Properties

Label 592.8.a.b.1.2
Level $592$
Weight $8$
Character 592.1
Self dual yes
Analytic conductor $184.932$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [592,8,Mod(1,592)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(592, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("592.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 592 = 2^{4} \cdot 37 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 592.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(184.931935087\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 405x^{2} - 2998x - 4396 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 74)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-6.83090\) of defining polynomial
Character \(\chi\) \(=\) 592.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-20.4940 q^{3} +375.302 q^{5} +980.897 q^{7} -1766.99 q^{9} +O(q^{10})\) \(q-20.4940 q^{3} +375.302 q^{5} +980.897 q^{7} -1766.99 q^{9} +3376.51 q^{11} +3436.44 q^{13} -7691.45 q^{15} -4744.28 q^{17} +11268.9 q^{19} -20102.6 q^{21} +17737.1 q^{23} +62726.4 q^{25} +81033.3 q^{27} -106898. q^{29} +31372.3 q^{31} -69198.3 q^{33} +368132. q^{35} +50653.0 q^{37} -70426.5 q^{39} +278656. q^{41} +606906. q^{43} -663156. q^{45} +1.13131e6 q^{47} +138617. q^{49} +97229.5 q^{51} -894201. q^{53} +1.26721e6 q^{55} -230946. q^{57} +897569. q^{59} +1.69191e6 q^{61} -1.73324e6 q^{63} +1.28970e6 q^{65} -2.02846e6 q^{67} -363504. q^{69} +585796. q^{71} +428683. q^{73} -1.28552e6 q^{75} +3.31201e6 q^{77} +1.57559e6 q^{79} +2.20372e6 q^{81} +537839. q^{83} -1.78054e6 q^{85} +2.19078e6 q^{87} -1.84127e6 q^{89} +3.37079e6 q^{91} -642946. q^{93} +4.22924e6 q^{95} -6.63828e6 q^{97} -5.96627e6 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 53 q^{3} + 111 q^{5} + 1666 q^{7} + 4609 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 53 q^{3} + 111 q^{5} + 1666 q^{7} + 4609 q^{9} + 4593 q^{11} + 7847 q^{13} - 18900 q^{15} + 23172 q^{17} - 23696 q^{19} + 69416 q^{21} - 24105 q^{23} - 138149 q^{25} + 433646 q^{27} - 140949 q^{29} + 664609 q^{31} - 240450 q^{33} + 248544 q^{35} + 202612 q^{37} + 2288827 q^{39} - 709737 q^{41} + 128962 q^{43} - 1755342 q^{45} + 445842 q^{47} - 1602774 q^{49} + 2883630 q^{51} - 975870 q^{53} + 644145 q^{55} + 3494630 q^{57} + 1812858 q^{59} - 2955031 q^{61} + 3362482 q^{63} + 666 q^{65} - 2737235 q^{67} - 1781673 q^{69} - 4958184 q^{71} - 931591 q^{73} - 4945810 q^{75} + 4352514 q^{77} - 5813561 q^{79} + 16394896 q^{81} - 2120460 q^{83} - 4845402 q^{85} - 7965333 q^{87} + 8833716 q^{89} + 18886274 q^{91} + 3024182 q^{93} + 3151794 q^{95} - 22666876 q^{97} + 17931894 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −20.4940 −0.438231 −0.219116 0.975699i \(-0.570317\pi\)
−0.219116 + 0.975699i \(0.570317\pi\)
\(4\) 0 0
\(5\) 375.302 1.34272 0.671360 0.741131i \(-0.265710\pi\)
0.671360 + 0.741131i \(0.265710\pi\)
\(6\) 0 0
\(7\) 980.897 1.08089 0.540444 0.841380i \(-0.318256\pi\)
0.540444 + 0.841380i \(0.318256\pi\)
\(8\) 0 0
\(9\) −1766.99 −0.807953
\(10\) 0 0
\(11\) 3376.51 0.764881 0.382440 0.923980i \(-0.375084\pi\)
0.382440 + 0.923980i \(0.375084\pi\)
\(12\) 0 0
\(13\) 3436.44 0.433817 0.216909 0.976192i \(-0.430403\pi\)
0.216909 + 0.976192i \(0.430403\pi\)
\(14\) 0 0
\(15\) −7691.45 −0.588422
\(16\) 0 0
\(17\) −4744.28 −0.234207 −0.117103 0.993120i \(-0.537361\pi\)
−0.117103 + 0.993120i \(0.537361\pi\)
\(18\) 0 0
\(19\) 11268.9 0.376916 0.188458 0.982081i \(-0.439651\pi\)
0.188458 + 0.982081i \(0.439651\pi\)
\(20\) 0 0
\(21\) −20102.6 −0.473678
\(22\) 0 0
\(23\) 17737.1 0.303973 0.151986 0.988383i \(-0.451433\pi\)
0.151986 + 0.988383i \(0.451433\pi\)
\(24\) 0 0
\(25\) 62726.4 0.802898
\(26\) 0 0
\(27\) 81033.3 0.792302
\(28\) 0 0
\(29\) −106898. −0.813914 −0.406957 0.913447i \(-0.633410\pi\)
−0.406957 + 0.913447i \(0.633410\pi\)
\(30\) 0 0
\(31\) 31372.3 0.189139 0.0945695 0.995518i \(-0.469853\pi\)
0.0945695 + 0.995518i \(0.469853\pi\)
\(32\) 0 0
\(33\) −69198.3 −0.335194
\(34\) 0 0
\(35\) 368132. 1.45133
\(36\) 0 0
\(37\) 50653.0 0.164399
\(38\) 0 0
\(39\) −70426.5 −0.190112
\(40\) 0 0
\(41\) 278656. 0.631430 0.315715 0.948854i \(-0.397756\pi\)
0.315715 + 0.948854i \(0.397756\pi\)
\(42\) 0 0
\(43\) 606906. 1.16408 0.582039 0.813161i \(-0.302255\pi\)
0.582039 + 0.813161i \(0.302255\pi\)
\(44\) 0 0
\(45\) −663156. −1.08486
\(46\) 0 0
\(47\) 1.13131e6 1.58943 0.794713 0.606986i \(-0.207621\pi\)
