Defining parameters
| Level: | \( N \) | \(=\) | \( 592 = 2^{4} \cdot 37 \) |
| Weight: | \( k \) | \(=\) | \( 8 \) |
| Character orbit: | \([\chi]\) | \(=\) | 592.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 12 \) | ||
| Sturm bound: | \(608\) | ||
| Trace bound: | \(3\) | ||
| Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{8}(\Gamma_0(592))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 538 | 126 | 412 |
| Cusp forms | 526 | 126 | 400 |
| Eisenstein series | 12 | 0 | 12 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | \(37\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||||
| \(+\) | \(+\) | \(+\) | \(136\) | \(32\) | \(104\) | \(133\) | \(32\) | \(101\) | \(3\) | \(0\) | \(3\) | |||
| \(+\) | \(-\) | \(-\) | \(134\) | \(31\) | \(103\) | \(131\) | \(31\) | \(100\) | \(3\) | \(0\) | \(3\) | |||
| \(-\) | \(+\) | \(-\) | \(133\) | \(31\) | \(102\) | \(130\) | \(31\) | \(99\) | \(3\) | \(0\) | \(3\) | |||
| \(-\) | \(-\) | \(+\) | \(135\) | \(32\) | \(103\) | \(132\) | \(32\) | \(100\) | \(3\) | \(0\) | \(3\) | |||
| Plus space | \(+\) | \(271\) | \(64\) | \(207\) | \(265\) | \(64\) | \(201\) | \(6\) | \(0\) | \(6\) | ||||
| Minus space | \(-\) | \(267\) | \(62\) | \(205\) | \(261\) | \(62\) | \(199\) | \(6\) | \(0\) | \(6\) | ||||
Trace form
Decomposition of \(S_{8}^{\mathrm{new}}(\Gamma_0(592))\) into newform subspaces
Decomposition of \(S_{8}^{\mathrm{old}}(\Gamma_0(592))\) into lower level spaces
\( S_{8}^{\mathrm{old}}(\Gamma_0(592)) \simeq \) \(S_{8}^{\mathrm{new}}(\Gamma_0(2))\)\(^{\oplus 8}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(16))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(37))\)\(^{\oplus 5}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(74))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(148))\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(296))\)\(^{\oplus 2}\)