Properties

Label 5904.2.a.bd
Level 5904
Weight 2
Character orbit 5904.a
Self dual yes
Analytic conductor 47.144
Analytic rank 1
Dimension 3
CM no
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 5904 = 2^{4} \cdot 3^{2} \cdot 41 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 5904.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(47.1436773534\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.316.1
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 123)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( -1 - \beta_{1} + \beta_{2} ) q^{5} + ( -1 + \beta_{1} + \beta_{2} ) q^{7} +O(q^{10})\) \( q + ( -1 - \beta_{1} + \beta_{2} ) q^{5} + ( -1 + \beta_{1} + \beta_{2} ) q^{7} + ( -1 - \beta_{1} ) q^{11} + ( 3 - \beta_{1} + \beta_{2} ) q^{13} + ( -1 + \beta_{1} - 2 \beta_{2} ) q^{17} + ( -1 + \beta_{1} - \beta_{2} ) q^{19} + ( -3 - \beta_{1} + \beta_{2} ) q^{23} + ( 1 + 2 \beta_{1} - 4 \beta_{2} ) q^{25} + ( 1 + 3 \beta_{1} ) q^{29} + ( 2 - 4 \beta_{1} - \beta_{2} ) q^{31} + ( 2 + 2 \beta_{1} - 4 \beta_{2} ) q^{35} + ( 6 + 2 \beta_{1} - \beta_{2} ) q^{37} - q^{41} + ( -4 + 2 \beta_{1} - 5 \beta_{2} ) q^{43} + ( 1 + \beta_{1} + 2 \beta_{2} ) q^{47} + ( 3 + 2 \beta_{1} ) q^{49} + ( -6 + 4 \beta_{1} - 2 \beta_{2} ) q^{53} + ( 3 + \beta_{1} - \beta_{2} ) q^{55} + ( -2 - 2 \beta_{1} - 2 \beta_{2} ) q^{59} + ( -2 - 2 \beta_{1} + \beta_{2} ) q^{61} + ( 2 - 2 \beta_{1} ) q^{65} + ( -2 - 6 \beta_{1} + 4 \beta_{2} ) q^{67} + ( -11 + \beta_{1} ) q^{71} + ( 2 - 2 \beta_{1} - 3 \beta_{2} ) q^{73} + ( -3 - \beta_{1} - 3 \beta_{2} ) q^{77} + ( 8 - 4 \beta_{1} + 2 \beta_{2} ) q^{79} + ( -5 + \beta_{1} - 3 \beta_{2} ) q^{83} + ( -7 - \beta_{1} + 5 \beta_{2} ) q^{85} + ( -6 + 4 \beta_{1} ) q^{89} + ( -2 + 6 \beta_{1} ) q^{91} + ( -4 + 2 \beta_{2} ) q^{95} + ( -3 - 3 \beta_{1} + \beta_{2} ) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3q - 4q^{5} - 2q^{7} + O(q^{10}) \) \( 3q - 4q^{5} - 2q^{7} - 4q^{11} + 8q^{13} - 2q^{17} - 2q^{19} - 10q^{23} + 5q^{25} + 6q^{29} + 2q^{31} + 8q^{35} + 20q^{37} - 3q^{41} - 10q^{43} + 4q^{47} + 11q^{49} - 14q^{53} + 10q^{55} - 8q^{59} - 8q^{61} + 4q^{65} - 12q^{67} - 32q^{71} + 4q^{73} - 10q^{77} + 20q^{79} - 14q^{83} - 22q^{85} - 14q^{89} - 12q^{95} - 12q^{97} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{3} - x^{2} - 4 x + 2\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( \nu \)
\(\beta_{2}\)\(=\)\( \nu^{2} - 3 \)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\(\beta_{1}\)
\(\nu^{2}\)\(=\)\(\beta_{2} + 3\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0.470683
2.34292
−1.81361
0 0 0 −4.24914 0 −3.30777 0 0 0
1.2 0 0 0 −0.853635 0 3.83221 0 0 0
1.3 0 0 0 1.10278 0 −2.52444 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5904.2.a.bd 3
3.b odd 2 1 1968.2.a.w 3
4.b odd 2 1 369.2.a.e 3
12.b even 2 1 123.2.a.d 3
20.d odd 2 1 9225.2.a.bx 3
24.f even 2 1 7872.2.a.bx 3
24.h odd 2 1 7872.2.a.bs 3
60.h even 2 1 3075.2.a.t 3
84.h odd 2 1 6027.2.a.s 3
492.d even 2 1 5043.2.a.n 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
123.2.a.d 3 12.b even 2 1
369.2.a.e 3 4.b odd 2 1
1968.2.a.w 3 3.b odd 2 1
3075.2.a.t 3 60.h even 2 1
5043.2.a.n 3 492.d even 2 1
5904.2.a.bd 3 1.a even 1 1 trivial
6027.2.a.s 3 84.h odd 2 1
7872.2.a.bs 3 24.h odd 2 1
7872.2.a.bx 3 24.f even 2 1
9225.2.a.bx 3 20.d odd 2 1