0.794713 + 0.606986i \(0.207621\pi\)
\(48\) 0 0
\(49\) 138617. 0.168317
\(50\) 0 0
\(51\) 97229.5 0.102637
\(52\) 0 0
\(53\) −894201. −0.825030 −0.412515 0.910951i \(-0.635350\pi\)
−0.412515 + 0.910951i \(0.635350\pi\)
\(54\) 0 0
\(55\) 1.26721e6 1.02702
\(56\) 0 0
\(57\) −230946. −0.165176
\(58\) 0 0
\(59\) 897569. 0.568966 0.284483 0.958681i \(-0.408178\pi\)
0.284483 + 0.958681i \(0.408178\pi\)
\(60\) 0 0
\(61\) 1.69191e6 0.954381 0.477191 0.878800i \(-0.341655\pi\)
0.477191 + 0.878800i \(0.341655\pi\)
\(62\) 0 0
\(63\) −1.73324e6 −0.873307
\(64\) 0 0
\(65\) 1.28970e6 0.582495
\(66\) 0 0
\(67\) −2.02846e6 −0.823957 −0.411979 0.911194i \(-0.635162\pi\)
−0.411979 + 0.911194i \(0.635162\pi\)
\(68\) 0 0
\(69\) −363504. −0.133210
\(70\) 0 0
\(71\) 585796. 0.194242 0.0971208 0.995273i \(-0.469037\pi\)
0.0971208 + 0.995273i \(0.469037\pi\)
\(72\) 0 0
\(73\) 428683. 0.128975 0.0644875 0.997919i \(-0.479459\pi\)
0.0644875 + 0.997919i \(0.479459\pi\)
\(74\) 0 0
\(75\) −1.28552e6 −0.351855
\(76\) 0 0
\(77\) 3.31201e6 0.826750
\(78\) 0 0
\(79\) 1.57559e6 0.359540 0.179770 0.983709i \(-0.442465\pi\)
0.179770 + 0.983709i \(0.442465\pi\)
\(80\) 0 0
\(81\) 2.20372e6 0.460742
\(82\) 0 0
\(83\) 537839. 0.103247 0.0516236 0.998667i \(-0.483560\pi\)
0.0516236 + 0.998667i \(0.483560\pi\)
\(84\) 0 0
\(85\) −1.78054e6 −0.314474
\(86\) 0 0
\(87\) 2.19078e6 0.356682
\(88\) 0 0
\(89\) −1.84127e6 −0.276856 −0.138428 0.990373i \(-0.544205\pi\)
−0.138428 + 0.990373i \(0.544205\pi\)
\(90\) 0 0
\(91\) 3.37079e6 0.468907
\(92\) 0 0
\(93\) −642946. −0.0828866
\(94\) 0 0
\(95\) 4.22924e6 0.506093
\(96\) 0 0
\(97\) −6.63828e6 −0.738506 −0.369253 0.929329i \(-0.620387\pi\)
−0.369253 + 0.929329i \(0.620387\pi\)
\(98\) 0 0
\(99\) −5.96627e6 −0.617988
\(100\) 0 0
\(101\) 2.01181e6 0.194295 0.0971475 0.995270i \(-0.469028\pi\)
0.0971475 + 0.995270i \(0.469028\pi\)
\(102\) 0 0
\(103\) 8.44464e6 0.761466 0.380733 0.924685i \(-0.375672\pi\)
0.380733 + 0.924685i \(0.375672\pi\)
\(104\) 0 0
\(105\) −7.54452e6 −0.636018
\(106\) 0 0
\(107\) −2.02730e7 −1.59984 −0.799919 0.600108i \(-0.795124\pi\)
−0.799919 + 0.600108i \(0.795124\pi\)
\(108\) 0 0
\(109\) −2.49898e7 −1.84829 −0.924145 0.382042i \(-0.875221\pi\)
−0.924145 + 0.382042i \(0.875221\pi\)
\(110\) 0 0
\(111\) −1.03808e6 −0.0720448
\(112\) 0 0
\(113\) 1.39234e7 0.907760 0.453880 0.891063i \(-0.350039\pi\)
0.453880 + 0.891063i \(0.350039\pi\)
\(114\) 0 0
\(115\) 6.65675e6 0.408150
\(116\) 0 0
\(117\) −6.07217e6 −0.350504
\(118\) 0 0
\(119\) −4.65365e6 −0.253151
\(120\) 0 0
\(121\) −8.08635e6 −0.414958
\(122\) 0 0
\(123\) −5.71079e6 −0.276712
\(124\) 0 0
\(125\) −5.77912e6 −0.264653
\(126\) 0 0
\(127\) −3.66831e6 −0.158911 −0.0794553 0.996838i \(-0.525318\pi\)
−0.0794553 + 0.996838i \(0.525318\pi\)
\(128\) 0 0
\(129\) −1.24380e7 −0.510135
\(130\) 0 0
\(131\) −4.68710e7 −1.82161 −0.910803 0.412842i \(-0.864536\pi\)
−0.910803 + 0.412842i \(0.864536\pi\)
\(132\) 0 0
\(133\) 1.10536e7 0.407404
\(134\) 0 0
\(135\) 3.04119e7 1.06384
\(136\) 0 0
\(137\) 1.68178e7 0.558787 0.279393 0.960177i \(-0.409867\pi\)
0.279393 + 0.960177i \(0.409867\pi\)
\(138\) 0 0
\(139\) −1.17238e7 −0.370270 −0.185135 0.982713i \(-0.559272\pi\)
−0.185135 + 0.982713i \(0.559272\pi\)
\(140\) 0 0
\(141\) −2.31852e7 −0.696536
\(142\) 0 0
\(143\) 1.16032e7 0.331818
\(144\) 0 0
\(145\) −4.01192e7 −1.09286
\(146\) 0 0
\(147\) −2.84081e6 −0.0737619
\(148\) 0 0
\(149\) 7.64948e7 1.89444 0.947219 0.320588i \(-0.103881\pi\)
0.947219 + 0.320588i \(0.103881\pi\)
\(150\) 0 0
\(151\) 2.19120e7 0.517921 0.258960 0.965888i \(-0.416620\pi\)
0.258960 + 0.965888i \(0.416620\pi\)
\(152\) 0 0
\(153\) 8.38311e6 0.189228
\(154\) 0 0
\(155\) 1.17741e7 0.253961
\(156\) 0 0
\(157\) 1.91872e6 0.0395696 0.0197848 0.999804i \(-0.493702\pi\)
0.0197848 + 0.999804i \(0.493702\pi\)
\(158\) 0 0
\(159\) 1.83258e7 0.361554
\(160\) 0 0
\(161\) 1.73982e7 0.328560
\(162\) 0 0
\(163\) 2.21304e7 0.400251 0.200126 0.979770i \(-0.435865\pi\)
0.200126 + 0.979770i \(0.435865\pi\)
\(164\) 0 0
\(165\) −2.59703e7 −0.450072
\(166\) 0 0
\(167\) −4.43183e7 −0.736334 −0.368167 0.929760i \(-0.620015\pi\)
−0.368167 + 0.929760i \(0.620015\pi\)
\(168\) 0 0
\(169\) −5.09394e7 −0.811803
\(170\) 0 0
\(171\) −1.99121e7 −0.304531
\(172\) 0 0
\(173\) 7.47705e7 1.09792 0.548958 0.835850i \(-0.315025\pi\)
0.548958 + 0.835850i \(0.315025\pi\)
\(174\) 0 0
