Properties

Label 592.8.a.c
Level $592$
Weight $8$
Character orbit 592.a
Self dual yes
Analytic conductor $184.932$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [592,8,Mod(1,592)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(592, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("592.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 592 = 2^{4} \cdot 37 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 592.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(184.931935087\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 10621x^{4} + 102052x^{3} + 31004503x^{2} - 305547358x - 22608804936 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 74)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_1 - 5) q^{3} + (\beta_{3} - 2 \beta_{2} + 2 \beta_1 - 4) q^{5} + (3 \beta_{5} + 2 \beta_{4} + \cdots + 166) q^{7}+ \cdots + ( - \beta_{5} + \beta_{4} + \cdots + 1376) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + (\beta_1 - 5) q^{3} + (\beta_{3} - 2 \beta_{2} + 2 \beta_1 - 4) q^{5} + (3 \beta_{5} + 2 \beta_{4} + \cdots + 166) q^{7}+ \cdots + (1354 \beta_{5} + 3452 \beta_{4} + \cdots - 4343166) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 28 q^{3} - 14 q^{5} + 980 q^{7} + 8254 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q - 28 q^{3} - 14 q^{5} + 980 q^{7} + 8254 q^{9} - 2956 q^{11} + 2394 q^{13} + 28820 q^{15} - 45108 q^{17} - 11764 q^{19} - 135378 q^{21} - 21052 q^{23} + 194744 q^{25} - 439240 q^{27} + 288454 q^{29} - 578868 q^{31} + 980174 q^{33} - 1243052 q^{35} - 303918 q^{37} - 1735296 q^{39} + 1176840 q^{41} - 2669236 q^{43} + 2560692 q^{45} + 131044 q^{47} + 2460856 q^{49} - 2899732 q^{51} + 983190 q^{53} + 1200168 q^{55} - 163216 q^{57} + 1215568 q^{59} + 3136358 q^{61} + 1444880 q^{63} - 1302836 q^{65} - 2179276 q^{67} - 929514 q^{69} - 325164 q^{71} + 5011444 q^{73} + 9374520 q^{75} - 26500426 q^{77} - 3173032 q^{79} - 2565226 q^{81} + 22567048 q^{83} + 1486476 q^{85} + 157228 q^{87} + 26836996 q^{89} - 17942380 q^{91} + 16734948 q^{93} + 4252048 q^{95} + 295792 q^{97} - 25990712 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 2x^{5} - 10621x^{4} + 102052x^{3} + 31004503x^{2} - 305547358x - 22608804936 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 7747955 \nu^{5} + 503122743 \nu^{4} - 57043408454 \nu^{3} - 3094025378066 \nu^{2} + \cdots + 41\!\cdots\!94 ) / 3870993554217 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 8203492 \nu^{5} + 501227847 \nu^{4} - 57892177126 \nu^{3} - 2502670068046 \nu^{2} + \cdots + 22\!\cdots\!74 ) / 3870993554217 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( - 5498161 \nu^{5} - 255663367 \nu^{4} + 39239242757 \nu^{3} + 1275575322580 \nu^{2} + \cdots - 14\!\cdots\!05 ) / 1290331184739 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 27256199 \nu^{5} + 1727779758 \nu^{4} - 176835769391 \nu^{3} - 9009486066587 \nu^{2} + \cdots + 95\!\cdots\!81 ) / 3870993554217 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( -\beta_{5} + \beta_{4} + 11\beta_{3} - 6\beta_{2} - 7\beta _1 + 3538 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 230\beta_{5} - 41\beta_{4} - 704\beta_{3} - 151\beta_{2} + 4557\beta _1 - 41815 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -6262\beta_{5} + 21304\beta_{4} + 91225\beta_{3} - 29206\beta_{2} - 105230\beta _1 + 16821488 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 1700644\beta_{5} - 1285924\beta_{4} - 6714243\beta_{3} - 1111585\beta_{2} + 24476553\beta _1 - 519414756 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−85.7890
−57.0201
−26.0193
44.6523
61.6850
64.4910
0 −90.7890 0 133.163 0 948.062 0 6055.64 0
1.2 0 −62.0201 0 42.8650 0 −819.178 0 1659.49 0
1.3 0 −31.0193 0 −544.510 0 1685.44 0 −1224.80 0
1.4 0 39.6523 0 −332.745 0 135.814 0 −614.693 0
1.5 0 56.6850 0 360.557 0 −1603.66 0 1026.19 0
1.6 0 59.4910 0 326.669 0 633.531 0 1352.18 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(37\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 592.8.a.c 6
4.b odd 2 1 74.8.a.c 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
74.8.a.c 6 4.b odd 2 1
592.8.a.c 6 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{6} + 28T_{3}^{5} - 10296T_{3}^{4} - 108368T_{3}^{3} + 30949008T_{3}^{2} + 6853572T_{3} - 23355301401 \) acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(592))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} \) Copy content Toggle raw display
$3$ \( T^{6} + \cdots - 23355301401 \) Copy content Toggle raw display
$5$ \( T^{6} + \cdots + 121811045690700 \) Copy content Toggle raw display
$7$ \( T^{6} + \cdots + 18\!\cdots\!00 \) Copy content Toggle raw display
$11$ \( T^{6} + \cdots + 39\!\cdots\!43 \) Copy content Toggle raw display
$13$ \( T^{6} + \cdots - 29\!\cdots\!08 \) Copy content Toggle raw display
$17$ \( T^{6} + \cdots - 82\!\cdots\!24 \) Copy content Toggle raw display
$19$ \( T^{6} + \cdots - 44\!\cdots\!60 \) Copy content Toggle raw display
$23$ \( T^{6} + \cdots + 28\!\cdots\!64 \) Copy content Toggle raw display
$29$ \( T^{6} + \cdots + 10\!\cdots\!00 \) Copy content Toggle raw display
$31$ \( T^{6} + \cdots - 30\!\cdots\!60 \) Copy content Toggle raw display
$37$ \( (T + 50653)^{6} \) Copy content Toggle raw display
$41$ \( T^{6} + \cdots - 17\!\cdots\!07 \) Copy content Toggle raw display
$43$ \( T^{6} + \cdots - 26\!\cdots\!84 \) Copy content Toggle raw display
$47$ \( T^{6} + \cdots - 30\!\cdots\!00 \) Copy content Toggle raw display
$53$ \( T^{6} + \cdots - 14\!\cdots\!68 \) Copy content Toggle raw display
$59$ \( T^{6} + \cdots - 18\!\cdots\!32 \) Copy content Toggle raw display
$61$ \( T^{6} + \cdots + 36\!\cdots\!76 \) Copy content Toggle raw display
$67$ \( T^{6} + \cdots - 23\!\cdots\!08 \) Copy content Toggle raw display
$71$ \( T^{6} + \cdots - 14\!\cdots\!64 \) Copy content Toggle raw display
$73$ \( T^{6} + \cdots + 11\!\cdots\!49 \) Copy content Toggle raw display
$79$ \( T^{6} + \cdots - 22\!\cdots\!56 \) Copy content Toggle raw display
$83$ \( T^{6} + \cdots - 18\!\cdots\!16 \) Copy content Toggle raw display
$89$ \( T^{6} + \cdots + 96\!\cdots\!84 \) Copy content Toggle raw display
$97$ \( T^{6} + \cdots - 15\!\cdots\!64 \) Copy content Toggle raw display
show more
show less