# Properties

 Label 592.2.a.g Level $592$ Weight $2$ Character orbit 592.a Self dual yes Analytic conductor $4.727$ Analytic rank $0$ Dimension $2$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [592,2,Mod(1,592)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(592, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("592.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$592 = 2^{4} \cdot 37$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 592.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$4.72714379966$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{5})$$ comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{2} - x - 1$$ x^2 - x - 1 Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 74) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

Coefficients of the $$q$$-expansion are expressed in terms of $$\beta = \frac{1}{2}(1 + \sqrt{5})$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + \beta q^{3} + (3 \beta - 1) q^{5} + 2 \beta q^{7} + (\beta - 2) q^{9}+O(q^{10})$$ q + b * q^3 + (3*b - 1) * q^5 + 2*b * q^7 + (b - 2) * q^9 $$q + \beta q^{3} + (3 \beta - 1) q^{5} + 2 \beta q^{7} + (\beta - 2) q^{9} + ( - \beta + 3) q^{11} + ( - 3 \beta + 2) q^{13} + (2 \beta + 3) q^{15} + ( - 4 \beta + 2) q^{17} + ( - 4 \beta + 2) q^{19} + (2 \beta + 2) q^{21} + ( - 3 \beta + 2) q^{23} + (3 \beta + 5) q^{25} + ( - 4 \beta + 1) q^{27} + ( - 7 \beta + 2) q^{29} + (\beta - 9) q^{31} + (2 \beta - 1) q^{33} + (4 \beta + 6) q^{35} - q^{37} + ( - \beta - 3) q^{39} + (\beta + 8) q^{41} + (2 \beta + 2) q^{43} + ( - 4 \beta + 5) q^{45} + (2 \beta - 2) q^{47} + (4 \beta - 3) q^{49} + ( - 2 \beta - 4) q^{51} + (4 \beta - 6) q^{53} + (7 \beta - 6) q^{55} + ( - 2 \beta - 4) q^{57} + ( - 2 \beta + 8) q^{59} + (\beta + 9) q^{61} + ( - 2 \beta + 2) q^{63} - 11 q^{65} + ( - 5 \beta + 7) q^{67} + ( - \beta - 3) q^{69} + ( - 8 \beta + 10) q^{71} + (5 \beta - 1) q^{73} + (8 \beta + 3) q^{75} + (4 \beta - 2) q^{77} + (9 \beta - 6) q^{79} + ( - 6 \beta + 2) q^{81} + (4 \beta + 8) q^{83} + ( - 2 \beta - 14) q^{85} + ( - 5 \beta - 7) q^{87} + (4 \beta - 8) q^{89} + ( - 2 \beta - 6) q^{91} + ( - 8 \beta + 1) q^{93} + ( - 2 \beta - 14) q^{95} + ( - 4 \beta + 6) q^{97} + (4 \beta - 7) q^{99}+O(q^{100})$$ q + b * q^3 + (3*b - 1) * q^5 + 2*b * q^7 + (b - 2) * q^9 + (-b + 3) * q^11 + (-3*b + 2) * q^13 + (2*b + 3) * q^15 + (-4*b + 2) * q^17 + (-4*b + 2) * q^19 + (2*b + 2) * q^21 + (-3*b + 2) * q^23 + (3*b + 5) * q^25 + (-4*b + 1) * q^27 + (-7*b + 2) * q^29 + (b - 9) * q^31 + (2*b - 1) * q^33 + (4*b + 6) * q^35 - q^37 + (-b - 3) * q^39 + (b + 8) * q^41 + (2*b + 2) * q^43 + (-4*b + 5) * q^45 + (2*b - 2) * q^47 + (4*b - 3) * q^49 + (-2*b - 4) * q^51 + (4*b - 6) * q^53 + (7*b - 6) * q^55 + (-2*b - 4) * q^57 + (-2*b + 8) * q^59 + (b + 9) * q^61 + (-2*b + 2) * q^63 - 11 * q^65 + (-5*b + 7) * q^67 + (-b - 3) * q^69 + (-8*b + 10) * q^71 + (5*b - 1) * q^73 + (8*b + 3) * q^75 + (4*b - 2) * q^77 + (9*b - 6) * q^79 + (-6*b + 2) * q^81 + (4*b + 8) * q^83 + (-2*b - 14) * q^85 + (-5*b - 7) * q^87 + (4*b - 8) * q^89 + (-2*b - 6) * q^91 + (-8*b + 1) * q^93 + (-2*b - 14) * q^95 + (-4*b + 6) * q^97 + (4*b - 7) * q^99 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q + q^{3} + q^{5} + 2 q^{7} - 3 q^{9}+O(q^{10})$$ 2 * q + q^3 + q^5 + 2 * q^7 - 3 * q^9 $$2 q + q^{3} + q^{5} + 2 q^{7} - 3 q^{9} + 5 q^{11} + q^{13} + 8 q^{15} + 6 q^{21} + q^{23} + 13 q^{25} - 2 q^{27} - 3 q^{29} - 17 q^{31} + 16 q^{35} - 2 q^{37} - 7 q^{39} + 17 q^{41} + 6 q^{43} + 6 q^{45} - 2 q^{47} - 2 q^{49} - 10 q^{51} - 8 q^{53} - 5 q^{55} - 10 q^{57} + 14 q^{59} + 19 q^{61} + 2 q^{63} - 22 q^{65} + 9 q^{67} - 7 q^{69} + 12 q^{71} + 3 q^{73} + 14 q^{75} - 3 q^{79} - 2 q^{81} + 20 q^{83} - 30 q^{85} - 19 q^{87} - 12 q^{89} - 14 q^{91} - 6 q^{93} - 30 q^{95} + 8 q^{97} - 10 q^{99}+O(q^{100})$$ 2 * q + q^3 + q^5 + 2 * q^7 - 3 * q^9 + 5 * q^11 + q^13 + 8 * q^15 + 6 * q^21 + q^23 + 13 * q^25 - 2 * q^27 - 3 * q^29 - 17 * q^31 + 16 * q^35 - 2 * q^37 - 7 * q^39 + 17 * q^41 + 6 * q^43 + 6 * q^45 - 2 * q^47 - 2 * q^49 - 10 * q^51 - 8 * q^53 - 5 * q^55 - 10 * q^57 + 14 * q^59 + 19 * q^61 + 2 * q^63 - 22 * q^65 + 9 * q^67 - 7 * q^69 + 12 * q^71 + 3 * q^73 + 14 * q^75 - 3 * q^79 - 2 * q^81 + 20 * q^83 - 30 * q^85 - 19 * q^87 - 12 * q^89 - 14 * q^91 - 6 * q^93 - 30 * q^95 + 8 * q^97 - 10 * q^99