\(175\) 6.15282e7 0.867842
\(176\) 0 0
\(177\) −1.83948e7 −0.249338
\(178\) 0 0
\(179\) 1.20143e8 1.56571 0.782855 0.622204i \(-0.213763\pi\)
0.782855 + 0.622204i \(0.213763\pi\)
\(180\) 0 0
\(181\) 1.49404e8 1.87278 0.936390 0.350962i \(-0.114146\pi\)
0.936390 + 0.350962i \(0.114146\pi\)
\(182\) 0 0
\(183\) −3.46740e7 −0.418240
\(184\) 0 0
\(185\) 1.90102e7 0.220742
\(186\) 0 0
\(187\) −1.60191e7 −0.179140
\(188\) 0 0
\(189\) 7.94854e7 0.856389
\(190\) 0 0
\(191\) 2.34648e7 0.243669 0.121835 0.992550i \(-0.461122\pi\)
0.121835 + 0.992550i \(0.461122\pi\)
\(192\) 0 0
\(193\) 1.01584e8 1.01713 0.508565 0.861024i \(-0.330176\pi\)
0.508565 + 0.861024i \(0.330176\pi\)
\(194\) 0 0
\(195\) −2.64312e7 −0.255268
\(196\) 0 0
\(197\) 1.85514e8 1.72880 0.864402 0.502801i \(-0.167697\pi\)
0.864402 + 0.502801i \(0.167697\pi\)
\(198\) 0 0
\(199\) 2.86267e7 0.257505 0.128752 0.991677i \(-0.458903\pi\)
0.128752 + 0.991677i \(0.458903\pi\)
\(200\) 0 0
\(201\) 4.15713e7 0.361084
\(202\) 0 0
\(203\) −1.04856e8 −0.879749
\(204\) 0 0
\(205\) 1.04580e8 0.847834
\(206\) 0 0
\(207\) −3.13413e7 −0.245596
\(208\) 0 0
\(209\) 3.80496e7 0.288296
\(210\) 0 0
\(211\) −1.57443e7 −0.115381 −0.0576907 0.998335i \(-0.518374\pi\)
−0.0576907 + 0.998335i \(0.518374\pi\)
\(212\) 0 0
\(213\) −1.20053e7 −0.0851227
\(214\) 0 0
\(215\) 2.27773e8 1.56303
\(216\) 0 0
\(217\) 3.07730e7 0.204438
\(218\) 0 0
\(219\) −8.78544e6 −0.0565209
\(220\) 0 0
\(221\) −1.63034e7 −0.101603
\(222\) 0 0
\(223\) 3.23566e7 0.195387 0.0976937 0.995217i \(-0.468853\pi\)
0.0976937 + 0.995217i \(0.468853\pi\)
\(224\) 0 0
\(225\) −1.10837e8 −0.648704
\(226\) 0 0
\(227\) −2.94511e8 −1.67113 −0.835566 0.549390i \(-0.814860\pi\)
−0.835566 + 0.549390i \(0.814860\pi\)
\(228\) 0 0
\(229\) −2.66064e8 −1.46407 −0.732034 0.681268i \(-0.761429\pi\)
−0.732034 + 0.681268i \(0.761429\pi\)
\(230\) 0 0
\(231\) −6.78765e7 −0.362307
\(232\) 0 0
\(233\) −2.14468e8 −1.11075 −0.555377 0.831599i \(-0.687426\pi\)
−0.555377 + 0.831599i \(0.687426\pi\)
\(234\) 0 0
\(235\) 4.24584e8 2.13415
\(236\) 0 0
\(237\) −3.22901e7 −0.157562
\(238\) 0 0
\(239\) 3.30136e8 1.56423 0.782115 0.623134i \(-0.214141\pi\)
0.782115 + 0.623134i \(0.214141\pi\)
\(240\) 0 0
\(241\) 3.56063e8 1.63858 0.819290 0.573379i \(-0.194368\pi\)
0.819290 + 0.573379i \(0.194368\pi\)
\(242\) 0 0
\(243\) −2.22383e8 −0.994213
\(244\) 0 0
\(245\) 5.20230e7 0.226003
\(246\) 0 0
\(247\) 3.87249e7 0.163513
\(248\) 0 0
\(249\) −1.10225e7 −0.0452462
\(250\) 0 0
\(251\) 6.90749e7 0.275716 0.137858 0.990452i \(-0.455978\pi\)
0.137858 + 0.990452i \(0.455978\pi\)
\(252\) 0 0
\(253\) 5.98894e7 0.232503
\(254\) 0 0
\(255\) 3.64904e7 0.137812
\(256\) 0 0
\(257\) −1.82080e8 −0.669110 −0.334555 0.942376i \(-0.608586\pi\)
−0.334555 + 0.942376i \(0.608586\pi\)
\(258\) 0 0
\(259\) 4.96854e7 0.177697
\(260\) 0 0
\(261\) 1.88889e8 0.657604
\(262\) 0 0
\(263\) 3.32466e8 1.12694 0.563471 0.826136i \(-0.309466\pi\)
0.563471 + 0.826136i \(0.309466\pi\)
\(264\) 0 0
\(265\) −3.35595e8 −1.10778
\(266\) 0 0
\(267\) 3.77352e7 0.121327
\(268\) 0 0
\(269\) 3.56196e8 1.11572 0.557862 0.829934i \(-0.311622\pi\)
0.557862 + 0.829934i \(0.311622\pi\)
\(270\) 0 0
\(271\) 6.50894e8 1.98663 0.993316 0.115423i \(-0.0368223\pi\)
0.993316 + 0.115423i \(0.0368223\pi\)
\(272\) 0 0
\(273\) −6.90812e7 −0.205490
\(274\) 0 0
\(275\) 2.11796e8 0.614121
\(276\) 0 0
\(277\) 1.11215e8 0.314402 0.157201 0.987567i \(-0.449753\pi\)
0.157201 + 0.987567i \(0.449753\pi\)
\(278\) 0 0
\(279\) −5.54347e7 −0.152815
\(280\) 0 0
\(281\) −5.93017e7 −0.159439 −0.0797196 0.996817i \(-0.525403\pi\)
−0.0797196 + 0.996817i \(0.525403\pi\)
\(282\) 0 0
\(283\) 6.90811e8 1.81179 0.905893 0.423508i \(-0.139201\pi\)
0.905893 + 0.423508i \(0.139201\pi\)
\(284\) 0 0
\(285\) −8.66743e7 −0.221786
\(286\) 0 0
\(287\) 2.73333e8 0.682504
\(288\) 0 0
\(289\) −3.87830e8 −0.945147
\(290\) 0 0
\(291\) 1.36045e8 0.323637
\(292\) 0 0
\(293\) −6.33150e8 −1.47052 −0.735258 0.677787i \(-0.762939\pi\)
−0.735258 + 0.677787i \(0.762939\pi\)
\(294\) 0 0
\(295\) 3.36859e8 0.763962
\(296\) 0 0
\(297\) 2.73610e8 0.606016
\(298\) 0 0
\(299\) 6.09523e7 0.131869
\(300\) 0 0
\(301\) 5.95313e8 1.25824
\(302\) 0 0
\(303\) −4.12301e7 −0.0851461
\(304\) 0 0
\(305\) 6.34975e8 1.28147
\(306\) 0 0
\(307\) −3.19674e8 −0.630554 −0.315277 0.949000i \(-0.602097\pi\)
−0.315277 + 0.949000i \(0.602097\pi\)
\(308\) 0 0
\(309\) −1.73065e8 −0.333698
