Properties

Label 59.13.b.a
Level $59$
Weight $13$
Character orbit 59.b
Self dual yes
Analytic conductor $53.926$
Analytic rank $0$
Dimension $1$
CM discriminant -59
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [59,13,Mod(58,59)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(59, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 13, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("59.58");
 
S:= CuspForms(chi, 13);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 59 \)
Weight: \( k \) \(=\) \( 13 \)
Character orbit: \([\chi]\) \(=\) 59.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(53.9256352193\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 1433 q^{3} + 4096 q^{4} + 5231 q^{5} - 211273 q^{7} + 1522048 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - 1433 q^{3} + 4096 q^{4} + 5231 q^{5} - 211273 q^{7} + 1522048 q^{9} - 5869568 q^{12} - 7496023 q^{15} + 16777216 q^{16} - 11672638 q^{17} - 93895513 q^{19} + 21426176 q^{20} + 302754209 q^{21} - 216777264 q^{25} - 1419539831 q^{27} - 865374208 q^{28} - 637537633 q^{29} - 1105169063 q^{35} + 6234308608 q^{36} + 9483946607 q^{41} + 7961833088 q^{45} - 24041750528 q^{48} + 30794993328 q^{49} + 16726890254 q^{51} - 7914541633 q^{53} + 134552270129 q^{57} + 42180533641 q^{59} - 30703710208 q^{60} - 321567647104 q^{63} + 68719476736 q^{64} - 47811125248 q^{68} + 210865062242 q^{71} + 310641819312 q^{75} - 384596021248 q^{76} - 402738855433 q^{79} + 87761616896 q^{80} + 1225321866655 q^{81} + 1240081240064 q^{84} - 61059569378 q^{85} + 913591428089 q^{87} - 491167428503 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/59\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
58.1
0
0 −1433.00 4096.00 5231.00 0 −211273. 0 1.52205e6 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
59.b odd 2 1 CM by \(\Q(\sqrt{-59}) \)

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 59.13.b.a 1
59.b odd 2 1 CM 59.13.b.a 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
59.13.b.a 1 1.a even 1 1 trivial
59.13.b.a 1 59.b odd 2 1 CM

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{13}^{\mathrm{new}}(59, [\chi])\):

\( T_{2} \) Copy content Toggle raw display
\( T_{3} + 1433 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T + 1433 \) Copy content Toggle raw display
$5$ \( T - 5231 \) Copy content Toggle raw display
$7$ \( T + 211273 \) Copy content Toggle raw display
$11$ \( T \) Copy content Toggle raw display
$13$ \( T \) Copy content Toggle raw display
$17$ \( T + 11672638 \) Copy content Toggle raw display
$19$ \( T + 93895513 \) Copy content Toggle raw display
$23$ \( T \) Copy content Toggle raw display
$29$ \( T + 637537633 \) Copy content Toggle raw display
$31$ \( T \) Copy content Toggle raw display
$37$ \( T \) Copy content Toggle raw display
$41$ \( T - 9483946607 \) Copy content Toggle raw display
$43$ \( T \) Copy content Toggle raw display
$47$ \( T \) Copy content Toggle raw display
$53$ \( T + 7914541633 \) Copy content Toggle raw display
$59$ \( T - 42180533641 \) Copy content Toggle raw display
$61$ \( T \) Copy content Toggle raw display
$67$ \( T \) Copy content Toggle raw display
$71$ \( T - 210865062242 \) Copy content Toggle raw display
$73$ \( T \) Copy content Toggle raw display
$79$ \( T + 402738855433 \) Copy content Toggle raw display
$83$ \( T \) Copy content Toggle raw display
$89$ \( T \) Copy content Toggle raw display
$97$ \( T \) Copy content Toggle raw display
show more
show less