Properties

Label 588.8.i.f.373.1
Level $588$
Weight $8$
Character 588.373
Analytic conductor $183.682$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [588,8,Mod(361,588)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(588, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("588.361");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 588.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(183.682394985\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 84)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 373.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 588.373
Dual form 588.8.i.f.361.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(13.5000 + 23.3827i) q^{3} +(-50.0000 + 86.6025i) q^{5} +(-364.500 + 631.333i) q^{9} +O(q^{10})\) \(q+(13.5000 + 23.3827i) q^{3} +(-50.0000 + 86.6025i) q^{5} +(-364.500 + 631.333i) q^{9} +(-1387.00 - 2402.35i) q^{11} -3294.00 q^{13} -2700.00 q^{15} +(-2950.00 - 5109.55i) q^{17} +(-3322.00 + 5753.87i) q^{19} +(-991.000 + 1716.46i) q^{23} +(34062.5 + 58998.0i) q^{25} -19683.0 q^{27} -208106. q^{29} +(58896.0 + 102011. i) q^{31} +(37449.0 - 64863.6i) q^{33} +(167843. - 290713. i) q^{37} +(-44469.0 - 77022.6i) q^{39} -265488. q^{41} -93292.0 q^{43} +(-36450.0 - 63133.3i) q^{45} +(328758. - 569426. i) q^{47} +(79650.0 - 137958. i) q^{51} +(304359. + 527165. i) q^{53} +277400. q^{55} -179388. q^{57} +(268060. + 464294. i) q^{59} +(898545. - 1.55633e6i) q^{61} +(164700. - 285269. i) q^{65} +(-1.06159e6 - 1.83872e6i) q^{67} -53514.0 q^{69} -1.19121e6 q^{71} +(-528215. - 914895. i) q^{73} +(-919688. + 1.59295e6i) q^{75} +(-499242. + 864713. i) q^{79} +(-265720. - 460241. i) q^{81} +3.89800e6 q^{83} +590000. q^{85} +(-2.80943e6 - 4.86608e6i) q^{87} +(2.31118e6 - 4.00307e6i) q^{89} +(-1.59019e6 + 2.75429e6i) q^{93} +(-332200. - 575387. i) q^{95} +1.52877e7 q^{97} +2.02225e6 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 27 q^{3} - 100 q^{5} - 729 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 27 q^{3} - 100 q^{5} - 729 q^{9} - 2774 q^{11} - 6588 q^{13} - 5400 q^{15} - 5900 q^{17} - 6644 q^{19} - 1982 q^{23} + 68125 q^{25} - 39366 q^{27} - 416212 q^{29} + 117792 q^{31} + 74898 q^{33} + 335686 q^{37} - 88938 q^{39} - 530976 q^{41} - 186584 q^{43} - 72900 q^{45} + 657516 q^{47} + 159300 q^{51} + 608718 q^{53} + 554800 q^{55} - 358776 q^{57} + 536120 q^{59} + 1797090 q^{61} + 329400 q^{65} - 2123176 q^{67} - 107028 q^{69} - 2382428 q^{71} - 1056430 q^{73} - 1839375 q^{75} - 998484 q^{79} - 531441 q^{81} + 7796008 q^{83} + 1180000 q^{85} - 5618862 q^{87} + 4622352 q^{89} - 3180384 q^{93} - 664400 q^{95} + 30575420 q^{97} + 4044492 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/588\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(295\) \(493\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 13.5000 + 23.3827i 0.288675 + 0.500000i
\(4\) 0 0
\(5\) −50.0000 + 86.6025i −0.178885 + 0.309839i −0.941499 0.337016i \(-0.890582\pi\)
0.762614 + 0.646854i \(0.223916\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −364.500 + 631.333i −0.166667 + 0.288675i
\(10\) 0 0
\(11\) −1387.00 2402.35i −0.314197 0.544205i 0.665069 0.746782i \(-0.268402\pi\)
−0.979266 + 0.202576i \(0.935069\pi\)
\(12\) 0 0
\(13\) −3294.00 −0.415836 −0.207918 0.978146i \(-0.566669\pi\)
−0.207918 + 0.978146i \(0.566669\pi\)
\(14\) 0 0
\(15\) −2700.00 −0.206559
\(16\) 0 0
\(17\) −2950.00 5109.55i −0.145630 0.252239i 0.783978 0.620789i \(-0.213188\pi\)
−0.929608 + 0.368550i \(0.879854\pi\)
\(18\) 0 0
\(19\) −3322.00 + 5753.87i −0.111112 + 0.192452i −0.916219 0.400678i \(-0.868775\pi\)
0.805107 + 0.593130i \(0.202108\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −991.000 + 1716.46i −0.0169835 + 0.0294162i −0.874392 0.485220i \(-0.838740\pi\)
0.857409 + 0.514636i \(0.172073\pi\)
\(24\) 0 0
\(25\) 34062.5 + 58998.0i 0.436000 + 0.755174i
\(26\) 0 0
\(27\) −19683.0 −0.192450
\(28\) 0 0
\(29\) −208106. −1.58450 −0.792249 0.610198i \(-0.791090\pi\)
−0.792249 + 0.610198i \(0.791090\pi\)
\(30\) 0 0
\(31\) 58896.0 + 102011.i 0.355075 + 0.615008i 0.987131 0.159915i \(-0.0511221\pi\)
−0.632056 + 0.774923i \(0.717789\pi\)
