Properties

Label 59.3.d.a
Level $59$
Weight $3$
Character orbit 59.d
Analytic conductor $1.608$
Analytic rank $0$
Dimension $252$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [59,3,Mod(2,59)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(59, base_ring=CyclotomicField(58))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("59.2");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 59 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 59.d (of order \(58\), degree \(28\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.60763355973\)
Analytic rank: \(0\)
Dimension: \(252\)
Relative dimension: \(9\) over \(\Q(\zeta_{58})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{58}]$

$q$-expansion

The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 252 q - 29 q^{2} - 33 q^{3} - 11 q^{4} - 21 q^{5} - 29 q^{6} - 35 q^{7} - 29 q^{8} - 70 q^{9}+O(q^{10}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q) = \) \( 252 q - 29 q^{2} - 33 q^{3} - 11 q^{4} - 21 q^{5} - 29 q^{6} - 35 q^{7} - 29 q^{8} - 70 q^{9} - 29 q^{10} - 29 q^{11} + 39 q^{12} - 29 q^{13} - 29 q^{14} + 46 q^{15} - 123 q^{16} + 8 q^{17} - 29 q^{18} - 69 q^{19} - 133 q^{20} - 30 q^{21} + 53 q^{22} - 29 q^{23} - 29 q^{24} - 46 q^{25} - 167 q^{26} - 18 q^{27} + 113 q^{28} - 57 q^{29} - 29 q^{30} - 29 q^{31} - 29 q^{32} - 29 q^{33} - 29 q^{34} + 10 q^{35} + 109 q^{36} - 29 q^{37} - 29 q^{38} - 29 q^{39} - 29 q^{40} + 101 q^{41} - 29 q^{42} - 29 q^{43} - 29 q^{44} + 419 q^{45} + 775 q^{46} + 290 q^{47} + 1131 q^{48} + 522 q^{49} + 899 q^{50} + 527 q^{51} + 667 q^{52} + 49 q^{53} + 783 q^{54} + 232 q^{55} + 435 q^{56} + 251 q^{57} - 66 q^{59} - 602 q^{60} - 203 q^{61} - 361 q^{62} - 614 q^{63} - 1183 q^{64} - 638 q^{65} - 1589 q^{66} - 551 q^{67} - 683 q^{68} - 1305 q^{69} - 1421 q^{70} - 810 q^{71} - 2465 q^{72} - 464 q^{73} - 1211 q^{74} - 160 q^{75} - 69 q^{76} - 29 q^{77} - 901 q^{78} - 399 q^{79} + 347 q^{80} - 14 q^{81} - 29 q^{82} - 29 q^{83} + 819 q^{84} - 193 q^{85} + 45 q^{86} - 210 q^{87} - 655 q^{88} - 29 q^{89} - 29 q^{90} - 29 q^{91} - 29 q^{92} - 29 q^{93} + 291 q^{94} + 249 q^{95} - 29 q^{96} - 29 q^{97} + 1624 q^{98} + 1537 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
2.1 −3.26019 0.176762i 0.182722 0.0845363i 6.62103 + 0.720080i −4.95561 1.66974i −0.610652 + 0.243306i 6.37157 + 9.39737i −8.57065 1.40509i −5.80024 + 6.82857i 15.8611 + 6.31963i
2.2 −2.97279 0.161180i −5.21949 + 2.41479i 4.83492 + 0.525830i 2.42635 + 0.817534i 15.9056 6.33739i −5.07474 7.48468i −2.53671 0.415872i 15.5854 18.3485i −7.08126 2.82143i
2.3 −2.38005 0.129043i 4.69906 2.17401i 1.67146 + 0.181782i 0.840610 + 0.283234i −11.4645 + 4.56789i −3.07199 4.53085i 5.45390 + 0.894122i 11.5283 13.5722i −1.96415 0.782588i
2.4 −1.22566 0.0664535i −0.853640 + 0.394936i −2.47872 0.269577i 8.39583 + 2.82888i 1.07252 0.427331i 4.77469 + 7.04214i 7.86533 + 1.28946i −5.25375 + 6.18519i −10.1025 4.02519i
2.5 −0.895223 0.0485376i −0.751899 + 0.347866i −3.17748 0.345572i −4.47160 1.50666i 0.690002 0.274922i −4.14756 6.11719i 6.36669 + 1.04377i −5.38213 + 6.33634i 3.92995 + 1.56583i