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(-1\)
\(41\) \(1\)

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(5904))\):

\( T_{5}^{3} + 4 T_{5}^{2} - 2 T_{5} - 4 \)
\( T_{7}^{3} + 2 T_{7}^{2} - 14 T_{7} - 32 \)
\( T_{11}^{3} + 4 T_{11}^{2} + T_{11} - 4 \)

Hecke Characteristic Polynomials

$p$ $F_p(T)$
$2$ \( \)
$3$ \( \)
$5$ \( 1 + 4 T + 13 T^{2} + 36 T^{3} + 65 T^{4} + 100 T^{5} + 125 T^{6} \)
$7$ \( 1 + 2 T + 7 T^{2} - 4 T^{3} + 49 T^{4} + 98 T^{5} + 343 T^{6} \)
$11$ \( 1 + 4 T + 34 T^{2} + 84 T^{3} + 374 T^{4} + 484 T^{5} + 1331 T^{6} \)
$13$ \( 1 - 8 T + 53 T^{2} - 204 T^{3} + 689 T^{4} - 1352 T^{5} + 2197 T^{6} \)
$17$ \( 1 + 2 T + 28 T^{2} + 6 T^{3} + 476 T^{4} + 578 T^{5} + 4913 T^{6} \)
$19$ \( 1 + 2 T + 51 T^{2} + 68 T^{3} + 969 T^{4} + 722 T^{5} + 6859 T^{6} \)
$23$ \( 1 + 10 T + 95 T^{2} + 476 T^{3} + 2185 T^{4} + 5290 T^{5} + 12167 T^{6} \)
$29$ \( 1 - 6 T + 60 T^{2} - 262 T^{3} + 1740 T^{4} - 5046 T^{5} + 24389 T^{6} \)
$31$ \( 1 - 2 T + 2 T^{2} + 132 T^{3} + 62 T^{4} - 1922 T^{5} + 29791 T^{6} \)
$37$ \( 1 - 20 T + 228 T^{2} - 1646 T^{3} + 8436 T^{4} - 27380 T^{5} + 50653 T^{6} \)
$41$ \( ( 1 + T )^{3} \)
$43$ \( 1 + 10 T + 10 T^{2} - 296 T^{3} + 430 T^{4} + 18490 T^{5} + 79507 T^{6} \)
$47$ \( 1 - 4 T + 106 T^{2} - 384 T^{3} + 4982 T^{4} - 8836 T^{5} + 103823 T^{6} \)
$53$ \( 1 + 14 T + 159 T^{2} + 1452 T^{3} + 8427 T^{4} + 39326 T^{5} + 148877 T^{6} \)
$59$ \( 1 + 8 T + 137 T^{2} + 976 T^{3} + 8083 T^{4} + 27848 T^{5} + 205379 T^{6} \)
$61$ \( 1 + 8 T + 188 T^{2} + 930 T^{3} + 11468 T^{4} + 29768 T^{5} + 226981 T^{6} \)
$67$ \( 1 + 12 T + 77 T^{2} + 632 T^{3} + 5159 T^{4} + 53868 T^{5} + 300763 T^{6} \)
$71$ \( 1 + 32 T + 550 T^{2} + 5712 T^{3} + 39050 T^{4} + 161312 T^{5} + 357911 T^{6} \)
$73$ \( 1 - 4 T + 120 T^{2} - 130 T^{3} + 8760 T^{4} - 21316 T^{5} + 389017 T^{6} \)
$79$ \( 1 - 20 T + 305 T^{2} - 3192 T^{3} + 24095 T^{4} - 124820 T^{5} + 493039 T^{6} \)
$83$ \( 1 + 14 T + 259 T^{2} + 2028 T^{3} + 21497 T^{4} + 96446 T^{5} + 571787 T^{6} \)
$89$ \( 1 + 14 T + 263 T^{2} + 2308 T^{3} + 23407 T^{4} + 110894 T^{5} + 704969 T^{6} \)
$97$ \( 1 + 12 T + 305 T^{2} + 2180 T^{3} + 29585 T^{4} + 112908 T^{5} + 912673 T^{6} \)
show more
show less