\(32\) 0 0
\(33\) 37449.0 64863.6i 0.181402 0.314197i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 167843. 290713.i 0.544750 0.943535i −0.453873 0.891067i \(-0.649958\pi\)
0.998623 0.0524680i \(-0.0167088\pi\)
\(38\) 0 0
\(39\) −44469.0 77022.6i −0.120041 0.207918i
\(40\) 0 0
\(41\) −265488. −0.601591 −0.300796 0.953689i \(-0.597252\pi\)
−0.300796 + 0.953689i \(0.597252\pi\)
\(42\) 0 0
\(43\) −93292.0 −0.178939 −0.0894695 0.995990i \(-0.528517\pi\)
−0.0894695 + 0.995990i \(0.528517\pi\)
\(44\) 0 0
\(45\) −36450.0 63133.3i −0.0596285 0.103280i
\(46\) 0 0
\(47\) 328758. 569426.i 0.461885 0.800008i −0.537170 0.843474i \(-0.680507\pi\)
0.999055 + 0.0434658i \(0.0138400\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 79650.0 137958.i 0.0840795 0.145630i
\(52\) 0 0
\(53\) 304359. + 527165.i 0.280815 + 0.486386i 0.971586 0.236688i \(-0.0760619\pi\)
−0.690771 + 0.723074i \(0.742729\pi\)
\(54\) 0 0
\(55\) 277400. 0.224821
\(56\) 0 0
\(57\) −179388. −0.128301
\(58\) 0 0
\(59\) 268060. + 464294.i 0.169922 + 0.294314i 0.938392 0.345572i \(-0.112315\pi\)
−0.768470 + 0.639886i \(0.778982\pi\)
\(60\) 0 0
\(61\) 898545. 1.55633e6i 0.506857 0.877902i −0.493112 0.869966i \(-0.664141\pi\)
0.999969 0.00793591i \(-0.00252610\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 164700. 285269.i 0.0743870 0.128842i
\(66\) 0 0
\(67\) −1.06159e6 1.83872e6i −0.431215 0.746887i 0.565763 0.824568i \(-0.308582\pi\)
−0.996978 + 0.0776811i \(0.975248\pi\)
\(68\) 0 0
\(69\) −53514.0 −0.0196108
\(70\) 0 0
\(71\) −1.19121e6 −0.394990 −0.197495 0.980304i \(-0.563281\pi\)
−0.197495 + 0.980304i \(0.563281\pi\)
\(72\) 0 0
\(73\) −528215. 914895.i −0.158921 0.275259i 0.775559 0.631275i \(-0.217468\pi\)
−0.934480 + 0.356016i \(0.884135\pi\)
\(74\) 0 0
\(75\) −919688. + 1.59295e6i −0.251725 + 0.436000i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −499242. + 864713.i −0.113924 + 0.197323i −0.917349 0.398083i \(-0.869675\pi\)
0.803425 + 0.595406i \(0.203009\pi\)
\(80\) 0 0
\(81\) −265720. 460241.i −0.0555556 0.0962250i
\(82\) 0 0
\(83\) 3.89800e6 0.748288 0.374144 0.927371i \(-0.377937\pi\)
0.374144 + 0.927371i \(0.377937\pi\)
\(84\) 0 0
\(85\) 590000. 0.104204
\(86\) 0 0
\(87\) −2.80943e6 4.86608e6i −0.457405 0.792249i
\(88\) 0 0
\(89\) 2.31118e6 4.00307e6i 0.347511 0.601906i −0.638296 0.769791i \(-0.720360\pi\)
0.985807 + 0.167885i \(0.0536938\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −1.59019e6 + 2.75429e6i −0.205003 + 0.355075i
\(94\) 0 0
\(95\) −332200. 575387.i −0.0397527 0.0688538i
\(96\) 0 0
\(97\) 1.52877e7 1.70075 0.850377 0.526174i \(-0.176374\pi\)
0.850377 + 0.526174i \(0.176374\pi\)
\(98\) 0 0
\(99\) 2.02225e6 0.209465
\(100\) 0 0
\(101\) −1.11934e6 1.93876e6i −0.108103 0.187240i 0.806899 0.590690i \(-0.201144\pi\)
−0.915002 + 0.403450i \(0.867811\pi\)
\(102\) 0 0
\(103\) −6.22511e6 + 1.07822e7i −0.561328 + 0.972249i 0.436053 + 0.899921i \(0.356376\pi\)
−0.997381 + 0.0723279i \(0.976957\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 3.79430e6 6.57192e6i 0.299425 0.518620i −0.676579 0.736370i \(-0.736538\pi\)
0.976005 + 0.217750i \(0.0698717\pi\)
\(108\) 0 0
\(109\) −2.58548e6 4.47819e6i −0.191227 0.331215i 0.754430 0.656380i \(-0.227913\pi\)
−0.945657 + 0.325166i \(0.894580\pi\)
\(110\) 0 0
\(111\) 9.06352e6 0.629023
\(112\) 0 0
\(113\) −9.63868e6 −0.628410 −0.314205 0.949355i \(-0.601738\pi\)
−0.314205 + 0.949355i \(0.601738\pi\)
\(114\) 0 0
\(115\) −99100.0 171646.i −0.00607619 0.0105243i
\(116\) 0 0
\(117\) 1.20066e6 2.07961e6i 0.0693060 0.120041i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 5.89605e6 1.02123e7i 0.302560 0.524050i
\(122\) 0 0
\(123\) −3.58409e6 6.20782e6i −0.173664 0.300796i
\(124\) 0 0
\(125\) −1.46250e7 −0.669747
\(126\) 0 0
\(127\) 8.08309e6 0.350158 0.175079 0.984554i \(-0.443982\pi\)
0.175079 + 0.984554i \(0.443982\pi\)
\(128\) 0 0
\(129\) −1.25944e6 2.18142e6i −0.0516552 0.0894695i
\(130\) 0 0
\(131\) 9.87927e6 1.71114e7i 0.383951 0.665022i −0.607672 0.794188i \(-0.707897\pi\)
0.991623 + 0.129166i \(0.0412299\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 984150. 1.70460e6i 0.0344265 0.0596285i
