Properties

Label 588.8.a.c.1.1
Level $588$
Weight $8$
Character 588.1
Self dual yes
Analytic conductor $183.682$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [588,8,Mod(1,588)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(588, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("588.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 588.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(183.682394985\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 84)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 588.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+27.0000 q^{3} -100.000 q^{5} +729.000 q^{9} +O(q^{10})\) \(q+27.0000 q^{3} -100.000 q^{5} +729.000 q^{9} +2774.00 q^{11} +3294.00 q^{13} -2700.00 q^{15} -5900.00 q^{17} -6644.00 q^{19} +1982.00 q^{23} -68125.0 q^{25} +19683.0 q^{27} -208106. q^{29} +117792. q^{31} +74898.0 q^{33} -335686. q^{37} +88938.0 q^{39} +265488. q^{41} -93292.0 q^{43} -72900.0 q^{45} +657516. q^{47} -159300. q^{51} -608718. q^{53} -277400. q^{55} -179388. q^{57} +536120. q^{59} +1.79709e6 q^{61} -329400. q^{65} +2.12318e6 q^{67} +53514.0 q^{69} -1.19121e6 q^{71} -1.05643e6 q^{73} -1.83938e6 q^{75} +998484. q^{79} +531441. q^{81} -3.89800e6 q^{83} +590000. q^{85} -5.61886e6 q^{87} +4.62235e6 q^{89} +3.18038e6 q^{93} +664400. q^{95} -1.52877e7 q^{97} +2.02225e6 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 27.0000 0.577350
\(4\) 0 0
\(5\) −100.000 −0.357771 −0.178885 0.983870i \(-0.557249\pi\)
−0.178885 + 0.983870i \(0.557249\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 729.000 0.333333
\(10\) 0 0
\(11\) 2774.00 0.628394 0.314197 0.949358i \(-0.398265\pi\)
0.314197 + 0.949358i \(0.398265\pi\)
\(12\) 0 0
\(13\) 3294.00 0.415836 0.207918 0.978146i \(-0.433331\pi\)
0.207918 + 0.978146i \(0.433331\pi\)
\(14\) 0 0
\(15\) −2700.00 −0.206559
\(16\) 0 0
\(17\) −5900.00 −0.291260 −0.145630 0.989339i \(-0.546521\pi\)
−0.145630 + 0.989339i \(0.546521\pi\)
\(18\) 0 0
\(19\) −6644.00 −0.222225 −0.111112 0.993808i \(-0.535441\pi\)
−0.111112 + 0.993808i \(0.535441\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 1982.00 0.0339669 0.0169835 0.999856i \(-0.494594\pi\)
0.0169835 + 0.999856i \(0.494594\pi\)
\(24\) 0 0
\(25\) −68125.0 −0.872000
\(26\) 0 0
\(27\) 19683.0 0.192450
\(28\) 0 0
\(29\) −208106. −1.58450 −0.792249 0.610198i \(-0.791090\pi\)
−0.792249 + 0.610198i \(0.791090\pi\)
\(30\) 0 0
\(31\) 117792. 0.710150 0.355075 0.934838i \(-0.384455\pi\)
0.355075 + 0.934838i \(0.384455\pi\)
\(32\) 0 0
\(33\) 74898.0 0.362803
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −335686. −1.08950 −0.544750 0.838599i \(-0.683375\pi\)
−0.544750 + 0.838599i \(0.683375\pi\)
\(38\) 0 0
\(39\) 88938.0 0.240083
\(40\) 0 0
\(41\) 265488. 0.601591 0.300796 0.953689i \(-0.402748\pi\)
0.300796 + 0.953689i \(0.402748\pi\)
\(42\) 0 0
