Properties

Label 592.8.a
Level $592$
Weight $8$
Character orbit 592.a
Rep. character $\chi_{592}(1,\cdot)$
Character field $\Q$
Dimension $126$
Newform subspaces $12$
Sturm bound $608$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 592 = 2^{4} \cdot 37 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 592.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 12 \)
Sturm bound: \(608\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(\Gamma_0(592))\).

Total New Old
Modular forms 538 126 412
Cusp forms 526 126 400
Eisenstein series 12 0 12

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(37\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(136\)\(32\)\(104\)\(133\)\(32\)\(101\)\(3\)\(0\)\(3\)
\(+\)\(-\)\(-\)\(134\)\(31\)\(103\)\(131\)\(31\)\(100\)\(3\)\(0\)\(3\)
\(-\)\(+\)\(-\)\(133\)\(31\)\(102\)\(130\)\(31\)\(99\)\(3\)\(0\)\(3\)
\(-\)\(-\)\(+\)\(135\)\(32\)\(103\)\(132\)\(32\)\(100\)\(3\)\(0\)\(3\)
Plus space\(+\)\(271\)\(64\)\(207\)\(265\)\(64\)\(201\)\(6\)\(0\)\(6\)
Minus space\(-\)\(267\)\(62\)\(205\)\(261\)\(62\)\(199\)\(6\)\(0\)\(6\)

Trace form

\( 126 q + 89618 q^{9} + 13500 q^{15} + 23972 q^{17} - 101738 q^{19} + 2344 q^{21} + 232278 q^{23} + 1989238 q^{25} - 238044 q^{27} - 128024 q^{29} + 446770 q^{31} - 176184 q^{33} - 1248324 q^{35} + 1597476 q^{39}+ \cdots - 37897608 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(\Gamma_0(592))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 37
592.8.a.a 592.a 1.a $4$ $184.932$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 74.8.a.b \(0\) \(41\) \(-363\) \(774\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(10-\beta _{2})q^{3}+(-89-6\beta _{1}-4\beta _{2}+\cdots)q^{5}+\cdots\)
592.8.a.b 592.a 1.a $4$ $184.932$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 74.8.a.a \(0\) \(53\) \(111\) \(1666\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(14-2\beta _{1}-\beta _{3})q^{3}+(2^{5}-6\beta _{1}-\beta _{2}+\cdots)q^{5}+\cdots\)
592.8.a.c 592.a 1.a $6$ $184.932$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 74.8.a.c \(0\) \(-28\) \(-14\) \(980\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(-5+\beta _{1})q^{3}+(-4+2\beta _{1}-2\beta _{2}+\cdots)q^{5}+\cdots\)
592.8.a.d 592.a 1.a $7$ $184.932$ \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None 74.8.a.d \(0\) \(-40\) \(512\) \(-1284\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(-6+\beta _{1})q^{3}+(74-2\beta _{1}+\beta _{3})q^{5}+\cdots\)
592.8.a.e 592.a 1.a $10$ $184.932$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None 148.8.a.a \(0\) \(13\) \(-374\) \(1163\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(1+\beta _{1})q^{3}+(-37-\beta _{1}-\beta _{3})q^{5}+\cdots\)
592.8.a.f 592.a 1.a $10$ $184.932$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None 37.8.a.a \(0\) \(95\) \(-624\) \(501\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(10+\beta _{3})q^{3}+(-62+\beta _{3}-\beta _{4}-\beta _{5}+\cdots)q^{5}+\cdots\)
592.8.a.g 592.a 1.a $11$ $184.932$ \(\mathbb{Q}[x]/(x^{11} - \cdots)\) None 37.8.a.b \(0\) \(-121\) \(376\) \(-2243\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(-11-\beta _{2})q^{3}+(34-\beta _{1}+\beta _{2}-\beta _{3}+\cdots)q^{5}+\cdots\)
592.8.a.h 592.a 1.a $11$ $184.932$ \(\mathbb{Q}[x]/(x^{11} - \cdots)\) None 148.8.a.b \(0\) \(13\) \(626\) \(-209\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(1+\beta _{1})q^{3}+(57+\beta _{2})q^{5}+(-19+\cdots)q^{7}+\cdots\)
592.8.a.i 592.a 1.a $14$ $184.932$ \(\mathbb{Q}[x]/(x^{14} - \cdots)\) None 296.8.a.a \(0\) \(98\) \(-513\) \(-783\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(7-\beta _{1})q^{3}+(-37-\beta _{4})q^{5}+(-56+\cdots)q^{7}+\cdots\)
592.8.a.j 592.a 1.a $15$ $184.932$ \(\mathbb{Q}[x]/(x^{15} - \cdots)\) None 296.8.a.b \(0\) \(-30\) \(13\) \(1481\) $+$ $+$ $\mathrm{SU}(2)$ \(q+(-2-\beta _{1})q^{3}+(1+\beta _{4})q^{5}+(99+2\beta _{1}+\cdots)q^{7}+\cdots\)
592.8.a.k 592.a 1.a $17$ $184.932$ \(\mathbb{Q}[x]/(x^{17} - \cdots)\) None 296.8.a.d \(0\) \(-111\) \(-112\) \(-1949\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(-7+\beta _{1})q^{3}+(-7-\beta _{4})q^{5}+(-115+\cdots)q^{7}+\cdots\)
592.8.a.l 592.a 1.a $17$ $184.932$ \(\mathbb{Q}[x]/(x^{17} - \cdots)\) None 296.8.a.c \(0\) \(17\) \(362\) \(-97\) $+$ $+$ $\mathrm{SU}(2)$ \(q+(1+\beta _{1})q^{3}+(21-\beta _{3})q^{5}+(-6+3\beta _{1}+\cdots)q^{7}+\cdots\)

Decomposition of \(S_{8}^{\mathrm{old}}(\Gamma_0(592))\) into lower level spaces

\( S_{8}^{\mathrm{old}}(\Gamma_0(592)) \simeq \) \(S_{8}^{\mathrm{new}}(\Gamma_0(2))\)\(^{\oplus 8}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(16))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(37))\)\(^{\oplus 5}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(74))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(148))\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(296))\)\(^{\oplus 2}\)