Defining parameters
Level: | \( N \) | \(=\) | \( 592 = 2^{4} \cdot 37 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 592.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 10 \) | ||
Sturm bound: | \(152\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(3\), \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(592))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 82 | 18 | 64 |
Cusp forms | 71 | 18 | 53 |
Eisenstein series | 11 | 0 | 11 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(37\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(4\) |
\(+\) | \(-\) | \(-\) | \(5\) |
\(-\) | \(+\) | \(-\) | \(5\) |
\(-\) | \(-\) | \(+\) | \(4\) |
Plus space | \(+\) | \(8\) | |
Minus space | \(-\) | \(10\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(592))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(592))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(592)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(37))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(74))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(148))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(296))\)\(^{\oplus 2}\)