\(43\) −93292.0 −0.178939 −0.0894695 0.995990i \(-0.528517\pi\)
−0.0894695 + 0.995990i \(0.528517\pi\)
\(44\) 0 0
\(45\) −72900.0 −0.119257
\(46\) 0 0
\(47\) 657516. 0.923770 0.461885 0.886940i \(-0.347173\pi\)
0.461885 + 0.886940i \(0.347173\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −159300. −0.168159
\(52\) 0 0
\(53\) −608718. −0.561630 −0.280815 0.959762i \(-0.590605\pi\)
−0.280815 + 0.959762i \(0.590605\pi\)
\(54\) 0 0
\(55\) −277400. −0.224821
\(56\) 0 0
\(57\) −179388. −0.128301
\(58\) 0 0
\(59\) 536120. 0.339844 0.169922 0.985457i \(-0.445648\pi\)
0.169922 + 0.985457i \(0.445648\pi\)
\(60\) 0 0
\(61\) 1.79709e6 1.01371 0.506857 0.862030i \(-0.330807\pi\)
0.506857 + 0.862030i \(0.330807\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −329400. −0.148774
\(66\) 0 0
\(67\) 2.12318e6 0.862431 0.431215 0.902249i \(-0.358085\pi\)
0.431215 + 0.902249i \(0.358085\pi\)
\(68\) 0 0
\(69\) 53514.0 0.0196108
\(70\) 0 0
\(71\) −1.19121e6 −0.394990 −0.197495 0.980304i \(-0.563281\pi\)
−0.197495 + 0.980304i \(0.563281\pi\)
\(72\) 0 0
\(73\) −1.05643e6 −0.317842 −0.158921 0.987291i \(-0.550801\pi\)
−0.158921 + 0.987291i \(0.550801\pi\)
\(74\) 0 0
\(75\) −1.83938e6 −0.503449
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 998484. 0.227849 0.113924 0.993489i \(-0.463658\pi\)
0.113924 + 0.993489i \(0.463658\pi\)
\(80\) 0 0
\(81\) 531441. 0.111111
\(82\) 0 0
\(83\) −3.89800e6 −0.748288 −0.374144 0.927371i \(-0.622063\pi\)
−0.374144 + 0.927371i \(0.622063\pi\)
\(84\) 0 0
\(85\) 590000. 0.104204
\(86\) 0 0
\(87\) −5.61886e6 −0.914810
\(88\) 0 0
\(89\) 4.62235e6 0.695021 0.347511 0.937676i \(-0.387027\pi\)
0.347511 + 0.937676i \(0.387027\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 3.18038e6 0.410005
\(94\) 0 0
\(95\) 664400. 0.0795055
\(96\) 0 0
\(97\) −1.52877e7 −1.70075 −0.850377 0.526174i \(-0.823626\pi\)
−0.850377 + 0.526174i \(0.823626\pi\)
\(98\) 0 0
\(99\) 2.02225e6 0.209465
\(100\) 0 0
\(101\) −2.23869e6 −0.216207 −0.108103 0.994140i \(-0.534478\pi\)
−0.108103 + 0.994140i \(0.534478\pi\)
\(102\) 0 0
\(103\) −1.24502e7 −1.12266 −0.561328 0.827593i \(-0.689709\pi\)
−0.561328 + 0.827593i \(0.689709\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −7.58860e6 −0.598851 −0.299425 0.954120i \(-0.596795\pi\)
−0.299425 + 0.954120i \(0.596795\pi\)
\(108\) 0 0
\(109\) 5.17097e6 0.382454 0.191227 0.981546i \(-0.438753\pi\)
0.191227 + 0.981546i \(0.438753\pi\)
\(110\) 0 0
\(111\) −9.06352e6 −0.629023
\(112\) 0 0
\(113\) −9.63868e6 −0.628410 −0.314205 0.949355i \(-0.601738\pi\)
−0.314205 + 0.949355i \(0.601738\pi\)
\(114\) 0 0
\(115\) −198200. −0.0121524
\(116\) 0 0
\(117\) 2.40133e6 0.138612
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −1.17921e7 −0.605121
\(122\) 0 0
\(123\) 7.16818e6 0.347329
\(124\) 0 0
\(125\) 1.46250e7 0.669747
\(126\) 0 0