\(310\) 0 0
\(311\) −9.05480e8 −1.70694 −0.853469 0.521144i \(-0.825505\pi\)
−0.853469 + 0.521144i \(0.825505\pi\)
\(312\) 0 0
\(313\) 4.16880e8 0.768433 0.384216 0.923243i \(-0.374472\pi\)
0.384216 + 0.923243i \(0.374472\pi\)
\(314\) 0 0
\(315\) −6.50488e8 −1.17261
\(316\) 0 0
\(317\) 2.87485e8 0.506883 0.253442 0.967351i \(-0.418437\pi\)
0.253442 + 0.967351i \(0.418437\pi\)
\(318\) 0 0
\(319\) −3.60944e8 −0.622547
\(320\) 0 0
\(321\) 4.15477e8 0.701099
\(322\) 0 0
\(323\) −5.34629e7 −0.0882762
\(324\) 0 0
\(325\) 2.15555e8 0.348311
\(326\) 0 0
\(327\) 5.12142e8 0.809978
\(328\) 0 0
\(329\) 1.10970e9 1.71799
\(330\) 0 0
\(331\) 1.43202e7 0.0217046 0.0108523 0.999941i \(-0.496546\pi\)
0.0108523 + 0.999941i \(0.496546\pi\)
\(332\) 0 0
\(333\) −8.95036e7 −0.132827
\(334\) 0 0
\(335\) −7.61285e8 −1.10634
\(336\) 0 0
\(337\) −7.28640e8 −1.03707 −0.518535 0.855056i \(-0.673522\pi\)
−0.518535 + 0.855056i \(0.673522\pi\)
\(338\) 0 0
\(339\) −2.85347e8 −0.397809
\(340\) 0 0
\(341\) 1.05929e8 0.144669
\(342\) 0 0
\(343\) −6.71843e8 −0.898955
\(344\) 0 0
\(345\) −1.36424e8 −0.178864
\(346\) 0 0
\(347\) 5.87298e8 0.754581 0.377290 0.926095i \(-0.376856\pi\)
0.377290 + 0.926095i \(0.376856\pi\)
\(348\) 0 0
\(349\) −1.89025e8 −0.238029 −0.119015 0.992892i \(-0.537974\pi\)
−0.119015 + 0.992892i \(0.537974\pi\)
\(350\) 0 0
\(351\) 2.78466e8 0.343714
\(352\) 0 0
\(353\) 1.09082e9 1.31990 0.659951 0.751309i \(-0.270577\pi\)
0.659951 + 0.751309i \(0.270577\pi\)
\(354\) 0 0
\(355\) 2.19850e8 0.260812
\(356\) 0 0
\(357\) 9.53721e7 0.110939
\(358\) 0 0
\(359\) 1.29066e9 1.47225 0.736123 0.676848i \(-0.236655\pi\)
0.736123 + 0.676848i \(0.236655\pi\)
\(360\) 0 0
\(361\) −7.66883e8 −0.857934
\(362\) 0 0
\(363\) 1.65722e8 0.181847
\(364\) 0 0
\(365\) 1.60885e8 0.173177
\(366\) 0 0
\(367\) 6.31310e8 0.666671 0.333335 0.942808i \(-0.391826\pi\)
0.333335 + 0.942808i \(0.391826\pi\)
\(368\) 0 0
\(369\) −4.92384e8 −0.510166
\(370\) 0 0
\(371\) −8.77120e8 −0.891765
\(372\) 0 0
\(373\) −1.48854e8 −0.148518 −0.0742589 0.997239i \(-0.523659\pi\)
−0.0742589 + 0.997239i \(0.523659\pi\)
\(374\) 0 0
\(375\) 1.18438e8 0.115979
\(376\) 0 0
\(377\) −3.67350e8 −0.353090
\(378\) 0 0
\(379\) −1.20416e8 −0.113618 −0.0568092 0.998385i \(-0.518093\pi\)
−0.0568092 + 0.998385i \(0.518093\pi\)
\(380\) 0 0
\(381\) 7.51785e7 0.0696396
\(382\) 0 0
\(383\) −7.76564e8 −0.706287 −0.353144 0.935569i \(-0.614887\pi\)
−0.353144 + 0.935569i \(0.614887\pi\)
\(384\) 0 0
\(385\) 1.24300e9 1.11009
\(386\) 0 0
\(387\) −1.07240e9 −0.940521
\(388\) 0 0
\(389\) −3.59623e8 −0.309759 −0.154880 0.987933i \(-0.549499\pi\)
−0.154880 + 0.987933i \(0.549499\pi\)
\(390\) 0 0
\(391\) −8.41496e7 −0.0711924
\(392\) 0 0
\(393\) 9.60575e8 0.798284
\(394\) 0 0
\(395\) 5.91320e8 0.482762
\(396\) 0 0
\(397\) −6.04729e8 −0.485058 −0.242529 0.970144i \(-0.577977\pi\)
−0.242529 + 0.970144i \(0.577977\pi\)
\(398\) 0 0
\(399\) −2.26534e8 −0.178537
\(400\) 0 0
\(401\) −1.22031e9 −0.945068 −0.472534 0.881312i \(-0.656661\pi\)
−0.472534 + 0.881312i \(0.656661\pi\)
\(402\) 0 0
\(403\) 1.07809e8 0.0820517
\(404\) 0 0
\(405\) 8.27058e8 0.618648
\(406\) 0 0
\(407\) 1.71030e8 0.125746
\(408\) 0 0
\(409\) 1.32264e9 0.955895 0.477948 0.878388i \(-0.341381\pi\)
0.477948 + 0.878388i \(0.341381\pi\)
\(410\) 0 0
\(411\) −3.44664e8 −0.244878
\(412\) 0 0
\(413\) 8.80423e8 0.614988
\(414\) 0 0
\(415\) 2.01852e8 0.138632
\(416\) 0 0
\(417\) 2.40269e8 0.162264
\(418\) 0 0
\(419\) 2.21575e9 1.47154 0.735769 0.677232i \(-0.236821\pi\)
0.735769 + 0.677232i \(0.236821\pi\)
\(420\) 0 0
\(421\) 1.14567e9 0.748291 0.374146 0.927370i \(-0.377936\pi\)
0.374146 + 0.927370i \(0.377936\pi\)
\(422\) 0 0
\(423\) −1.99902e9 −1.28418
\(424\) 0 0
\(425\) −2.97592e8 −0.188044
\(426\) 0 0
\(427\) 1.65959e9 1.03158
\(428\) 0 0
\(429\) −2.37796e8 −0.145413
\(430\) 0 0
\(431\) 9.03397e8 0.543511 0.271755 0.962366i \(-0.412396\pi\)
0.271755 + 0.962366i \(0.412396\pi\)
\(432\) 0 0
\(433\) 2.69931e8 0.159788 0.0798940 0.996803i \(-0.474542\pi\)
0.0798940 + 0.996803i \(0.474542\pi\)
\(434\) 0 0
\(435\) 8.22204e8 0.478925
\(436\) 0 0
\(437\) 1.99878e8 0.114572
\(438\) 0 0
\(439\) 1.79656e9 1.01348 0.506741 0.862098i \(-0.330850\pi\)
0.506741 + 0.862098i \(0.330850\pi\)
\(440\) 0 0
\(441\) −2.44935e8 −0.135993
\(442\) 0 0
\(443\) 1.78755e7 0.00976891 0.00488445 0.999988i \(-0.498445\pi\)
0.00488445 + 0.999988i \(0.498445\pi\)