\(136\) 0 0
\(137\) 2.40448e7 + 4.16468e7i 0.798913 + 1.38376i 0.920325 + 0.391155i \(0.127924\pi\)
−0.121412 + 0.992602i \(0.538742\pi\)
\(138\) 0 0
\(139\) 1.37173e7 0.433229 0.216615 0.976257i \(-0.430499\pi\)
0.216615 + 0.976257i \(0.430499\pi\)
\(140\) 0 0
\(141\) 1.77529e7 0.533339
\(142\) 0 0
\(143\) 4.56878e6 + 7.91336e6i 0.130654 + 0.226300i
\(144\) 0 0
\(145\) 1.04053e7 1.80225e7i 0.283444 0.490939i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 3.53552e7 6.12370e7i 0.875591 1.51657i 0.0194598 0.999811i \(-0.493805\pi\)
0.856132 0.516758i \(-0.172861\pi\)
\(150\) 0 0
\(151\) 1.28485e7 + 2.22542e7i 0.303691 + 0.526009i 0.976969 0.213381i \(-0.0684475\pi\)
−0.673278 + 0.739390i \(0.735114\pi\)
\(152\) 0 0
\(153\) 4.30110e6 0.0970867
\(154\) 0 0
\(155\) −1.17792e7 −0.254071
\(156\) 0 0
\(157\) −1.04590e7 1.81155e7i −0.215695 0.373595i 0.737792 0.675028i \(-0.235868\pi\)
−0.953487 + 0.301433i \(0.902535\pi\)
\(158\) 0 0
\(159\) −8.21769e6 + 1.42335e7i −0.162129 + 0.280815i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −2.72080e7 + 4.71256e7i −0.492084 + 0.852315i −0.999958 0.00911613i \(-0.997098\pi\)
0.507874 + 0.861431i \(0.330432\pi\)
\(164\) 0 0
\(165\) 3.74490e6 + 6.48636e6i 0.0649003 + 0.112411i
\(166\) 0 0
\(167\) 6.41888e6 0.106648 0.0533238 0.998577i \(-0.483018\pi\)
0.0533238 + 0.998577i \(0.483018\pi\)
\(168\) 0 0
\(169\) −5.18981e7 −0.827081
\(170\) 0 0
\(171\) −2.42174e6 4.19457e6i −0.0370374 0.0641507i
\(172\) 0 0
\(173\) 2.73266e7 4.73311e7i 0.401259 0.695000i −0.592619 0.805483i \(-0.701906\pi\)
0.993878 + 0.110482i \(0.0352395\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −7.23762e6 + 1.25359e7i −0.0981046 + 0.169922i
\(178\) 0 0
\(179\) 1.88329e7 + 3.26196e7i 0.245433 + 0.425102i 0.962253 0.272156i \(-0.0877367\pi\)
−0.716821 + 0.697258i \(0.754403\pi\)
\(180\) 0 0
\(181\) 1.76788e7 0.221604 0.110802 0.993842i \(-0.464658\pi\)
0.110802 + 0.993842i \(0.464658\pi\)
\(182\) 0 0
\(183\) 4.85214e7 0.585268
\(184\) 0 0
\(185\) 1.67843e7 + 2.90713e7i 0.194896 + 0.337569i
\(186\) 0 0
\(187\) −8.18330e6 + 1.41739e7i −0.0915130 + 0.158505i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −2.04588e7 + 3.54357e7i −0.212454 + 0.367980i −0.952482 0.304595i \(-0.901479\pi\)
0.740028 + 0.672576i \(0.234812\pi\)
\(192\) 0 0
\(193\) 8.19134e7 + 1.41878e8i 0.820171 + 1.42058i 0.905554 + 0.424230i \(0.139455\pi\)
−0.0853830 + 0.996348i \(0.527211\pi\)
\(194\) 0 0
\(195\) 8.89380e6 0.0858947
\(196\) 0 0
\(197\) 8.02076e7 0.747453 0.373726 0.927539i \(-0.378080\pi\)
0.373726 + 0.927539i \(0.378080\pi\)
\(198\) 0 0
\(199\) −4.91610e7 8.51493e7i −0.442216 0.765941i 0.555637 0.831425i \(-0.312474\pi\)
−0.997854 + 0.0654838i \(0.979141\pi\)
\(200\) 0 0
\(201\) 2.86629e7 4.96456e7i 0.248962 0.431215i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 1.32744e7 2.29919e7i 0.107616 0.186396i
\(206\) 0 0
\(207\) −722439. 1.25130e6i −0.00566115 0.00980541i
\(208\) 0 0
\(209\) 1.84305e7 0.139645
\(210\) 0 0
\(211\) 1.36321e8 0.999021 0.499510 0.866308i \(-0.333513\pi\)
0.499510 + 0.866308i \(0.333513\pi\)
\(212\) 0 0
\(213\) −1.60814e7 2.78538e7i −0.114024 0.197495i
\(214\) 0 0
\(215\) 4.66460e6 8.07932e6i 0.0320096 0.0554422i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 1.42618e7 2.47022e7i 0.0917530 0.158921i
\(220\) 0 0
\(221\) 9.71730e6 + 1.68309e7i 0.0605582 + 0.104890i
\(222\) 0 0
\(223\) 1.26358e8 0.763019 0.381510 0.924365i \(-0.375404\pi\)
0.381510 + 0.924365i \(0.375404\pi\)
\(224\) 0 0
\(225\) −4.96631e7 −0.290667
\(226\) 0 0
\(227\) −1.17004e8 2.02656e8i −0.663909 1.14992i −0.979580 0.201055i \(-0.935563\pi\)
0.315671 0.948869i \(-0.397770\pi\)
\(228\) 0 0
\(229\) −3.41803e7 + 5.92020e7i −0.188084 + 0.325771i −0.944611 0.328191i \(-0.893561\pi\)
0.756527 + 0.653962i \(0.226894\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −9.01923e7 + 1.56218e8i −0.467115 + 0.809067i −0.999294 0.0375648i \(-0.988040\pi\)
0.532179 + 0.846632i \(0.321373\pi\)
\(234\) 0 0
\(235\) 3.28758e7 + 5.69426e7i 0.165249 + 0.286220i
\(236\) 0 0
\(237\) −2.69591e7 −0.131548
\(238\) 0 0