\(127\) 8.08309e6 0.350158 0.175079 0.984554i \(-0.443982\pi\)
0.175079 + 0.984554i \(0.443982\pi\)
\(128\) 0 0
\(129\) −2.51888e6 −0.103310
\(130\) 0 0
\(131\) 1.97585e7 0.767901 0.383951 0.923354i \(-0.374563\pi\)
0.383951 + 0.923354i \(0.374563\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −1.96830e6 −0.0688530
\(136\) 0 0
\(137\) −4.80896e7 −1.59783 −0.798913 0.601447i \(-0.794591\pi\)
−0.798913 + 0.601447i \(0.794591\pi\)
\(138\) 0 0
\(139\) −1.37173e7 −0.433229 −0.216615 0.976257i \(-0.569501\pi\)
−0.216615 + 0.976257i \(0.569501\pi\)
\(140\) 0 0
\(141\) 1.77529e7 0.533339
\(142\) 0 0
\(143\) 9.13756e6 0.261309
\(144\) 0 0
\(145\) 2.08106e7 0.566887
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −7.07104e7 −1.75118 −0.875591 0.483053i \(-0.839528\pi\)
−0.875591 + 0.483053i \(0.839528\pi\)
\(150\) 0 0
\(151\) −2.56970e7 −0.607383 −0.303691 0.952770i \(-0.598219\pi\)
−0.303691 + 0.952770i \(0.598219\pi\)
\(152\) 0 0
\(153\) −4.30110e6 −0.0970867
\(154\) 0 0
\(155\) −1.17792e7 −0.254071
\(156\) 0 0
\(157\) −2.09180e7 −0.431390 −0.215695 0.976461i \(-0.569202\pi\)
−0.215695 + 0.976461i \(0.569202\pi\)
\(158\) 0 0
\(159\) −1.64354e7 −0.324257
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 5.44160e7 0.984169 0.492084 0.870547i \(-0.336235\pi\)
0.492084 + 0.870547i \(0.336235\pi\)
\(164\) 0 0
\(165\) −7.48980e6 −0.129801
\(166\) 0 0
\(167\) −6.41888e6 −0.106648 −0.0533238 0.998577i \(-0.516982\pi\)
−0.0533238 + 0.998577i \(0.516982\pi\)
\(168\) 0 0
\(169\) −5.18981e7 −0.827081
\(170\) 0 0
\(171\) −4.84348e6 −0.0740748
\(172\) 0 0
\(173\) 5.46532e7 0.802517 0.401259 0.915965i \(-0.368573\pi\)
0.401259 + 0.915965i \(0.368573\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 1.44752e7 0.196209
\(178\) 0 0
\(179\) −3.76658e7 −0.490865 −0.245433 0.969414i \(-0.578930\pi\)
−0.245433 + 0.969414i \(0.578930\pi\)
\(180\) 0 0
\(181\) −1.76788e7 −0.221604 −0.110802 0.993842i \(-0.535342\pi\)
−0.110802 + 0.993842i \(0.535342\pi\)
\(182\) 0 0
\(183\) 4.85214e7 0.585268
\(184\) 0 0
\(185\) 3.35686e7 0.389791
\(186\) 0 0
\(187\) −1.63666e7 −0.183026
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 4.09177e7 0.424907 0.212454 0.977171i \(-0.431855\pi\)
0.212454 + 0.977171i \(0.431855\pi\)
\(192\) 0 0
\(193\) −1.63827e8 −1.64034 −0.820171 0.572118i \(-0.806122\pi\)
−0.820171 + 0.572118i \(0.806122\pi\)
\(194\) 0 0
\(195\) −8.89380e6 −0.0858947
\(196\) 0 0
\(197\) 8.02076e7 0.747453 0.373726 0.927539i \(-0.378080\pi\)
0.373726 + 0.927539i \(0.378080\pi\)
\(198\) 0 0
\(199\) −9.83219e7 −0.884432 −0.442216 0.896908i \(-0.645808\pi\)
−0.442216 + 0.896908i \(0.645808\pi\)
\(200\) 0 0
\(201\) 5.73258e7 0.497925
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −2.65488e7 −0.215232
\(206\) 0 0
\(207\) 1.44488e6 0.0113223
\(208\) 0 0
\(209\) −1.84305e7 −0.139645
\(210\) 0 0