2.6 1.15718 + 0.0627406i −4.94098 + 2.28594i −2.64142 0.287271i −4.34717 1.46473i −5.86104 + 2.33525i 7.20861 + 10.6319i −7.61304 1.24810i 13.3612 15.7301i −4.93857 1.96771i
2.7 1.40660 + 0.0762635i 3.06644 1.41868i −2.00385 0.217932i 1.43378 + 0.483096i 4.42144 1.76166i 0.650920 + 0.960035i −8.36242 1.37095i 1.56389 1.84115i 1.97991 + 0.788866i
2.8 2.94400 + 0.159619i −2.92458 + 1.35306i 4.66512 + 0.507362i 7.52634 + 2.53592i −8.82595 + 3.51658i −4.23103 6.24030i 2.01519 + 0.330373i 0.895951 1.05479i 21.7528 + 8.66710i
2.9 3.23199 + 0.175234i 0.168176 0.0778064i 6.43853 + 0.700232i −5.98129 2.01533i 0.557177 0.222000i 0.736526 + 1.08629i 7.91017 + 1.29681i −5.80425 + 6.83329i −18.9783 7.56166i
6.1 −3.17515 + 1.26510i 5.14893 0.559979i 5.57713 5.28293i −5.06429 5.96215i −15.6402 + 8.29190i 5.62111 3.38211i −5.28424 + 11.4217i 17.4083 3.83185i 23.6226 + 12.5239i
6.2 −2.78573 + 1.10994i 0.254288 0.0276555i 3.62435 3.43317i 3.08081 + 3.62701i −0.677682 + 0.359284i −11.2925 + 6.79450i −1.24937 + 2.70047i −8.72569 + 1.92067i −12.6081 6.68437i
6.3 −2.63581 + 1.05020i −3.42634 + 0.372637i 2.94057 2.78546i −0.503957 0.593304i 8.63983 4.58055i 7.94809 4.78221i −0.0600401 + 0.129774i 2.81137 0.618830i 1.95142 + 1.03458i
6.4 −0.617663 + 0.246100i 3.33931 0.363171i −2.58304 + 2.44678i 2.87854 + 3.38889i −1.97319 + 1.04612i 3.65501 2.19914i 2.11001 4.56071i 2.22949 0.490748i −2.61197 1.38478i
6.5 −0.176520 + 0.0703320i −2.50768 + 0.272727i −2.87777 + 2.72597i −4.76105 5.60514i 0.423475 0.224512i −2.41294 + 1.45181i 0.635403 1.37340i −2.57549 + 0.566909i 1.23464 + 0.654566i
6.6 0.574637 0.228956i −4.07106 + 0.442754i −2.62620 + 2.48766i 5.06596 + 5.96411i −2.23801 + 1.18652i −2.25289 + 1.35552i −1.97847 + 4.27638i 7.58790 1.67022i 4.27661 + 2.26731i
6.7 1.65320 0.658695i 4.42657 0.481419i −0.604793 + 0.572891i −3.14095 3.69781i 7.00090 3.71164i −9.99166 + 6.01178i −3.61141 + 7.80593i 10.5732 2.32734i −7.62834 4.04429i
6.8 2.18147 0.869176i 0.713709 0.0776206i 1.09935 1.04136i −0.395093 0.465139i 1.48947 0.789666i 8.26248 4.97137i −2.45094 + 5.29762i −8.28623 + 1.82394i −1.26617 0.671281i
6.9 3.25557 1.29714i −1.85159 + 0.201372i 6.01219 5.69504i 0.962642 + 1.13331i −5.76677 + 3.05735i −6.46217 + 3.88816i 6.29988 13.6170i −5.40175 + 1.18902i 4.60401 + 2.44089i
8.1 −3.76989 0.618042i −0.943305 + 3.39748i 10.0395 + 3.38269i −2.18479 3.22232i 5.65594 12.2251i −6.40815 + 1.41054i −22.2562 11.7995i −2.94131 1.76973i 6.24487 + 13.4981i
8.2 −3.01843 0.494846i 1.48811 5.35968i 5.07541 + 1.71010i −0.678586 1.00084i −7.14396 + 15.4414i −2.13745 + 0.470488i −3.66384 1.94245i −18.8000 11.3116i 1.55300 + 3.35676i
See next 80 embeddings (of 252 total)
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 2.9
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
59.d odd 58 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 59.3.d.a 252
59.d odd 58 1 inner 59.3.d.a 252
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
59.3.d.a 252 1.a even 1 1 trivial
59.3.d.a 252 59.d odd 58 1 inner

Hecke kernels

This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(59, [\chi])\).