\(239\) 2.61131e8 1.23727 0.618637 0.785677i \(-0.287685\pi\)
0.618637 + 0.785677i \(0.287685\pi\)
\(240\) 0 0
\(241\) −9.88781e6 1.71262e7i −0.0455031 0.0788136i 0.842377 0.538889i \(-0.181156\pi\)
−0.887880 + 0.460075i \(0.847822\pi\)
\(242\) 0 0
\(243\) 7.17445e6 1.24265e7i 0.0320750 0.0555556i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 1.09427e7 1.89533e7i 0.0462045 0.0800285i
\(248\) 0 0
\(249\) 5.26231e7 + 9.11458e7i 0.216012 + 0.374144i
\(250\) 0 0
\(251\) 1.53770e8 0.613779 0.306890 0.951745i \(-0.400712\pi\)
0.306890 + 0.951745i \(0.400712\pi\)
\(252\) 0 0
\(253\) 5.49807e6 0.0213446
\(254\) 0 0
\(255\) 7.96500e6 + 1.37958e7i 0.0300812 + 0.0521022i
\(256\) 0 0
\(257\) 7.16802e7 1.24154e8i 0.263411 0.456241i −0.703735 0.710462i \(-0.748486\pi\)
0.967146 + 0.254222i \(0.0818192\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 7.58546e7 1.31384e8i 0.264083 0.457405i
\(262\) 0 0
\(263\) 2.53650e8 + 4.39336e8i 0.859786 + 1.48919i 0.872132 + 0.489270i \(0.162737\pi\)
−0.0123459 + 0.999924i \(0.503930\pi\)
\(264\) 0 0
\(265\) −6.08718e7 −0.200935
\(266\) 0 0
\(267\) 1.24804e8 0.401271
\(268\) 0 0
\(269\) −2.63943e8 4.57163e8i −0.826755 1.43198i −0.900570 0.434710i \(-0.856851\pi\)
0.0738149 0.997272i \(-0.476483\pi\)
\(270\) 0 0
\(271\) 2.52918e8 4.38067e8i 0.771947 1.33705i −0.164548 0.986369i \(-0.552616\pi\)
0.936495 0.350682i \(-0.114050\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 9.44894e7 1.63660e8i 0.273980 0.474547i
\(276\) 0 0
\(277\) 2.94293e8 + 5.09730e8i 0.831956 + 1.44099i 0.896485 + 0.443075i \(0.146112\pi\)
−0.0645284 + 0.997916i \(0.520554\pi\)
\(278\) 0 0
\(279\) −8.58704e7 −0.236717
\(280\) 0 0
\(281\) 8.65142e7 0.232603 0.116301 0.993214i \(-0.462896\pi\)
0.116301 + 0.993214i \(0.462896\pi\)
\(282\) 0 0
\(283\) 7.86504e7 + 1.36227e8i 0.206276 + 0.357280i 0.950538 0.310607i \(-0.100532\pi\)
−0.744263 + 0.667887i \(0.767199\pi\)
\(284\) 0 0
\(285\) 8.96940e6 1.55355e7i 0.0229513 0.0397527i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 1.87764e8 3.25217e8i 0.457584 0.792558i
\(290\) 0 0
\(291\) 2.06384e8 + 3.57468e8i 0.490965 + 0.850377i
\(292\) 0 0
\(293\) 6.80964e8 1.58157 0.790783 0.612097i \(-0.209674\pi\)
0.790783 + 0.612097i \(0.209674\pi\)
\(294\) 0 0
\(295\) −5.36120e7 −0.121586
\(296\) 0 0
\(297\) 2.73003e7 + 4.72855e7i 0.0604672 + 0.104732i
\(298\) 0 0
\(299\) 3.26435e6 5.65403e6i 0.00706233 0.0122323i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 3.02223e7 5.23465e7i 0.0624134 0.108103i
\(304\) 0 0
\(305\) 8.98545e7 + 1.55633e8i 0.181339 + 0.314088i
\(306\) 0 0
\(307\) 2.81734e8 0.555718 0.277859 0.960622i \(-0.410375\pi\)
0.277859 + 0.960622i \(0.410375\pi\)
\(308\) 0 0
\(309\) −3.36156e8 −0.648166
\(310\) 0 0
\(311\) 2.09860e8 + 3.63487e8i 0.395610 + 0.685217i 0.993179 0.116601i \(-0.0371998\pi\)
−0.597569 + 0.801818i \(0.703866\pi\)
\(312\) 0 0
\(313\) 1.14342e8 1.98046e8i 0.210766 0.365057i −0.741188 0.671297i \(-0.765738\pi\)
0.951954 + 0.306240i \(0.0990709\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −1.33001e8 + 2.30365e8i −0.234503 + 0.406171i −0.959128 0.282972i \(-0.908680\pi\)
0.724625 + 0.689143i \(0.242013\pi\)
\(318\) 0 0
\(319\) 2.88643e8 + 4.99944e8i 0.497844 + 0.862292i
\(320\) 0 0
\(321\) 2.04892e8 0.345747
\(322\) 0 0
\(323\) 3.91996e7 0.0647251
\(324\) 0 0
\(325\) −1.12202e8 1.94339e8i −0.181304 0.314028i
\(326\) 0 0
\(327\) 6.98080e7 1.20911e8i 0.110405 0.191227i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 3.58054e8 6.20167e8i 0.542688 0.939963i −0.456061 0.889949i \(-0.650740\pi\)
0.998749 0.0500141i \(-0.0159266\pi\)
\(332\) 0 0
\(333\) 1.22358e8 + 2.11929e8i 0.181583 + 0.314512i
\(334\) 0 0
\(335\) 2.12318e8 0.308553
\(336\) 0 0
\(337\) 5.70266e8 0.811657 0.405829 0.913949i \(-0.366983\pi\)
0.405829 + 0.913949i \(0.366983\pi\)
\(338\) 0 0
\(339\) −1.30122e8 2.25378e8i −0.181406 0.314205i
\(340\) 0 0
\(341\) 1.63378e8 2.82978e8i 0.223127 0.386467i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 2.67570e6 4.63445e6i 0.00350809 0.00607619i
\(346\) 0 0
\(347\) 8.23203e7 + 1.42583e8i 0.105768 + 0.183195i 0.914052 0.405598i \(-0.132937\pi\)