\(211\) 1.36321e8 0.999021 0.499510 0.866308i \(-0.333513\pi\)
0.499510 + 0.866308i \(0.333513\pi\)
\(212\) 0 0
\(213\) −3.21628e7 −0.228047
\(214\) 0 0
\(215\) 9.32920e6 0.0640191
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −2.85236e7 −0.183506
\(220\) 0 0
\(221\) −1.94346e7 −0.121116
\(222\) 0 0
\(223\) −1.26358e8 −0.763019 −0.381510 0.924365i \(-0.624596\pi\)
−0.381510 + 0.924365i \(0.624596\pi\)
\(224\) 0 0
\(225\) −4.96631e7 −0.290667
\(226\) 0 0
\(227\) −2.34007e8 −1.32782 −0.663909 0.747814i \(-0.731104\pi\)
−0.663909 + 0.747814i \(0.731104\pi\)
\(228\) 0 0
\(229\) −6.83606e7 −0.376168 −0.188084 0.982153i \(-0.560228\pi\)
−0.188084 + 0.982153i \(0.560228\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 1.80385e8 0.934230 0.467115 0.884197i \(-0.345293\pi\)
0.467115 + 0.884197i \(0.345293\pi\)
\(234\) 0 0
\(235\) −6.57516e7 −0.330498
\(236\) 0 0
\(237\) 2.69591e7 0.131548
\(238\) 0 0
\(239\) 2.61131e8 1.23727 0.618637 0.785677i \(-0.287685\pi\)
0.618637 + 0.785677i \(0.287685\pi\)
\(240\) 0 0
\(241\) −1.97756e7 −0.0910061 −0.0455031 0.998964i \(-0.514489\pi\)
−0.0455031 + 0.998964i \(0.514489\pi\)
\(242\) 0 0
\(243\) 1.43489e7 0.0641500
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −2.18853e7 −0.0924089
\(248\) 0 0
\(249\) −1.05246e8 −0.432024
\(250\) 0 0
\(251\) −1.53770e8 −0.613779 −0.306890 0.951745i \(-0.599288\pi\)
−0.306890 + 0.951745i \(0.599288\pi\)
\(252\) 0 0
\(253\) 5.49807e6 0.0213446
\(254\) 0 0
\(255\) 1.59300e7 0.0601624
\(256\) 0 0
\(257\) 1.43360e8 0.526821 0.263411 0.964684i \(-0.415153\pi\)
0.263411 + 0.964684i \(0.415153\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −1.51709e8 −0.528166
\(262\) 0 0
\(263\) −5.07301e8 −1.71957 −0.859786 0.510654i \(-0.829403\pi\)
−0.859786 + 0.510654i \(0.829403\pi\)
\(264\) 0 0
\(265\) 6.08718e7 0.200935
\(266\) 0 0
\(267\) 1.24804e8 0.401271
\(268\) 0 0
\(269\) −5.27886e8 −1.65351 −0.826755 0.562562i \(-0.809816\pi\)
−0.826755 + 0.562562i \(0.809816\pi\)
\(270\) 0 0
\(271\) 5.05836e8 1.54389 0.771947 0.635687i \(-0.219283\pi\)
0.771947 + 0.635687i \(0.219283\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −1.88979e8 −0.547960
\(276\) 0 0
\(277\) −5.88586e8 −1.66391 −0.831956 0.554841i \(-0.812779\pi\)
−0.831956 + 0.554841i \(0.812779\pi\)
\(278\) 0 0
\(279\) 8.58704e7 0.236717
\(280\) 0 0
\(281\) 8.65142e7 0.232603 0.116301 0.993214i \(-0.462896\pi\)
0.116301 + 0.993214i \(0.462896\pi\)
\(282\) 0 0
\(283\) 1.57301e8 0.412552 0.206276 0.978494i \(-0.433866\pi\)
0.206276 + 0.978494i \(0.433866\pi\)
\(284\) 0 0
\(285\) 1.79388e7 0.0459025
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −3.75529e8 −0.915168
\(290\) 0 0
\(291\) −4.12768e8 −0.981930
\(292\) 0 0
\(293\) −6.80964e8 −1.58157 −0.790783 0.612097i \(-0.790326\pi\)
−0.790783 + 0.612097i \(0.790326\pi\)
\(294\) 0 0
\(295\) −5.36120e7 −0.121586