\(444\) 0 0
\(445\) −6.91034e8 −0.371740
\(446\) 0 0
\(447\) −1.56769e9 −0.830201
\(448\) 0 0
\(449\) −2.18310e9 −1.13818 −0.569090 0.822275i \(-0.692704\pi\)
−0.569090 + 0.822275i \(0.692704\pi\)
\(450\) 0 0
\(451\) 9.40885e8 0.482968
\(452\) 0 0
\(453\) −4.49066e8 −0.226969
\(454\) 0 0
\(455\) 1.26506e9 0.629612
\(456\) 0 0
\(457\) 1.51733e9 0.743658 0.371829 0.928301i \(-0.378731\pi\)
0.371829 + 0.928301i \(0.378731\pi\)
\(458\) 0 0
\(459\) −3.84445e8 −0.185562
\(460\) 0 0
\(461\) 2.03360e9 0.966748 0.483374 0.875414i \(-0.339411\pi\)
0.483374 + 0.875414i \(0.339411\pi\)
\(462\) 0 0
\(463\) 2.70950e9 1.26869 0.634345 0.773050i \(-0.281270\pi\)
0.634345 + 0.773050i \(0.281270\pi\)
\(464\) 0 0
\(465\) −2.41299e8 −0.111293
\(466\) 0 0
\(467\) 8.79465e8 0.399585 0.199793 0.979838i \(-0.435973\pi\)
0.199793 + 0.979838i \(0.435973\pi\)
\(468\) 0 0
\(469\) −1.98971e9 −0.890605
\(470\) 0 0
\(471\) −3.93223e7 −0.0173406
\(472\) 0 0
\(473\) 2.04922e9 0.890380
\(474\) 0 0
\(475\) 7.06858e8 0.302625
\(476\) 0 0
\(477\) 1.58005e9 0.666586
\(478\) 0 0
\(479\) 6.53811e8 0.271818 0.135909 0.990721i \(-0.456605\pi\)
0.135909 + 0.990721i \(0.456605\pi\)
\(480\) 0 0
\(481\) 1.74066e8 0.0713191
\(482\) 0 0
\(483\) −3.56560e8 −0.143985
\(484\) 0 0
\(485\) −2.49136e9 −0.991608
\(486\) 0 0
\(487\) 1.56097e9 0.612413 0.306207 0.951965i \(-0.400940\pi\)
0.306207 + 0.951965i \(0.400940\pi\)
\(488\) 0 0
\(489\) −4.53542e8 −0.175403
\(490\) 0 0
\(491\) 1.64069e9 0.625520 0.312760 0.949832i \(-0.398746\pi\)
0.312760 + 0.949832i \(0.398746\pi\)
\(492\) 0 0
\(493\) 5.07156e8 0.190624
\(494\) 0 0
\(495\) −2.23915e9 −0.829785
\(496\) 0 0
\(497\) 5.74606e8 0.209953
\(498\) 0 0
\(499\) −2.04350e9 −0.736245 −0.368123 0.929777i \(-0.619999\pi\)
−0.368123 + 0.929777i \(0.619999\pi\)
\(500\) 0 0
\(501\) 9.08260e8 0.322685
\(502\) 0 0
\(503\) −5.03945e9 −1.76561 −0.882805 0.469739i \(-0.844348\pi\)
−0.882805 + 0.469739i \(0.844348\pi\)
\(504\) 0 0
\(505\) 7.55035e8 0.260884
\(506\) 0 0
\(507\) 1.04395e9 0.355757
\(508\) 0 0
\(509\) 1.43927e9 0.483761 0.241881 0.970306i \(-0.422236\pi\)
0.241881 + 0.970306i \(0.422236\pi\)
\(510\) 0 0
\(511\) 4.20494e8 0.139408
\(512\) 0 0
\(513\) 9.13158e8 0.298631
\(514\) 0 0
\(515\) 3.16929e9 1.02244
\(516\) 0 0
\(517\) 3.81989e9 1.21572
\(518\) 0 0
\(519\) −1.53235e9 −0.481141
\(520\) 0 0
\(521\) 3.31327e8 0.102642 0.0513210 0.998682i \(-0.483657\pi\)
0.0513210 + 0.998682i \(0.483657\pi\)
\(522\) 0 0
\(523\) 3.41666e9 1.04435 0.522175 0.852838i \(-0.325121\pi\)
0.522175 + 0.852838i \(0.325121\pi\)
\(524\) 0 0
\(525\) −1.26096e9 −0.380315
\(526\) 0 0
\(527\) −1.48839e8 −0.0442976
\(528\) 0 0
\(529\) −3.09022e9 −0.907601
\(530\) 0 0
\(531\) −1.58600e9 −0.459698
\(532\) 0 0
\(533\) 9.57584e8 0.273925
\(534\) 0 0
\(535\) −7.60851e9 −2.14813
\(536\) 0 0
\(537\) −2.46221e9 −0.686143
\(538\) 0 0
\(539\) 4.68040e8 0.128743
\(540\) 0 0
\(541\) −3.31862e9 −0.901087 −0.450544 0.892754i \(-0.648770\pi\)
−0.450544 + 0.892754i \(0.648770\pi\)
\(542\) 0 0
\(543\) −3.06189e9 −0.820710
\(544\) 0 0
\(545\) −9.37872e9 −2.48174
\(546\) 0 0
\(547\) −3.77978e9 −0.987440 −0.493720 0.869621i \(-0.664363\pi\)
−0.493720 + 0.869621i \(0.664363\pi\)
\(548\) 0 0
\(549\) −2.98959e9 −0.771096
\(550\) 0 0
\(551\) −1.20463e9 −0.306777
\(552\) 0 0
\(553\) 1.54549e9 0.388622
\(554\) 0 0
\(555\) −3.89595e8 −0.0967360
\(556\) 0 0
\(557\) −2.29803e9 −0.563460 −0.281730 0.959494i \(-0.590908\pi\)
−0.281730 + 0.959494i \(0.590908\pi\)
\(558\) 0 0
\(559\) 2.08560e9 0.504997
\(560\) 0 0
\(561\) 3.28296e8 0.0785047
\(562\) 0 0
\(563\) −4.61923e9 −1.09091 −0.545456 0.838139i \(-0.683644\pi\)
−0.545456 + 0.838139i \(0.683644\pi\)
\(564\) 0 0
\(565\) 5.22548e9 1.21887
\(566\) 0 0
\(567\) 2.16162e9 0.498010
\(568\) 0 0
\(569\) −1.50413e8 −0.0342289 −0.0171145 0.999854i \(-0.505448\pi\)
−0.0171145 + 0.999854i \(0.505448\pi\)
\(570\) 0 0
\(571\) 1.41430e9 0.317918 0.158959 0.987285i \(-0.449186\pi\)
0.158959 + 0.987285i \(0.449186\pi\)
\(572\) 0 0
\(573\) −4.80890e8 −0.106784
\(574\) 0 0
\(575\) 1.11258e9 0.244059
\(576\) 0 0
\(577\) −5.23894e9 −1.13535 −0.567673 0.823254i \(-0.692156\pi\)
−0.567673 + 0.823254i \(0.692156\pi\)
\(578\) 0 0
\(579\) −2.08187e9 −0.445738
\(580\) 0 0
\(581\) 5.27564e8 0.111599
\(582\) 0 0
\(583\) −3.01928e9 −0.631049
\(584\) 0 0
\(585\) −2.27889e9 −0.470629
\(586\) 0 0
