# Properties

 Label 5904.2.a.bp Level $5904$ Weight $2$ Character orbit 5904.a Self dual yes Analytic conductor $47.144$ Analytic rank $0$ Dimension $4$ CM no Inner twists $1$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$5904 = 2^{4} \cdot 3^{2} \cdot 41$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 5904.a (trivial)

## Newform invariants

 Self dual: yes Analytic conductor: $$47.1436773534$$ Analytic rank: $$0$$ Dimension: $$4$$ Coefficient field: 4.4.25808.1 Defining polynomial: $$x^{4} - 10 x^{2} - 6 x + 9$$ Coefficient ring: $$\Z[a_1, \ldots, a_{7}]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 164) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a basis $$1,\beta_1,\beta_2,\beta_3$$ for the coefficient ring described below. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + ( -2 + \beta_{2} - \beta_{3} ) q^{5} + ( 1 - \beta_{1} - \beta_{2} + \beta_{3} ) q^{7} +O(q^{10})$$ $$q + ( -2 + \beta_{2} - \beta_{3} ) q^{5} + ( 1 - \beta_{1} - \beta_{2} + \beta_{3} ) q^{7} + ( 1 + \beta_{1} - \beta_{2} - \beta_{3} ) q^{11} + 2 \beta_{1} q^{13} -2 \beta_{3} q^{17} + ( -2 + \beta_{1} + \beta_{2} ) q^{19} + ( -2 - 2 \beta_{2} ) q^{23} + ( 3 - 2 \beta_{1} ) q^{25} + ( 2 + 2 \beta_{1} - 2 \beta_{2} ) q^{29} + ( 2 \beta_{2} - 2 \beta_{3} ) q^{31} + ( -7 + 4 \beta_{1} - \beta_{3} ) q^{35} + ( 4 - \beta_{2} - \beta_{3} ) q^{37} + q^{41} + ( -2 \beta_{1} + 2 \beta_{3} ) q^{43} + ( -2 - 3 \beta_{1} + \beta_{2} ) q^{47} + ( 5 - 4 \beta_{1} + \beta_{2} + 3 \beta_{3} ) q^{49} + ( 4 - 2 \beta_{1} + 2 \beta_{2} + 2 \beta_{3} ) q^{53} + ( -1 - 4 \beta_{1} + 4 \beta_{2} + \beta_{3} ) q^{55} + ( 2 + 2 \beta_{2} ) q^{59} + ( 6 + 2 \beta_{1} ) q^{61} + ( 2 - 4 \beta_{1} - 2 \beta_{2} + 4 \beta_{3} ) q^{65} + ( -7 + \beta_{1} - \beta_{2} - \beta_{3} ) q^{67} + ( -4 + \beta_{1} + 3 \beta_{2} - 4 \beta_{3} ) q^{71} + ( 4 - \beta_{2} + 3 \beta_{3} ) q^{73} + ( -2 + 4 \beta_{1} - \beta_{2} - \beta_{3} ) q^{77} + ( 6 + \beta_{1} - 3 \beta_{2} ) q^{79} + ( -2 - 4 \beta_{1} + 2 \beta_{3} ) q^{83} + ( 4 - 4 \beta_{1} + 6 \beta_{2} - 2 \beta_{3} ) q^{85} + ( 4 \beta_{1} - 2 \beta_{2} ) q^{89} + ( -12 + 2 \beta_{1} - 6 \beta_{3} ) q^{91} + ( 7 - 2 \beta_{1} - 4 \beta_{2} + 3 \beta_{3} ) q^{95} + ( 2 - 4 \beta_{3} ) q^{97} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$4q - 4q^{5} + O(q^{10})$$ $$4q - 4q^{5} + 4q^{11} + 4q^{17} - 6q^{19} - 12q^{23} + 12q^{25} + 4q^{29} + 8q^{31} - 26q^{35} + 16q^{37} + 4q^{41} - 4q^{43} - 6q^{47} + 16q^{49} + 16q^{53} + 2q^{55} + 12q^{59} + 24q^{61} - 4q^{65} - 28q^{67} - 2q^{71} + 8q^{73} - 8q^{77} + 18q^{79} - 12q^{83} + 32q^{85} - 4q^{89} - 36q^{91} + 14q^{95} + 16q^{97} + O(q^{100})$$

