Properties

Label 59.7.b.a
Level $59$
Weight $7$
Character orbit 59.b
Self dual yes
Analytic conductor $13.573$
Analytic rank $0$
Dimension $1$
CM discriminant -59
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [59,7,Mod(58,59)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(59, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 7, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("59.58");
 
S:= CuspForms(chi, 7);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 59 \)
Weight: \( k \) \(=\) \( 7 \)
Character orbit: \([\chi]\) \(=\) 59.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(13.5731909336\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 5 q^{3} + 64 q^{4} + 191 q^{5} + 155 q^{7} - 704 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - 5 q^{3} + 64 q^{4} + 191 q^{5} + 155 q^{7} - 704 q^{9} - 320 q^{12} - 955 q^{15} + 4096 q^{16} + 6050 q^{17} + 443 q^{19} + 12224 q^{20} - 775 q^{21} + 20856 q^{25} + 7165 q^{27} + 9920 q^{28} - 23497 q^{29} + 29605 q^{35} - 45056 q^{36} + 137783 q^{41} - 134464 q^{45} - 20480 q^{48} - 93624 q^{49} - 30250 q^{51} - 190825 q^{53} - 2215 q^{57} - 205379 q^{59} - 61120 q^{60} - 109120 q^{63} + 262144 q^{64} + 387200 q^{68} - 683422 q^{71} - 104280 q^{75} + 28352 q^{76} - 288853 q^{79} + 782336 q^{80} + 477391 q^{81} - 49600 q^{84} + 1155550 q^{85} + 117485 q^{87} + 84613 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/59\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
58.1
0
0 −5.00000 64.0000 191.000 0 155.000 0 −704.000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
59.b odd 2 1 CM by \(\Q(\sqrt{-59}) \)

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 59.7.b.a 1
59.b odd 2 1 CM 59.7.b.a 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
59.7.b.a 1 1.a even 1 1 trivial
59.7.b.a 1 59.b odd 2 1 CM

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{7}^{\mathrm{new}}(59, [\chi])\):

\( T_{2} \) Copy content Toggle raw display
\( T_{3} + 5 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T + 5 \) Copy content Toggle raw display
$5$ \( T - 191 \) Copy content Toggle raw display
$7$ \( T - 155 \) Copy content Toggle raw display
$11$ \( T \) Copy content Toggle raw display
$13$ \( T \) Copy content Toggle raw display
$17$ \( T - 6050 \) Copy content Toggle raw display
$19$ \( T - 443 \) Copy content Toggle raw display
$23$ \( T \) Copy content Toggle raw display
$29$ \( T + 23497 \) Copy content Toggle raw display
$31$ \( T \) Copy content Toggle raw display
$37$ \( T \) Copy content Toggle raw display
$41$ \( T - 137783 \) Copy content Toggle raw display
$43$ \( T \) Copy content Toggle raw display
$47$ \( T \) Copy content Toggle raw display
$53$ \( T + 190825 \) Copy content Toggle raw display
$59$ \( T + 205379 \) Copy content Toggle raw display
$61$ \( T \) Copy content Toggle raw display
$67$ \( T \) Copy content Toggle raw display
$71$ \( T + 683422 \) Copy content Toggle raw display
$73$ \( T \) Copy content Toggle raw display
$79$ \( T + 288853 \) Copy content Toggle raw display
$83$ \( T \) Copy content Toggle raw display
$89$ \( T \) Copy content Toggle raw display
$97$ \( T \) Copy content Toggle raw display
show more
show less