−0.808284 + 0.588793i \(0.799603\pi\)
\(348\) 0 0
\(349\) 1.31564e9 1.65671 0.828357 0.560200i \(-0.189276\pi\)
0.828357 + 0.560200i \(0.189276\pi\)
\(350\) 0 0
\(351\) 6.48358e7 0.0800276
\(352\) 0 0
\(353\) −7.80588e8 1.35202e9i −0.944518 1.63595i −0.756713 0.653747i \(-0.773196\pi\)
−0.187805 0.982206i \(-0.560137\pi\)
\(354\) 0 0
\(355\) 5.95607e7 1.03162e8i 0.0706579 0.122383i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 4.30358e8 7.45402e8i 0.490907 0.850276i −0.509038 0.860744i \(-0.669999\pi\)
0.999945 + 0.0104681i \(0.00333215\pi\)
\(360\) 0 0
\(361\) 4.24865e8 + 7.35887e8i 0.475308 + 0.823258i
\(362\) 0 0
\(363\) 3.18387e8 0.349367
\(364\) 0 0
\(365\) 1.05643e8 0.113714
\(366\) 0 0
\(367\) −4.56066e8 7.89930e8i −0.481612 0.834176i 0.518166 0.855280i \(-0.326615\pi\)
−0.999777 + 0.0211045i \(0.993282\pi\)
\(368\) 0 0
\(369\) 9.67704e7 1.67611e8i 0.100265 0.173664i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −1.18002e8 + 2.04386e8i −0.117736 + 0.203925i −0.918870 0.394560i \(-0.870897\pi\)
0.801134 + 0.598485i \(0.204230\pi\)
\(374\) 0 0
\(375\) −1.97438e8 3.41972e8i −0.193339 0.334874i
\(376\) 0 0
\(377\) 6.85501e8 0.658891
\(378\) 0 0
\(379\) 8.29313e8 0.782495 0.391247 0.920286i \(-0.372044\pi\)
0.391247 + 0.920286i \(0.372044\pi\)
\(380\) 0 0
\(381\) 1.09122e8 + 1.89004e8i 0.101082 + 0.175079i
\(382\) 0 0
\(383\) 6.08316e8 1.05363e9i 0.553265 0.958284i −0.444771 0.895644i \(-0.646715\pi\)
0.998036 0.0626393i \(-0.0199518\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 3.40049e7 5.88983e7i 0.0298232 0.0516552i
\(388\) 0 0
\(389\) 5.91064e7 + 1.02375e8i 0.0509109 + 0.0881803i 0.890358 0.455261i \(-0.150454\pi\)
−0.839447 + 0.543442i \(0.817121\pi\)
\(390\) 0 0
\(391\) 1.16938e7 0.00989321
\(392\) 0 0
\(393\) 5.33481e8 0.443348
\(394\) 0 0
\(395\) −4.99242e7 8.64713e7i −0.0407588 0.0705963i
\(396\) 0 0
\(397\) −1.81283e7 + 3.13991e7i −0.0145408 + 0.0251855i −0.873204 0.487354i \(-0.837962\pi\)
0.858663 + 0.512540i \(0.171295\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −2.53425e8 + 4.38945e8i −0.196265 + 0.339942i −0.947315 0.320305i \(-0.896215\pi\)
0.751049 + 0.660246i \(0.229548\pi\)
\(402\) 0 0
\(403\) −1.94003e8 3.36024e8i −0.147653 0.255742i
\(404\) 0 0
\(405\) 5.31441e7 0.0397523
\(406\) 0 0
\(407\) −9.31193e8 −0.684635
\(408\) 0 0
\(409\) −8.40605e8 1.45597e9i −0.607519 1.05225i −0.991648 0.128975i \(-0.958831\pi\)
0.384128 0.923280i \(-0.374502\pi\)
\(410\) 0 0
\(411\) −6.49210e8 + 1.12446e9i −0.461252 + 0.798913i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −1.94900e8 + 3.37577e8i −0.133858 + 0.231849i
\(416\) 0 0
\(417\) 1.85184e8 + 3.20748e8i 0.125062 + 0.216615i
\(418\) 0 0
\(419\) 4.94962e8 0.328718 0.164359 0.986401i \(-0.447444\pi\)
0.164359 + 0.986401i \(0.447444\pi\)
\(420\) 0 0
\(421\) −6.57487e7 −0.0429437 −0.0214719 0.999769i \(-0.506835\pi\)
−0.0214719 + 0.999769i \(0.506835\pi\)
\(422\) 0 0
\(423\) 2.39665e8 + 4.15111e8i 0.153962 + 0.266669i
\(424\) 0 0
\(425\) 2.00969e8 3.48088e8i 0.126989 0.219952i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −1.23357e8 + 2.13661e8i −0.0754333 + 0.130654i
\(430\) 0 0
\(431\) 6.67089e8 + 1.15543e9i 0.401341 + 0.695143i 0.993888 0.110393i \(-0.0352109\pi\)
−0.592547 + 0.805536i \(0.701878\pi\)
\(432\) 0 0
\(433\) −2.47903e7 −0.0146749 −0.00733745 0.999973i \(-0.502336\pi\)
−0.00733745 + 0.999973i \(0.502336\pi\)
\(434\) 0 0
\(435\) 5.61886e8 0.327292
\(436\) 0 0
\(437\) −6.58420e6 1.14042e7i −0.00377414 0.00653701i
\(438\) 0 0
\(439\) 3.44664e8 5.96975e8i 0.194433 0.336768i −0.752282 0.658842i \(-0.771047\pi\)
0.946714 + 0.322074i \(0.104380\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 2.87308e8 4.97633e8i 0.157013 0.271954i −0.776777 0.629775i \(-0.783147\pi\)
0.933790 + 0.357821i \(0.116480\pi\)
\(444\) 0 0
\(445\) 2.31118e8 + 4.00307e8i 0.124329 + 0.215344i
\(446\) 0 0
\(447\) 1.90918e9 1.01105
\(448\) 0 0
\(449\) 9.56884e7 0.0498881 0.0249440 0.999689i \(-0.492059\pi\)
0.0249440 + 0.999689i \(0.492059\pi\)
\(450\) 0 0
\(451\) 3.68232e8 + 6.37796e8i 0.189018 + 0.327389i
\(452\) 0 0