\(296\) 0 0
\(297\) 5.46006e7 0.120934
\(298\) 0 0
\(299\) 6.52871e6 0.0141247
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −6.04446e7 −0.124827
\(304\) 0 0
\(305\) −1.79709e8 −0.362677
\(306\) 0 0
\(307\) −2.81734e8 −0.555718 −0.277859 0.960622i \(-0.589625\pi\)
−0.277859 + 0.960622i \(0.589625\pi\)
\(308\) 0 0
\(309\) −3.36156e8 −0.648166
\(310\) 0 0
\(311\) 4.19719e8 0.791220 0.395610 0.918419i \(-0.370533\pi\)
0.395610 + 0.918419i \(0.370533\pi\)
\(312\) 0 0
\(313\) 2.28684e8 0.421532 0.210766 0.977537i \(-0.432404\pi\)
0.210766 + 0.977537i \(0.432404\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 2.66003e8 0.469006 0.234503 0.972115i \(-0.424654\pi\)
0.234503 + 0.972115i \(0.424654\pi\)
\(318\) 0 0
\(319\) −5.77286e8 −0.995689
\(320\) 0 0
\(321\) −2.04892e8 −0.345747
\(322\) 0 0
\(323\) 3.91996e7 0.0647251
\(324\) 0 0
\(325\) −2.24404e8 −0.362609
\(326\) 0 0
\(327\) 1.39616e8 0.220810
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −7.16107e8 −1.08538 −0.542688 0.839935i \(-0.682593\pi\)
−0.542688 + 0.839935i \(0.682593\pi\)
\(332\) 0 0
\(333\) −2.44715e8 −0.363167
\(334\) 0 0
\(335\) −2.12318e8 −0.308553
\(336\) 0 0
\(337\) 5.70266e8 0.811657 0.405829 0.913949i \(-0.366983\pi\)
0.405829 + 0.913949i \(0.366983\pi\)
\(338\) 0 0
\(339\) −2.60244e8 −0.362813
\(340\) 0 0
\(341\) 3.26755e8 0.446254
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −5.35140e6 −0.00701618
\(346\) 0 0
\(347\) −1.64641e8 −0.211536 −0.105768 0.994391i \(-0.533730\pi\)
−0.105768 + 0.994391i \(0.533730\pi\)
\(348\) 0 0
\(349\) −1.31564e9 −1.65671 −0.828357 0.560200i \(-0.810724\pi\)
−0.828357 + 0.560200i \(0.810724\pi\)
\(350\) 0 0
\(351\) 6.48358e7 0.0800276
\(352\) 0 0
\(353\) −1.56118e9 −1.88904 −0.944518 0.328459i \(-0.893471\pi\)
−0.944518 + 0.328459i \(0.893471\pi\)
\(354\) 0 0
\(355\) 1.19121e8 0.141316
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −8.60716e8 −0.981814 −0.490907 0.871212i \(-0.663335\pi\)
−0.490907 + 0.871212i \(0.663335\pi\)
\(360\) 0 0
\(361\) −8.49729e8 −0.950616
\(362\) 0 0
\(363\) −3.18387e8 −0.349367
\(364\) 0 0
\(365\) 1.05643e8 0.113714
\(366\) 0 0
\(367\) −9.12133e8 −0.963223 −0.481612 0.876385i \(-0.659948\pi\)
−0.481612 + 0.876385i \(0.659948\pi\)
\(368\) 0 0
\(369\) 1.93541e8 0.200530
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 2.36004e8 0.235472 0.117736 0.993045i \(-0.462436\pi\)
0.117736 + 0.993045i \(0.462436\pi\)
\(374\) 0 0
\(375\) 3.94875e8 0.386679
\(376\) 0 0
\(377\) −6.85501e8 −0.658891
\(378\) 0 0
\(379\) 8.29313e8 0.782495 0.391247 0.920286i \(-0.372044\pi\)
0.391247 + 0.920286i \(0.372044\pi\)
\(380\) 0 0
\(381\) 2.18243e8 0.202164
\(382\) 0 0
\(383\) 1.21663e9 1.10653 0.553265 0.833005i \(-0.313382\pi\)
0.553265 + 0.833005i \(0.313382\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −6.80099e7 −0.0596463
