Properties

Label 588.8.i.d
Level $588$
Weight $8$
Character orbit 588.i
Analytic conductor $183.682$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [588,8,Mod(361,588)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(588, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("588.361");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 588.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(183.682394985\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 84)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (27 \zeta_{6} - 27) q^{3} + 240 \zeta_{6} q^{5} - 729 \zeta_{6} q^{9} + (702 \zeta_{6} - 702) q^{11} - 3958 q^{13} - 6480 q^{15} + ( - 3408 \zeta_{6} + 3408) q^{17} + 49036 \zeta_{6} q^{19} + 11514 \zeta_{6} q^{23} + \cdots + 511758 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 27 q^{3} + 240 q^{5} - 729 q^{9} - 702 q^{11} - 7916 q^{13} - 12960 q^{15} + 3408 q^{17} + 49036 q^{19} + 11514 q^{23} + 20525 q^{25} + 39366 q^{27} + 99324 q^{29} + 113320 q^{31} - 18954 q^{33} + 66886 q^{37}+ \cdots + 1023516 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/588\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(295\) \(493\)
\(\chi(n)\) \(1\) \(1\) \(-\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
361.1
0.500000 + 0.866025i
0.500000 0.866025i
0 −13.5000 + 23.3827i 0 120.000 + 207.846i 0 0 0 −364.500 631.333i 0
373.1 0 −13.5000 23.3827i 0 120.000 207.846i 0 0 0 −364.500 + 631.333i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 588.8.i.d 2
7.b odd 2 1 588.8.i.e 2
7.c even 3 1 84.8.a.b 1
7.c even 3 1 inner 588.8.i.d 2
7.d odd 6 1 588.8.a.b 1
7.d odd 6 1 588.8.i.e 2
21.h odd 6 1 252.8.a.b 1
28.g odd 6 1 336.8.a.c 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
84.8.a.b 1 7.c even 3 1
252.8.a.b 1 21.h odd 6 1
336.8.a.c 1 28.g odd 6 1
588.8.a.b 1 7.d odd 6 1
588.8.i.d 2 1.a even 1 1 trivial
588.8.i.d 2 7.c even 3 1 inner
588.8.i.e 2 7.b odd 2 1
588.8.i.e 2 7.d odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{2} - 240T_{5} + 57600 \) acting on \(S_{8}^{\mathrm{new}}(588, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 27T + 729 \) Copy content Toggle raw display
$5$ \( T^{2} - 240T + 57600 \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 702T + 492804 \) Copy content Toggle raw display
$13$ \( (T + 3958)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} - 3408 T + 11614464 \) Copy content Toggle raw display
$19$ \( T^{2} + \cdots + 2404529296 \) Copy content Toggle raw display
$23$ \( T^{2} - 11514 T + 132572196 \) Copy content Toggle raw display
$29$ \( (T - 49662)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} + \cdots + 12841422400 \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots + 4473736996 \) Copy content Toggle raw display
$41$ \( (T + 360900)^{2} \) Copy content Toggle raw display
$43$ \( (T + 765292)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots + 1808691455376 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots + 128853717444 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots + 865882358784 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots + 1739323119556 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots + 3585205919296 \) Copy content Toggle raw display
$71$ \( (T - 227994)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots + 616121384356 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots + 4413747195664 \) Copy content Toggle raw display
$83$ \( (T - 8629308)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots + 34846589610000 \) Copy content Toggle raw display
$97$ \( (T - 773846)^{2} \) Copy content Toggle raw display
show more
show less