\(453\) −3.46909e8 + 6.00864e8i −0.175336 + 0.303691i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 2.36545e7 4.09707e7i 0.0115933 0.0200802i −0.860171 0.510006i \(-0.829643\pi\)
0.871764 + 0.489926i \(0.162976\pi\)
\(458\) 0 0
\(459\) 5.80648e7 + 1.00571e8i 0.0280265 + 0.0485433i
\(460\) 0 0
\(461\) −2.13567e9 −1.01527 −0.507634 0.861573i \(-0.669480\pi\)
−0.507634 + 0.861573i \(0.669480\pi\)
\(462\) 0 0
\(463\) 2.92675e8 0.137042 0.0685208 0.997650i \(-0.478172\pi\)
0.0685208 + 0.997650i \(0.478172\pi\)
\(464\) 0 0
\(465\) −1.59019e8 2.75429e8i −0.0733439 0.127035i
\(466\) 0 0
\(467\) 1.76917e9 3.06429e9i 0.803824 1.39226i −0.113259 0.993566i \(-0.536129\pi\)
0.917082 0.398698i \(-0.130538\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 2.82392e8 4.89118e8i 0.124532 0.215695i
\(472\) 0 0
\(473\) 1.29396e8 + 2.24120e8i 0.0562221 + 0.0973795i
\(474\) 0 0
\(475\) −4.52622e8 −0.193780
\(476\) 0 0
\(477\) −4.43755e8 −0.187210
\(478\) 0 0
\(479\) 2.07849e9 + 3.60005e9i 0.864120 + 1.49670i 0.867919 + 0.496707i \(0.165457\pi\)
−0.00379880 + 0.999993i \(0.501209\pi\)
\(480\) 0 0
\(481\) −5.52875e8 + 9.57607e8i −0.226527 + 0.392355i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −7.64386e8 + 1.32395e9i −0.304240 + 0.526959i
\(486\) 0 0
\(487\) −6.20460e7 1.07467e8i −0.0243423 0.0421622i 0.853598 0.520933i \(-0.174416\pi\)
−0.877940 + 0.478771i \(0.841083\pi\)
\(488\) 0 0
\(489\) −1.46923e9 −0.568210
\(490\) 0 0
\(491\) −3.29218e9 −1.25516 −0.627578 0.778554i \(-0.715954\pi\)
−0.627578 + 0.778554i \(0.715954\pi\)
\(492\) 0 0
\(493\) 6.13913e8 + 1.06333e9i 0.230750 + 0.399671i
\(494\) 0 0
\(495\) −1.01112e8 + 1.75132e8i −0.0374702 + 0.0649003i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 1.80219e8 3.12149e8i 0.0649306 0.112463i −0.831733 0.555176i \(-0.812651\pi\)
0.896663 + 0.442713i \(0.145984\pi\)
\(500\) 0 0
\(501\) 8.66548e7 + 1.50091e8i 0.0307865 + 0.0533238i
\(502\) 0 0
\(503\) −4.29760e9 −1.50570 −0.752849 0.658193i \(-0.771321\pi\)
−0.752849 + 0.658193i \(0.771321\pi\)
\(504\) 0 0
\(505\) 2.23869e8 0.0773524
\(506\) 0 0
\(507\) −7.00624e8 1.21352e9i −0.238758 0.413540i
\(508\) 0 0
\(509\) 2.71294e8 4.69895e8i 0.0911860 0.157939i −0.816824 0.576886i \(-0.804268\pi\)
0.908010 + 0.418948i \(0.137601\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 6.53869e7 1.13253e8i 0.0213836 0.0370374i
\(514\) 0 0
\(515\) −6.22511e8 1.07822e9i −0.200827 0.347842i
\(516\) 0 0
\(517\) −1.82395e9 −0.580492
\(518\) 0 0
\(519\) 1.47564e9 0.463334
\(520\) 0 0
\(521\) 1.18378e8 + 2.05036e8i 0.0366722 + 0.0635182i 0.883779 0.467905i \(-0.154991\pi\)
−0.847107 + 0.531423i \(0.821658\pi\)
\(522\) 0 0
\(523\) −3.24162e9 + 5.61465e9i −0.990846 + 1.71619i −0.378509 + 0.925598i \(0.623563\pi\)
−0.612337 + 0.790597i \(0.709770\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 3.47486e8 6.01864e8i 0.103419 0.179127i
\(528\) 0 0
\(529\) 1.70045e9 + 2.94526e9i 0.499423 + 0.865026i
\(530\) 0 0
\(531\) −3.90831e8 −0.113281
\(532\) 0 0
\(533\) 8.74517e8 0.250163
\(534\) 0 0
\(535\) 3.79430e8 + 6.57192e8i 0.107126 + 0.185547i
\(536\) 0 0
\(537\) −5.08489e8 + 8.80729e8i −0.141701 + 0.245433i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 7.50494e7 1.29989e8i 0.0203778 0.0352954i −0.855657 0.517544i \(-0.826846\pi\)
0.876034 + 0.482248i \(0.160180\pi\)
\(542\) 0 0
\(543\) 2.38664e8 + 4.13378e8i 0.0639716 + 0.110802i
\(544\) 0 0
\(545\) 5.17097e8 0.136831
\(546\) 0 0
\(547\) 3.32631e9 0.868974 0.434487 0.900678i \(-0.356930\pi\)
0.434487 + 0.900678i \(0.356930\pi\)
\(548\) 0 0
\(549\) 6.55039e8 + 1.13456e9i 0.168952 + 0.292634i
\(550\) 0 0
\(551\) 6.91328e8 1.19742e9i 0.176057 0.304940i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −4.53176e8 + 7.84924e8i −0.112523 + 0.194896i
\(556\) 0 0
\(557\) −2.36256e9 4.09208e9i −0.579282 1.00335i −0.995562 0.0941092i \(-0.970000\pi\)
0.416280 0.909236i \(-0.363334\pi\)
\(558\) 0 0
\(559\) 3.07304e8 0.0744092
\(560\) 0 0
\(561\) −4.41898e8 −0.105670
\(562\) 0 0
\(563\) −3.55522e9 6.15782e9i −0.839628 1.45428i −0.890206 0.455558i \(-0.849440\pi\)
0.0505779 0.998720i \(-0.483894\pi\)
\(564\) 0 0