\(587\) −9.01754e8 −0.184016 −0.0920078 0.995758i \(-0.529328\pi\)
−0.0920078 + 0.995758i \(0.529328\pi\)
\(588\) 0 0
\(589\) 3.53532e8 0.0712895
\(590\) 0 0
\(591\) −3.80194e9 −0.757616
\(592\) 0 0
\(593\) 1.90592e9 0.375329 0.187665 0.982233i \(-0.439908\pi\)
0.187665 + 0.982233i \(0.439908\pi\)
\(594\) 0 0
\(595\) −1.74652e9 −0.339911
\(596\) 0 0
\(597\) −5.86676e8 −0.112847
\(598\) 0 0
\(599\) −1.30391e9 −0.247887 −0.123944 0.992289i \(-0.539554\pi\)
−0.123944 + 0.992289i \(0.539554\pi\)
\(600\) 0 0
\(601\) −2.06025e9 −0.387131 −0.193566 0.981087i \(-0.562005\pi\)
−0.193566 + 0.981087i \(0.562005\pi\)
\(602\) 0 0
\(603\) 3.58428e9 0.665719
\(604\) 0 0
\(605\) −3.03482e9 −0.557172
\(606\) 0 0
\(607\) −3.47284e9 −0.630267 −0.315134 0.949047i \(-0.602049\pi\)
−0.315134 + 0.949047i \(0.602049\pi\)
\(608\) 0 0
\(609\) 2.14893e9 0.385533
\(610\) 0 0
\(611\) 3.88769e9 0.689520
\(612\) 0 0
\(613\) −6.62090e9 −1.16093 −0.580464 0.814286i \(-0.697129\pi\)
−0.580464 + 0.814286i \(0.697129\pi\)
\(614\) 0 0
\(615\) −2.14327e9 −0.371547
\(616\) 0 0
\(617\) −7.31262e9 −1.25336 −0.626679 0.779278i \(-0.715586\pi\)
−0.626679 + 0.779278i \(0.715586\pi\)
\(618\) 0 0
\(619\) 1.16269e10 1.97037 0.985185 0.171494i \(-0.0548596\pi\)
0.985185 + 0.171494i \(0.0548596\pi\)
\(620\) 0 0
\(621\) 1.43729e9 0.240838
\(622\) 0 0
\(623\) −1.80610e9 −0.299250
\(624\) 0 0
\(625\) −7.06941e9 −1.15825
\(626\) 0 0
\(627\) −7.79790e8 −0.126340
\(628\) 0 0
\(629\) −2.40312e8 −0.0385033
\(630\) 0 0
\(631\) 1.21058e10 1.91818 0.959091 0.283097i \(-0.0913618\pi\)
0.959091 + 0.283097i \(0.0913618\pi\)
\(632\) 0 0
\(633\) 3.22665e8 0.0505637
\(634\) 0 0
\(635\) −1.37672e9 −0.213373
\(636\) 0 0
\(637\) 4.76347e8 0.0730189
\(638\) 0 0
\(639\) −1.03510e9 −0.156938
\(640\) 0 0
\(641\) −1.02354e10 −1.53498 −0.767489 0.641062i \(-0.778494\pi\)
−0.767489 + 0.641062i \(0.778494\pi\)
\(642\) 0 0
\(643\) −5.79264e9 −0.859287 −0.429643 0.902999i \(-0.641361\pi\)
−0.429643 + 0.902999i \(0.641361\pi\)
\(644\) 0 0
\(645\) −4.66799e9 −0.684969
\(646\) 0 0
\(647\) −5.49161e9 −0.797140 −0.398570 0.917138i \(-0.630493\pi\)
−0.398570 + 0.917138i \(0.630493\pi\)
\(648\) 0 0
\(649\) 3.03065e9 0.435191
\(650\) 0 0
\(651\) −6.30664e8 −0.0895910
\(652\) 0 0
\(653\) 1.23545e10 1.73632 0.868159 0.496286i \(-0.165303\pi\)
0.868159 + 0.496286i \(0.165303\pi\)
\(654\) 0 0
\(655\) −1.75908e10 −2.44591
\(656\) 0 0
\(657\) −7.57480e8 −0.104206
\(658\) 0 0
\(659\) 1.28561e9 0.174989 0.0874943 0.996165i \(-0.472114\pi\)
0.0874943 + 0.996165i \(0.472114\pi\)
\(660\) 0 0
\(661\) 3.05232e9 0.411078 0.205539 0.978649i \(-0.434105\pi\)
0.205539 + 0.978649i \(0.434105\pi\)
\(662\) 0 0
\(663\) 3.34123e8 0.0445255
\(664\) 0 0
\(665\) 4.14845e9 0.547029
\(666\) 0 0
\(667\) −1.89607e9 −0.247407
\(668\) 0 0
\(669\) −6.63118e8 −0.0856248
\(670\) 0 0
\(671\) 5.71274e9 0.729988
\(672\) 0 0
\(673\) 1.07819e10 1.36346 0.681730 0.731604i \(-0.261228\pi\)
0.681730 + 0.731604i \(0.261228\pi\)
\(674\) 0 0
\(675\) 5.08293e9 0.636137
\(676\) 0 0
\(677\) 1.22831e10 1.52142 0.760709 0.649093i \(-0.224851\pi\)
0.760709 + 0.649093i \(0.224851\pi\)
\(678\) 0 0
\(679\) −6.51147e9 −0.798242
\(680\) 0 0
\(681\) 6.03572e9 0.732342
\(682\) 0 0
\(683\) −7.76468e8 −0.0932505 −0.0466252 0.998912i \(-0.514847\pi\)
−0.0466252 + 0.998912i \(0.514847\pi\)
\(684\) 0 0
\(685\) 6.31173e9 0.750294
\(686\) 0 0
\(687\) 5.45272e9 0.641601
\(688\) 0 0
\(689\) −3.07287e9 −0.357912
\(690\) 0 0
\(691\) 1.01602e10 1.17147 0.585733 0.810504i \(-0.300807\pi\)
0.585733 + 0.810504i \(0.300807\pi\)
\(692\) 0 0
\(693\) −5.85230e9 −0.667975
\(694\) 0 0
\(695\) −4.39998e9 −0.497169
\(696\) 0 0
\(697\) −1.32202e9 −0.147885
\(698\) 0 0
\(699\) 4.39532e9 0.486767
\(700\) 0 0
\(701\) −1.47467e10 −1.61689 −0.808446 0.588571i \(-0.799691\pi\)
−0.808446 + 0.588571i \(0.799691\pi\)
\(702\) 0 0
\(703\) 5.70804e8 0.0619646
\(704\) 0 0
\(705\) −8.70144e9 −0.935253
\(706\) 0 0
\(707\) 1.97338e9 0.210011
\(708\) 0 0
\(709\) 1.12511e10 1.18559 0.592795 0.805353i \(-0.298024\pi\)
0.592795 + 0.805353i \(0.298024\pi\)
\(710\) 0 0
\(711\) −2.78405e9 −0.290492
\(712\) 0 0
\(713\) 5.56453e8 0.0574930
\(714\) 0 0
\(715\) 4.35469e9 0.445539
\(716\) 0 0
\(717\) −6.76583e9 −0.685495
\(718\) 0 0
\(719\) −1.05695e10 −1.06048 −0.530242 0.847846i \(-0.677899\pi\)
−0.530242 + 0.847846i \(0.677899\pi\)
\(720\) 0 0
\(721\) 8.28332e9 0.823059
\(722\) 0 0
\(723\) −7.29718e9 −0.718077