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 −0.618034 1.61803
0 −0.618034 0 −2.85410 0 −1.23607 0 −2.61803 0
1.2 0 1.61803 0 3.85410 0 3.23607 0 −0.381966 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$37$$ $$+1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 592.2.a.g 2
3.b odd 2 1 5328.2.a.bc 2
4.b odd 2 1 74.2.a.b 2
8.b even 2 1 2368.2.a.u 2
8.d odd 2 1 2368.2.a.y 2
12.b even 2 1 666.2.a.i 2
20.d odd 2 1 1850.2.a.t 2
20.e even 4 2 1850.2.b.j 4
28.d even 2 1 3626.2.a.s 2
44.c even 2 1 8954.2.a.j 2
148.b odd 2 1 2738.2.a.g 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
74.2.a.b 2 4.b odd 2 1
592.2.a.g 2 1.a even 1 1 trivial
666.2.a.i 2 12.b even 2 1
1850.2.a.t 2 20.d odd 2 1
1850.2.b.j 4 20.e even 4 2
2368.2.a.u 2 8.b even 2 1
2368.2.a.y 2 8.d odd 2 1
2738.2.a.g 2 148.b odd 2 1
3626.2.a.s 2 28.d even 2 1
5328.2.a.bc 2 3.b odd 2 1
8954.2.a.j 2 44.c even 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(592))$$:

 $$T_{3}^{2} - T_{3} - 1$$ T3^2 - T3 - 1 $$T_{5}^{2} - T_{5} - 11$$ T5^2 - T5 - 11

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2}$$
$3$ $$T^{2} - T - 1$$
$5$ $$T^{2} - T - 11$$
$7$ $$T^{2} - 2T - 4$$
$11$ $$T^{2} - 5T + 5$$
$13$ $$T^{2} - T - 11$$
$17$ $$T^{2} - 20$$
$19$ $$T^{2} - 20$$
$23$ $$T^{2} - T - 11$$
$29$ $$T^{2} + 3T - 59$$
$31$ $$T^{2} + 17T + 71$$
$37$ $$(T + 1)^{2}$$
$41$ $$T^{2} - 17T + 71$$
$43$ $$T^{2} - 6T + 4$$
$47$ $$T^{2} + 2T - 4$$
$53$ $$T^{2} + 8T - 4$$
$59$ $$T^{2} - 14T + 44$$
$61$ $$T^{2} - 19T + 89$$
$67$ $$T^{2} - 9T - 11$$
$71$ $$T^{2} - 12T - 44$$
$73$ $$T^{2} - 3T - 29$$
$79$ $$T^{2} + 3T - 99$$
$83$ $$T^{2} - 20T + 80$$
$89$ $$T^{2} + 12T + 16$$
$97$ $$T^{2} - 8T - 4$$