\(565\) 4.81934e8 8.34734e8i 0.112413 0.194706i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −3.27657e9 + 5.67519e9i −0.745636 + 1.29148i 0.204260 + 0.978917i \(0.434521\pi\)
−0.949897 + 0.312564i \(0.898812\pi\)
\(570\) 0 0
\(571\) −4.14639e9 7.18175e9i −0.932059 1.61437i −0.779796 0.626034i \(-0.784677\pi\)
−0.152263 0.988340i \(-0.548656\pi\)
\(572\) 0 0
\(573\) −1.10478e9 −0.245320
\(574\) 0 0
\(575\) −1.35024e8 −0.0296192
\(576\) 0 0
\(577\) 2.94000e9 + 5.09223e9i 0.637135 + 1.10355i 0.986058 + 0.166400i \(0.0532141\pi\)
−0.348923 + 0.937151i \(0.613453\pi\)
\(578\) 0 0
\(579\) −2.21166e9 + 3.83071e9i −0.473526 + 0.820171i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 8.44292e8 1.46236e9i 0.176463 0.305642i
\(584\) 0 0
\(585\) 1.20066e8 + 2.07961e8i 0.0247957 + 0.0429473i
\(586\) 0 0
\(587\) −1.43194e9 −0.292207 −0.146103 0.989269i \(-0.546673\pi\)
−0.146103 + 0.989269i \(0.546673\pi\)
\(588\) 0 0
\(589\) −7.82610e8 −0.157813
\(590\) 0 0
\(591\) 1.08280e9 + 1.87547e9i 0.215771 + 0.373726i
\(592\) 0 0
\(593\) −1.74069e9 + 3.01497e9i −0.342792 + 0.593733i −0.984950 0.172839i \(-0.944706\pi\)
0.642158 + 0.766572i \(0.278039\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 1.32735e9 2.29903e9i 0.255314 0.442216i
\(598\) 0 0
\(599\) −3.96799e9 6.87275e9i −0.754356 1.30658i −0.945694 0.325058i \(-0.894616\pi\)
0.191338 0.981524i \(-0.438717\pi\)
\(600\) 0 0
\(601\) −4.05169e9 −0.761335 −0.380668 0.924712i \(-0.624306\pi\)
−0.380668 + 0.924712i \(0.624306\pi\)
\(602\) 0 0
\(603\) 1.54780e9 0.287477
\(604\) 0 0
\(605\) 5.89605e8 + 1.02123e9i 0.108247 + 0.187490i
\(606\) 0 0
\(607\) −2.59580e9 + 4.49605e9i −0.471097 + 0.815964i −0.999453 0.0330588i \(-0.989475\pi\)
0.528356 + 0.849023i \(0.322808\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −1.08293e9 + 1.87569e9i −0.192068 + 0.332672i
\(612\) 0 0
\(613\) −1.84903e9 3.20262e9i −0.324215 0.561557i 0.657138 0.753770i \(-0.271767\pi\)
−0.981353 + 0.192213i \(0.938434\pi\)
\(614\) 0 0
\(615\) 7.16818e8 0.124264
\(616\) 0 0
\(617\) −6.19879e9 −1.06245 −0.531226 0.847230i \(-0.678268\pi\)
−0.531226 + 0.847230i \(0.678268\pi\)
\(618\) 0 0
\(619\) 1.42569e9 + 2.46936e9i 0.241605 + 0.418473i 0.961172 0.275951i \(-0.0889927\pi\)
−0.719566 + 0.694424i \(0.755659\pi\)
\(620\) 0 0
\(621\) 1.95059e7 3.37851e7i 0.00326847 0.00566115i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −1.92988e9 + 3.34266e9i −0.316192 + 0.547661i
\(626\) 0 0
\(627\) 2.48811e8 + 4.30954e8i 0.0403119 + 0.0698223i
\(628\) 0 0
\(629\) −1.98055e9 −0.317328
\(630\) 0 0
\(631\) −7.56414e9 −1.19855 −0.599276 0.800543i \(-0.704545\pi\)
−0.599276 + 0.800543i \(0.704545\pi\)
\(632\) 0 0
\(633\) 1.84033e9 + 3.18755e9i 0.288392 + 0.499510i
\(634\) 0 0
\(635\) −4.04155e8 + 7.00016e8i −0.0626382 + 0.108493i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 4.34198e8 7.52052e8i 0.0658316 0.114024i
\(640\) 0 0
\(641\) −5.60093e9 9.70109e9i −0.839957 1.45485i −0.889930 0.456097i \(-0.849247\pi\)
0.0499734 0.998751i \(-0.484086\pi\)
\(642\) 0 0
\(643\) 7.87742e9 1.16855 0.584273 0.811557i \(-0.301380\pi\)
0.584273 + 0.811557i \(0.301380\pi\)
\(644\) 0 0
\(645\) 2.51888e8 0.0369615
\(646\) 0 0
\(647\) −6.24724e8 1.08205e9i −0.0906825 0.157067i 0.817116 0.576473i \(-0.195572\pi\)
−0.907798 + 0.419407i \(0.862238\pi\)
\(648\) 0 0
\(649\) 7.43598e8 1.28795e9i 0.106778 0.184945i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −3.76348e9 + 6.51854e9i −0.528924 + 0.916124i 0.470507 + 0.882396i \(0.344071\pi\)
−0.999431 + 0.0337275i \(0.989262\pi\)
\(654\) 0 0
\(655\) 9.87927e8 + 1.71114e9i 0.137366 + 0.237926i
\(656\) 0 0
\(657\) 7.70137e8 0.105947
\(658\) 0 0
\(659\) 2.29417e9 0.312268 0.156134 0.987736i \(-0.450097\pi\)
0.156134 + 0.987736i \(0.450097\pi\)
\(660\) 0 0
\(661\) 2.54192e9 + 4.40274e9i 0.342339 + 0.592949i 0.984867 0.173314i \(-0.0554474\pi\)
−0.642527 + 0.766263i \(0.722114\pi\)
\(662\) 0 0
\(663\) −2.62367e8 + 4.54433e8i −0.0349633 + 0.0605582i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 2.06233e8 3.57206e8i 0.0269103 0.0466099i
\(668\) 0 0
\(669\) 1.70583e9 + 2.95459e9i 0.220265 + 0.381510i
\(670\) 0 0
\(671\) −4.98513e9 −0.637012