\(724\) 0 0
\(725\) −6.70535e9 −0.653490
\(726\) 0 0
\(727\) −1.28794e10 −1.24316 −0.621578 0.783352i \(-0.713508\pi\)
−0.621578 + 0.783352i \(0.713508\pi\)
\(728\) 0 0
\(729\) −2.62002e8 −0.0250471
\(730\) 0 0
\(731\) −2.87933e9 −0.272635
\(732\) 0 0
\(733\) 4.04814e9 0.379657 0.189828 0.981817i \(-0.439207\pi\)
0.189828 + 0.981817i \(0.439207\pi\)
\(734\) 0 0
\(735\) −1.06616e9 −0.0990416
\(736\) 0 0
\(737\) −6.84912e9 −0.630229
\(738\) 0 0
\(739\) −2.07897e10 −1.89493 −0.947465 0.319860i \(-0.896364\pi\)
−0.947465 + 0.319860i \(0.896364\pi\)
\(740\) 0 0
\(741\) −7.93630e8 −0.0716563
\(742\) 0 0
\(743\) 1.77336e9 0.158612 0.0793059 0.996850i \(-0.474730\pi\)
0.0793059 + 0.996850i \(0.474730\pi\)
\(744\) 0 0
\(745\) 2.87086e10 2.54370
\(746\) 0 0
\(747\) −9.50358e8 −0.0834190
\(748\) 0 0
\(749\) −1.98858e10 −1.72924
\(750\) 0 0
\(751\) −1.57353e9 −0.135561 −0.0677805 0.997700i \(-0.521592\pi\)
−0.0677805 + 0.997700i \(0.521592\pi\)
\(752\) 0 0
\(753\) −1.41562e9 −0.120827
\(754\) 0 0
\(755\) 8.22363e9 0.695423
\(756\) 0 0
\(757\) 3.09511e9 0.259322 0.129661 0.991558i \(-0.458611\pi\)
0.129661 + 0.991558i \(0.458611\pi\)
\(758\) 0 0
\(759\) −1.22738e9 −0.101890
\(760\) 0 0
\(761\) 8.84425e9 0.727470 0.363735 0.931503i \(-0.381501\pi\)
0.363735 + 0.931503i \(0.381501\pi\)
\(762\) 0 0
\(763\) −2.45124e10 −1.99779
\(764\) 0 0
\(765\) 3.14620e9 0.254080
\(766\) 0 0
\(767\) 3.08444e9 0.246827
\(768\) 0 0
\(769\) −1.74163e10 −1.38106 −0.690532 0.723302i \(-0.742624\pi\)
−0.690532 + 0.723302i \(0.742624\pi\)
\(770\) 0 0
\(771\) 3.73156e9 0.293225
\(772\) 0 0
\(773\) 9.23354e9 0.719018 0.359509 0.933142i \(-0.382944\pi\)
0.359509 + 0.933142i \(0.382944\pi\)
\(774\) 0 0
\(775\) 1.96787e9 0.151859
\(776\) 0 0
\(777\) −1.01825e9 −0.0778723
\(778\) 0 0
\(779\) 3.14015e9 0.237996
\(780\) 0 0
\(781\) 1.97795e9 0.148572
\(782\) 0 0
\(783\) −8.66234e9 −0.644865
\(784\) 0 0
\(785\) 7.20098e8 0.0531309
\(786\) 0 0
\(787\) −1.14265e10 −0.835609 −0.417805 0.908537i \(-0.637200\pi\)
−0.417805 + 0.908537i \(0.637200\pi\)
\(788\) 0 0
\(789\) −6.81356e9 −0.493861
\(790\) 0 0
\(791\) 1.36574e10 0.981186
\(792\) 0 0
\(793\) 5.81413e9 0.414027
\(794\) 0 0
\(795\) 6.87770e9 0.485466
\(796\) 0 0
\(797\) −2.63234e10 −1.84178 −0.920891 0.389820i \(-0.872537\pi\)
−0.920891 + 0.389820i \(0.872537\pi\)
\(798\) 0 0
\(799\) −5.36726e9 −0.372254
\(800\) 0 0
\(801\) 3.25352e9 0.223687
\(802\) 0 0
\(803\) 1.44745e9 0.0986505
\(804\) 0 0
\(805\) 6.52959e9 0.441164
\(806\) 0 0
\(807\) −7.29990e9 −0.488945
\(808\) 0 0
\(809\) −7.47328e9 −0.496240 −0.248120 0.968729i \(-0.579813\pi\)
−0.248120 + 0.968729i \(0.579813\pi\)
\(810\) 0 0
\(811\) 1.32084e10 0.869513 0.434756 0.900548i \(-0.356834\pi\)
0.434756 + 0.900548i \(0.356834\pi\)
\(812\) 0 0
\(813\) −1.33394e10 −0.870604
\(814\) 0 0
\(815\) 8.30558e9 0.537426
\(816\) 0 0
\(817\) 6.83917e9 0.438759
\(818\) 0 0
\(819\) −5.95617e9 −0.378855
\(820\) 0 0
\(821\) −2.22151e10 −1.40103 −0.700516 0.713637i \(-0.747047\pi\)
−0.700516 + 0.713637i \(0.747047\pi\)
\(822\) 0 0
\(823\) 5.39596e9 0.337419 0.168710 0.985666i \(-0.446040\pi\)
0.168710 + 0.985666i \(0.446040\pi\)
\(824\) 0 0
\(825\) −4.34056e9 −0.269127
\(826\) 0 0
\(827\) 1.31682e10 0.809575 0.404787 0.914411i \(-0.367346\pi\)
0.404787 + 0.914411i \(0.367346\pi\)
\(828\) 0 0
\(829\) −1.33819e10 −0.815790 −0.407895 0.913029i \(-0.633737\pi\)
−0.407895 + 0.913029i \(0.633737\pi\)
\(830\) 0 0
\(831\) −2.27925e9 −0.137781
\(832\) 0 0
\(833\) −6.57636e8 −0.0394210
\(834\) 0 0
\(835\) −1.66327e10 −0.988691
\(836\) 0 0
\(837\) 2.54220e9 0.149855
\(838\) 0 0
\(839\) 2.87088e9 0.167822 0.0839108 0.996473i \(-0.473259\pi\)
0.0839108 + 0.996473i \(0.473259\pi\)
\(840\) 0 0
\(841\) −5.82260e9 −0.337544
\(842\) 0 0
\(843\) 1.21533e9 0.0698713
\(844\) 0 0
\(845\) −1.91177e10 −1.09002
\(846\) 0 0
\(847\) −7.93188e9 −0.448523
\(848\) 0 0
\(849\) −1.41575e10 −0.793981
\(850\) 0 0
\(851\) 8.98436e8 0.0499728
\(852\) 0 0
\(853\) 2.37600e9 0.131077 0.0655383 0.997850i \(-0.479124\pi\)
0.0655383 + 0.997850i \(0.479124\pi\)
\(854\) 0 0
\(855\) −7.47305e9 −0.408899
\(856\) 0 0
\(857\) −3.42331e10 −1.85786 −0.928931 0.370253i \(-0.879271\pi\)
−0.928931 + 0.370253i \(0.879271\pi\)
\(858\) 0 0
\(859\) 3.38131e9 0.182016 0.0910078 0.995850i \(-0.470991\pi\)
0.0910078 + 0.995850i \(0.470991\pi\)
\(860\) 0 0
\(861\) −5.60170e9 −0.299095
\(862\) 0 0