Basis of coefficient ring in terms of a root $$\nu$$ of $$x^{4} - 10 x^{2} - 6 x + 9$$:

 $$\beta_{0}$$ $$=$$ $$1$$ $$\beta_{1}$$ $$=$$ $$\nu$$ $$\beta_{2}$$ $$=$$ $$($$$$\nu^{3} - 7 \nu - 3$$$$)/3$$ $$\beta_{3}$$ $$=$$ $$($$$$-\nu^{3} + 3 \nu^{2} + 7 \nu - 12$$$$)/3$$
 $$1$$ $$=$$ $$\beta_0$$ $$\nu$$ $$=$$ $$\beta_{1}$$ $$\nu^{2}$$ $$=$$ $$\beta_{3} + \beta_{2} + 5$$ $$\nu^{3}$$ $$=$$ $$3 \beta_{2} + 7 \beta_{1} + 3$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 −2.46810 0.707500 3.31526 −1.55466
0 0 0 −3.59669 0 5.06479 0 0 0
1.2 0 0 0 −2.56613 0 0.858626 0 0 0
1.3 0 0 0 −1.17025 0 −3.14501 0 0 0
1.4 0 0 0 3.33307 0 −2.77840 0 0 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$3$$ $$-1$$
$$41$$ $$-1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5904.2.a.bp 4
3.b odd 2 1 656.2.a.i 4
4.b odd 2 1 1476.2.a.g 4
12.b even 2 1 164.2.a.a 4
24.f even 2 1 2624.2.a.v 4
24.h odd 2 1 2624.2.a.y 4
60.h even 2 1 4100.2.a.c 4
60.l odd 4 2 4100.2.d.c 8
84.h odd 2 1 8036.2.a.i 4
492.d even 2 1 6724.2.a.c 4

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
164.2.a.a 4 12.b even 2 1
656.2.a.i 4 3.b odd 2 1
1476.2.a.g 4 4.b odd 2 1
2624.2.a.v 4 24.f even 2 1
2624.2.a.y 4 24.h odd 2 1
4100.2.a.c 4 60.h even 2 1
4100.2.d.c 8 60.l odd 4 2
5904.2.a.bp 4 1.a even 1 1 trivial
6724.2.a.c 4 492.d even 2 1
8036.2.a.i 4 84.h odd 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(5904))$$:

 $$T_{5}^{4} + 4 T_{5}^{3} - 8 T_{5}^{2} - 44 T_{5} - 36$$ $$T_{7}^{4} - 22 T_{7}^{2} - 26 T_{7} + 38$$ $$T_{11}^{4} - 4 T_{11}^{3} - 18 T_{11}^{2} + 18 T_{11} + 54$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{4}$$
$3$ $$T^{4}$$
$5$ $$-36 - 44 T - 8 T^{2} + 4 T^{3} + T^{4}$$
$7$ $$38 - 26 T - 22 T^{2} + T^{4}$$
$11$ $$54 + 18 T - 18 T^{2} - 4 T^{3} + T^{4}$$
$13$ $$144 - 48 T - 40 T^{2} + T^{4}$$
$17$ $$432 + 80 T - 48 T^{2} - 4 T^{3} + T^{4}$$
$19$ $$-186 - 134 T - 14 T^{2} + 6 T^{3} + T^{4}$$
$23$ $$-192 - 128 T + 16 T^{2} + 12 T^{3} + T^{4}$$
$29$ $$144 - 40 T^{2} - 4 T^{3} + T^{4}$$
$31$ $$64 + 32 T - 32 T^{2} - 8 T^{3} + T^{4}$$
$37$ $$-324 + 36 T + 64 T^{2} - 16 T^{3} + T^{4}$$
$41$ $$( -1 + T )^{4}$$
$43$ $$-288 - 272 T - 48 T^{2} + 4 T^{3} + T^{4}$$
$47$ $$1182 - 206 T - 62 T^{2} + 6 T^{3} + T^{4}$$
$53$ $$-1296 + 720 T - 16 T^{3} + T^{4}$$
$59$ $$-192 + 128 T + 16 T^{2} - 12 T^{3} + T^{4}$$
$61$ $$288 - 432 T + 176 T^{2} - 24 T^{3} + T^{4}$$
$67$ $$1094 + 1010 T + 270 T^{2} + 28 T^{3} + T^{4}$$
$71$ $$-426 - 694 T - 186 T^{2} + 2 T^{3} + T^{4}$$
$73$ $$-404 + 692 T - 80 T^{2} - 8 T^{3} + T^{4}$$
$79$ $$-18 + 42 T + 50 T^{2} - 18 T^{3} + T^{4}$$
$83$ $$-3456 - 1344 T - 80 T^{2} + 12 T^{3} + T^{4}$$
$89$ $$4272 - 272 T - 128 T^{2} + 4 T^{3} + T^{4}$$
$97$ $$4944 + 1280 T - 120 T^{2} - 16 T^{3} + T^{4}$$