\(672\) 0 0
\(673\) −5.62649e9 −0.711516 −0.355758 0.934578i \(-0.615777\pi\)
−0.355758 + 0.934578i \(0.615777\pi\)
\(674\) 0 0
\(675\) −6.70452e8 1.16126e9i −0.0839082 0.145333i
\(676\) 0 0
\(677\) 5.13727e9 8.89801e9i 0.636314 1.10213i −0.349921 0.936779i \(-0.613791\pi\)
0.986235 0.165349i \(-0.0528752\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 3.15909e9 5.47171e9i 0.383308 0.663909i
\(682\) 0 0
\(683\) −7.76228e9 1.34447e10i −0.932217 1.61465i −0.779524 0.626373i \(-0.784539\pi\)
−0.152693 0.988274i \(-0.548795\pi\)
\(684\) 0 0
\(685\) −4.80896e9 −0.571655
\(686\) 0 0
\(687\) −1.84574e9 −0.217181
\(688\) 0 0
\(689\) −1.00256e9 1.73648e9i −0.116773 0.202257i
\(690\) 0 0
\(691\) −4.11725e9 + 7.13128e9i −0.474716 + 0.822232i −0.999581 0.0289536i \(-0.990782\pi\)
0.524865 + 0.851186i \(0.324116\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −6.85866e8 + 1.18796e9i −0.0774984 + 0.134231i
\(696\) 0 0
\(697\) 7.83190e8 + 1.35652e9i 0.0876097 + 0.151744i
\(698\) 0 0
\(699\) −4.87039e9 −0.539378
\(700\) 0 0
\(701\) −4.88820e9 −0.535964 −0.267982 0.963424i \(-0.586357\pi\)
−0.267982 + 0.963424i \(0.586357\pi\)
\(702\) 0 0
\(703\) 1.11515e9 + 1.93149e9i 0.121057 + 0.209677i
\(704\) 0 0
\(705\) −8.87647e8 + 1.53745e9i −0.0954065 + 0.165249i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 3.97553e9 6.88582e9i 0.418922 0.725594i −0.576909 0.816808i \(-0.695741\pi\)
0.995831 + 0.0912141i \(0.0290748\pi\)
\(710\) 0 0
\(711\) −3.63947e8 6.30375e8i −0.0379748 0.0657742i
\(712\) 0 0
\(713\) −2.33464e8 −0.0241216
\(714\) 0 0
\(715\) −9.13756e8 −0.0934887
\(716\) 0 0
\(717\) 3.52527e9 + 6.10594e9i 0.357170 + 0.618637i
\(718\) 0 0
\(719\) 6.50173e9 1.12613e10i 0.652346 1.12990i −0.330206 0.943909i \(-0.607118\pi\)
0.982552 0.185987i \(-0.0595484\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 2.66971e8 4.62407e8i 0.0262712 0.0455031i
\(724\) 0 0
\(725\) −7.08861e9 1.22778e10i −0.690841 1.19657i
\(726\) 0 0
\(727\) −1.73805e10 −1.67761 −0.838805 0.544431i \(-0.816745\pi\)
−0.838805 + 0.544431i \(0.816745\pi\)
\(728\) 0 0
\(729\) 3.87420e8 0.0370370
\(730\) 0 0
\(731\) 2.75211e8 + 4.76680e8i 0.0260589 + 0.0451353i
\(732\) 0 0
\(733\) −4.73557e9 + 8.20225e9i −0.444128 + 0.769253i −0.997991 0.0633553i \(-0.979820\pi\)
0.553863 + 0.832608i \(0.313153\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −2.94485e9 + 5.10062e9i −0.270973 + 0.469339i
\(738\) 0 0
\(739\) −2.76457e9 4.78837e9i −0.251983 0.436448i 0.712088 0.702090i \(-0.247749\pi\)
−0.964072 + 0.265642i \(0.914416\pi\)
\(740\) 0 0
\(741\) 5.90904e8 0.0533523
\(742\) 0 0
\(743\) −1.53701e10 −1.37472 −0.687362 0.726315i \(-0.741231\pi\)
−0.687362 + 0.726315i \(0.741231\pi\)
\(744\) 0 0
\(745\) 3.53552e9 + 6.12370e9i 0.313261 + 0.542584i
\(746\) 0 0
\(747\) −1.42082e9 + 2.46094e9i −0.124715 + 0.216012i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 4.25975e9 7.37811e9i 0.366982 0.635631i −0.622110 0.782930i \(-0.713724\pi\)
0.989092 + 0.147299i \(0.0470578\pi\)
\(752\) 0 0
\(753\) 2.07589e9 + 3.59555e9i 0.177183 + 0.306890i
\(754\) 0 0
\(755\) −2.56970e9 −0.217304
\(756\) 0 0
\(757\) −4.72648e8 −0.0396006 −0.0198003 0.999804i \(-0.506303\pi\)
−0.0198003 + 0.999804i \(0.506303\pi\)
\(758\) 0 0
\(759\) 7.42239e7 + 1.28560e8i 0.00616166 + 0.0106723i
\(760\) 0 0
\(761\) 7.17326e9 1.24245e10i 0.590025 1.02195i −0.404203 0.914669i \(-0.632451\pi\)
0.994228 0.107284i \(-0.0342154\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −2.15055e8 + 3.72486e8i −0.0173674 + 0.0300812i
\(766\) 0 0
\(767\) −8.82990e8 1.52938e9i −0.0706597 0.122386i
\(768\) 0 0
\(769\) 1.39480e10 1.10603 0.553017 0.833170i \(-0.313476\pi\)
0.553017 + 0.833170i \(0.313476\pi\)
\(770\) 0 0
\(771\) 3.87073e9 0.304160
\(772\) 0 0
\(773\) 2.16169e9 + 3.74415e9i 0.168331 + 0.291558i 0.937833 0.347086i \(-0.112829\pi\)
−0.769502 + 0.638644i \(0.779496\pi\)
\(774\) 0 0
\(775\) −4.01229e9 + 6.94949e9i −0.309625 + 0.536287i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 8.81951e8 1.52758e9i 0.0668442 0.115777i
\(780\) 0 0
\(781\) 1.65221e9 + 2.86172e9i 0.124105 + 0.214955i
\(782\) 0 0
\(783\) 4.09615e9 0.304937