469 + 0.982079i \(0.439647\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 37.4664 1.36174 0.680869 0.732405i \(-0.261602\pi\)
0.680869 + 0.732405i \(0.261602\pi\)
\(758\) −110.004 −3.99554
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −131.748 −4.76649
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −161.539 −5.81392
\(773\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(774\) −55.9230 −2.01011
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) −61.6127 −2.20892
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(788\) −108.274 −3.85712
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −167.508 −5.92229
\(801\) 0 0
\(802\) 27.1890 0.960078
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −52.0028 −1.82832 −0.914160 0.405353i \(-0.867149\pi\)
−0.914160 + 0.405353i \(0.867149\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 22.0000 0.767805 0.383903 0.923374i \(-0.374580\pi\)
0.383903 + 0.923374i \(0.374580\pi\)
\(822\) 0 0
\(823\) −53.8809 −1.87817 −0.939086 0.343683i \(-0.888326\pi\)
−0.939086 + 0.343683i \(0.888326\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 44.0000 1.53003 0.765015 0.644013i \(-0.222732\pi\)
0.765015 + 0.644013i \(0.222732\pi\)
\(828\) −134.683 −4.68055
\(829\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) −7.81699 −0.269551
\(842\) −108.009 −3.72224
\(843\) 0 0
\(844\) 128.344 4.41779
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) 37.0602 1.27265
\(849\) 0 0
\(850\) 0 0
\(851\) 61.6202 2.11231
\(852\) 0 0
\(853\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −12.9139 −0.441387
\(857\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 99.0291 3.37295
\(863\) 8.00000 0.272323 0.136162 0.990687i \(-0.456523\pi\)
0.136162 + 0.990687i \(0.456523\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) −50.6592 −1.71554
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −21.7892 −0.735771 −0.367885 0.929871i \(-0.619918\pi\)
−0.367885 + 0.929871i \(0.619918\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(882\) 0 0
\(883\) −12.0000 −0.403832 −0.201916 0.979403i \(-0.564717\pi\)
−0.201916 + 0.979403i \(0.564717\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 107.225 3.60231
\(887\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) −112.000 −3.73749
\(899\) 0 0
\(900\) 89.7328 2.99109
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) −158.176 −5.26085
\(905\) 0 0
\(906\) 0 0
\(907\) −45.4308 −1.50850 −0.754252 0.656585i \(-0.772000\pi\)
−0.754252 + 0.656585i \(0.772000\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 16.0000 0.530104 0.265052 0.964234i \(-0.414611\pi\)
0.265052 + 0.964234i \(0.414611\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 108.508 3.58911
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 60.6047 1.99916 0.999582 0.0289084i \(-0.00920311\pi\)
0.999582 + 0.0289084i \(0.00920311\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −41.0547 −1.34987
\(926\) 117.790 3.87082
\(927\) 0 0
\(928\) 154.191 5.06156
\(929\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 131.608 4.31097
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −20.0000 −0.649913 −0.324956 0.945729i \(-0.605350\pi\)
−0.324956 + 0.945729i \(0.605350\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −2.20709 −0.0714945 −0.0357473 0.999361i \(-0.511381\pi\)
−0.0357473 + 0.999361i \(0.511381\pi\)
\(954\) −15.8467 −0.513056
\(955\) 0 0
\(956\) 15.5959 0.504409
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −31.0000 −1.00000
\(962\) 0 0
\(963\) 3.44347 0.110964
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −57.6533 −1.85401 −0.927003 0.375053i \(-0.877624\pi\)
−0.927003 + 0.375053i \(0.877624\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −6.65483 −0.213235
\(975\) 0 0
\(976\) 0 0
\(977\) −26.0454 −0.833265 −0.416632 0.909075i \(-0.636790\pi\)
−0.416632 + 0.909075i \(0.636790\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 13.5082 0.431283
\(982\) 124.312 3.96696
\(983\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 49.5152 1.57449
\(990\) 0 0
\(991\) −24.0000 −0.762385 −0.381193 0.924496i \(-0.624487\pi\)
−0.381193 + 0.924496i \(0.624487\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(998\) −38.3483 −1.21389
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5929.2.a.bc.1.4 4
7.6 odd 2 CM 5929.2.a.bc.1.4 4
11.5 even 5 539.2.f.c.344.1 yes 8
11.9 even 5 539.2.f.c.246.1 8
11.10 odd 2 5929.2.a.bg.1.1 4
77.5 odd 30 539.2.q.d.410.2 16
77.9 even 15 539.2.q.d.312.1 16
77.16 even 15 539.2.q.d.410.2 16
77.20 odd 10 539.2.f.c.246.1 8
77.27 odd 10 539.2.f.c.344.1 yes 8
77.31 odd 30 539.2.q.d.422.2 16
77.38 odd 30 539.2.q.d.520.1 16
77.53 even 15 539.2.q.d.422.2 16
77.60 even 15 539.2.q.d.520.1 16
77.75 odd 30 539.2.q.d.312.1 16
77.76 even 2 5929.2.a.bg.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
539.2.f.c.246.1 8 11.9 even 5
539.2.f.c.246.1 8 77.20 odd 10
539.2.f.c.344.1 yes 8 11.5 even 5
539.2.f.c.344.1 yes 8 77.27 odd 10
539.2.q.d.312.1 16 77.9 even 15
539.2.q.d.312.1 16 77.75 odd 30
539.2.q.d.410.2 16 77.5 odd 30
539.2.q.d.410.2 16 77.16 even 15
539.2.q.d.422.2 16 77.31 odd 30
539.2.q.d.422.2 16 77.53 even 15
539.2.q.d.520.1 16 77.38 odd 30
539.2.q.d.520.1 16 77.60 even 15
5929.2.a.bc.1.4 4 1.1 even 1 trivial
5929.2.a.bc.1.4 4 7.6 odd 2 CM
5929.2.a.bg.1.1 4 11.10 odd 2
5929.2.a.bg.1.1 4 77.76 even 2