\(388\) 0 0
\(389\) −1.18213e8 −0.101822 −0.0509109 0.998703i \(-0.516212\pi\)
−0.0509109 + 0.998703i \(0.516212\pi\)
\(390\) 0 0
\(391\) −1.16938e7 −0.00989321
\(392\) 0 0
\(393\) 5.33481e8 0.443348
\(394\) 0 0
\(395\) −9.98484e7 −0.0815176
\(396\) 0 0
\(397\) −3.62565e7 −0.0290817 −0.0145408 0.999894i \(-0.504629\pi\)
−0.0145408 + 0.999894i \(0.504629\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 5.06850e8 0.392531 0.196265 0.980551i \(-0.437119\pi\)
0.196265 + 0.980551i \(0.437119\pi\)
\(402\) 0 0
\(403\) 3.88007e8 0.295306
\(404\) 0 0
\(405\) −5.31441e7 −0.0397523
\(406\) 0 0
\(407\) −9.31193e8 −0.684635
\(408\) 0 0
\(409\) −1.68121e9 −1.21504 −0.607519 0.794305i \(-0.707835\pi\)
−0.607519 + 0.794305i \(0.707835\pi\)
\(410\) 0 0
\(411\) −1.29842e9 −0.922505
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 3.89800e8 0.267716
\(416\) 0 0
\(417\) −3.70368e8 −0.250125
\(418\) 0 0
\(419\) −4.94962e8 −0.328718 −0.164359 0.986401i \(-0.552556\pi\)
−0.164359 + 0.986401i \(0.552556\pi\)
\(420\) 0 0
\(421\) −6.57487e7 −0.0429437 −0.0214719 0.999769i \(-0.506835\pi\)
−0.0214719 + 0.999769i \(0.506835\pi\)
\(422\) 0 0
\(423\) 4.79329e8 0.307923
\(424\) 0 0
\(425\) 4.01938e8 0.253979
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 2.46714e8 0.150867
\(430\) 0 0
\(431\) −1.33418e9 −0.802682 −0.401341 0.915929i \(-0.631456\pi\)
−0.401341 + 0.915929i \(0.631456\pi\)
\(432\) 0 0
\(433\) 2.47903e7 0.0146749 0.00733745 0.999973i \(-0.497664\pi\)
0.00733745 + 0.999973i \(0.497664\pi\)
\(434\) 0 0
\(435\) 5.61886e8 0.327292
\(436\) 0 0
\(437\) −1.31684e7 −0.00754828
\(438\) 0 0
\(439\) 6.89327e8 0.388866 0.194433 0.980916i \(-0.437713\pi\)
0.194433 + 0.980916i \(0.437713\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −5.74617e8 −0.314026 −0.157013 0.987597i \(-0.550186\pi\)
−0.157013 + 0.987597i \(0.550186\pi\)
\(444\) 0 0
\(445\) −4.62235e8 −0.248658
\(446\) 0 0
\(447\) −1.90918e9 −1.01105
\(448\) 0 0
\(449\) 9.56884e7 0.0498881 0.0249440 0.999689i \(-0.492059\pi\)
0.0249440 + 0.999689i \(0.492059\pi\)
\(450\) 0 0
\(451\) 7.36464e8 0.378036
\(452\) 0 0
\(453\) −6.93818e8 −0.350672
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −4.73089e7 −0.0231866 −0.0115933 0.999933i \(-0.503690\pi\)
−0.0115933 + 0.999933i \(0.503690\pi\)
\(458\) 0 0
\(459\) −1.16130e8 −0.0560530
\(460\) 0 0
\(461\) 2.13567e9 1.01527 0.507634 0.861573i \(-0.330520\pi\)
0.507634 + 0.861573i \(0.330520\pi\)
\(462\) 0 0
\(463\) 2.92675e8 0.137042 0.0685208 0.997650i \(-0.478172\pi\)
0.0685208 + 0.997650i \(0.478172\pi\)
\(464\) 0 0
\(465\) −3.18038e8 −0.146688
\(466\) 0 0
\(467\) 3.53834e9 1.60765 0.803824 0.594868i \(-0.202796\pi\)
0.803824 + 0.594868i \(0.202796\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −5.64785e8 −0.249063
\(472\) 0 0
\(473\) −2.58792e8 −0.112444
\(474\) 0 0