\(863\) 1.21792e10 0.645030 0.322515 0.946564i \(-0.395472\pi\)
0.322515 + 0.946564i \(0.395472\pi\)
\(864\) 0 0
\(865\) 2.80615e10 1.47419
\(866\) 0 0
\(867\) 7.94821e9 0.414193
\(868\) 0 0
\(869\) 5.31998e9 0.275005
\(870\) 0 0
\(871\) −6.97068e9 −0.357447
\(872\) 0 0
\(873\) 1.17298e10 0.596679
\(874\) 0 0
\(875\) −5.66872e9 −0.286060
\(876\) 0 0
\(877\) 1.71298e10 0.857539 0.428770 0.903414i \(-0.358947\pi\)
0.428770 + 0.903414i \(0.358947\pi\)
\(878\) 0 0
\(879\) 1.29758e10 0.644426
\(880\) 0 0
\(881\) −1.99520e10 −0.983039 −0.491520 0.870867i \(-0.663558\pi\)
−0.491520 + 0.870867i \(0.663558\pi\)
\(882\) 0 0
\(883\) 3.12819e10 1.52908 0.764542 0.644574i \(-0.222965\pi\)
0.764542 + 0.644574i \(0.222965\pi\)
\(884\) 0 0
\(885\) −6.90361e9 −0.334792
\(886\) 0 0
\(887\) −1.92928e10 −0.928244 −0.464122 0.885771i \(-0.653630\pi\)
−0.464122 + 0.885771i \(0.653630\pi\)
\(888\) 0 0
\(889\) −3.59824e9 −0.171765
\(890\) 0 0
\(891\) 7.44087e9 0.352413
\(892\) 0 0
\(893\) 1.27487e10 0.599080
\(894\) 0 0
\(895\) 4.50897e10 2.10231
\(896\) 0 0
\(897\) −1.24916e9 −0.0577889
\(898\) 0 0
\(899\) −3.35365e9 −0.153943
\(900\) 0 0
\(901\) 4.24234e9 0.193227
\(902\) 0 0
\(903\) −1.22004e10 −0.551399
\(904\) 0 0
\(905\) 5.60715e10 2.51462
\(906\) 0 0
\(907\) 2.33637e10 1.03972 0.519860 0.854251i \(-0.325984\pi\)
0.519860 + 0.854251i \(0.325984\pi\)
\(908\) 0 0
\(909\) −3.55485e9 −0.156981
\(910\) 0 0
\(911\) 1.56760e10 0.686943 0.343471 0.939163i \(-0.388397\pi\)
0.343471 + 0.939163i \(0.388397\pi\)
\(912\) 0 0
\(913\) 1.81602e9 0.0789718
\(914\) 0 0
\(915\) −1.30132e10 −0.561579
\(916\) 0 0
\(917\) −4.59756e10 −1.96895
\(918\) 0 0
\(919\) 2.15624e10 0.916418 0.458209 0.888845i \(-0.348491\pi\)
0.458209 + 0.888845i \(0.348491\pi\)
\(920\) 0 0
\(921\) 6.55141e9 0.276329
\(922\) 0 0
\(923\) 2.01305e9 0.0842653
\(924\) 0 0
\(925\) 3.17728e9 0.131996
\(926\) 0 0
\(927\) −1.49216e10 −0.615229
\(928\) 0 0
\(929\) 8.87728e9 0.363266 0.181633 0.983366i \(-0.441862\pi\)
0.181633 + 0.983366i \(0.441862\pi\)
\(930\) 0 0
\(931\) 1.56206e9 0.0634415
\(932\) 0 0
\(933\) 1.85570e10 0.748033
\(934\) 0 0
\(935\) −6.01200e9 −0.240535
\(936\) 0 0
\(937\) −5.24977e9 −0.208474 −0.104237 0.994552i \(-0.533240\pi\)
−0.104237 + 0.994552i \(0.533240\pi\)
\(938\) 0 0
\(939\) −8.54356e9 −0.336751
\(940\) 0 0
\(941\) 1.88471e10 0.737363 0.368682 0.929556i \(-0.379809\pi\)
0.368682 + 0.929556i \(0.379809\pi\)
\(942\) 0 0
\(943\) 4.94254e9 0.191937
\(944\) 0 0
\(945\) 2.98310e10 1.14989
\(946\) 0 0
\(947\) −3.54978e9 −0.135824 −0.0679119 0.997691i \(-0.521634\pi\)
−0.0679119 + 0.997691i \(0.521634\pi\)
\(948\) 0 0
\(949\) 1.47314e9 0.0559516
\(950\) 0 0
\(951\) −5.89173e9 −0.222132
\(952\) 0 0
\(953\) −5.00673e9 −0.187383 −0.0936913 0.995601i \(-0.529867\pi\)
−0.0936913 + 0.995601i \(0.529867\pi\)
\(954\) 0 0
\(955\) 8.80640e9 0.327180
\(956\) 0 0
\(957\) 7.39719e9 0.272819
\(958\) 0 0
\(959\) 1.64965e10 0.603985
\(960\) 0 0
\(961\) −2.65284e10 −0.964226
\(962\) 0 0
\(963\) 3.58224e10 1.29259
\(964\) 0 0
\(965\) 3.81248e10 1.36572
\(966\) 0 0
\(967\) −1.13815e10 −0.404770 −0.202385 0.979306i \(-0.564869\pi\)
−0.202385 + 0.979306i \(0.564869\pi\)
\(968\) 0 0
\(969\) 1.09567e9 0.0386854
\(970\) 0 0
\(971\) −2.87865e10 −1.00907 −0.504536 0.863391i \(-0.668336\pi\)
−0.504536 + 0.863391i \(0.668336\pi\)
\(972\) 0 0
\(973\) −1.14999e10 −0.400220
\(974\) 0 0
\(975\) −4.41760e9 −0.152641
\(976\) 0 0
\(977\) −7.39126e9 −0.253564 −0.126782 0.991931i \(-0.540465\pi\)
−0.126782 + 0.991931i \(0.540465\pi\)
\(978\) 0 0
\(979\) −6.21708e9 −0.211762
\(980\) 0 0
\(981\) 4.41568e10 1.49333
\(982\) 0 0
\(983\) −2.07272e10 −0.695991 −0.347995 0.937496i \(-0.613138\pi\)
−0.347995 + 0.937496i \(0.613138\pi\)
\(984\) 0 0
\(985\) 6.96239e10 2.32130
\(986\) 0 0
\(987\) −2.27423e10 −0.752877
\(988\) 0 0
\(989\) 1.07647e10 0.353848
\(990\) 0 0
\(991\) 3.71476e10 1.21248 0.606238 0.795283i \(-0.292678\pi\)
0.606238 + 0.795283i \(0.292678\pi\)
\(992\) 0 0
\(993\) −2.93479e8 −0.00951162
\(994\) 0 0
\(995\) 1.07436e10 0.345757
\(996\) 0 0
\(997\) −3.68049e10 −1.17618 −0.588088 0.808797i \(-0.700119\pi\)
−0.588088 + 0.808797i \(0.700119\pi\)
\(998\) 0 0
\(999\) 4.10458e9 0.130254
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 592.8.a.b.1.2 4
4.3 odd 2 74.8.a.a.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
74.8.a.a.1.3 4 4.3 odd 2
592.8.a.b.1.2 4 1.1 even 1 trivial