\(475\) 4.52622e8 0.193780
\(476\) 0 0
\(477\) −4.43755e8 −0.187210
\(478\) 0 0
\(479\) 4.15698e9 1.72824 0.864120 0.503286i \(-0.167876\pi\)
0.864120 + 0.503286i \(0.167876\pi\)
\(480\) 0 0
\(481\) −1.10575e9 −0.453053
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 1.52877e9 0.608480
\(486\) 0 0
\(487\) 1.24092e8 0.0486847 0.0243423 0.999704i \(-0.492251\pi\)
0.0243423 + 0.999704i \(0.492251\pi\)
\(488\) 0 0
\(489\) 1.46923e9 0.568210
\(490\) 0 0
\(491\) −3.29218e9 −1.25516 −0.627578 0.778554i \(-0.715954\pi\)
−0.627578 + 0.778554i \(0.715954\pi\)
\(492\) 0 0
\(493\) 1.22783e9 0.461501
\(494\) 0 0
\(495\) −2.02225e8 −0.0749404
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −3.60439e8 −0.129861 −0.0649306 0.997890i \(-0.520683\pi\)
−0.0649306 + 0.997890i \(0.520683\pi\)
\(500\) 0 0
\(501\) −1.73310e8 −0.0615731
\(502\) 0 0
\(503\) 4.29760e9 1.50570 0.752849 0.658193i \(-0.228679\pi\)
0.752849 + 0.658193i \(0.228679\pi\)
\(504\) 0 0
\(505\) 2.23869e8 0.0773524
\(506\) 0 0
\(507\) −1.40125e9 −0.477515
\(508\) 0 0
\(509\) 5.42588e8 0.182372 0.0911860 0.995834i \(-0.470934\pi\)
0.0911860 + 0.995834i \(0.470934\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −1.30774e8 −0.0427671
\(514\) 0 0
\(515\) 1.24502e9 0.401654
\(516\) 0 0
\(517\) 1.82395e9 0.580492
\(518\) 0 0
\(519\) 1.47564e9 0.463334
\(520\) 0 0
\(521\) 2.36755e8 0.0733445 0.0366722 0.999327i \(-0.488324\pi\)
0.0366722 + 0.999327i \(0.488324\pi\)
\(522\) 0 0
\(523\) −6.48324e9 −1.98169 −0.990846 0.135000i \(-0.956896\pi\)
−0.990846 + 0.135000i \(0.956896\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −6.94973e8 −0.206838
\(528\) 0 0
\(529\) −3.40090e9 −0.998846
\(530\) 0 0
\(531\) 3.90831e8 0.113281
\(532\) 0 0
\(533\) 8.74517e8 0.250163
\(534\) 0 0
\(535\) 7.58860e8 0.214251
\(536\) 0 0
\(537\) −1.01698e9 −0.283401
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −1.50099e8 −0.0407556 −0.0203778 0.999792i \(-0.506487\pi\)
−0.0203778 + 0.999792i \(0.506487\pi\)
\(542\) 0 0
\(543\) −4.77328e8 −0.127943
\(544\) 0 0
\(545\) −5.17097e8 −0.136831
\(546\) 0 0
\(547\) 3.32631e9 0.868974 0.434487 0.900678i \(-0.356930\pi\)
0.434487 + 0.900678i \(0.356930\pi\)
\(548\) 0 0
\(549\) 1.31008e9 0.337905
\(550\) 0 0
\(551\) 1.38266e9 0.352114
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 9.06352e8 0.225046
\(556\) 0 0
\(557\) 4.72512e9 1.15856 0.579282 0.815127i \(-0.303333\pi\)
0.579282 + 0.815127i \(0.303333\pi\)
\(558\) 0 0
\(559\) −3.07304e8 −0.0744092
\(560\) 0 0
\(561\) −4.41898e8 −0.105670
\(562\) 0 0
\(563\) −7.11044e9 −1.67926 −0.839628 0.543162i \(-0.817227\pi\)
−0.839628 + 0.543162i \(0.817227\pi\)
\(564\) 0 0
\(565\) 9.63868e8 0.224827
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 6.55315e9 1.49127 0.745636 0.666353i \(-0.232146\pi\)
0.745636 + 0.666353i \(0.232146\pi\)
\(570\) 0 0
\(571\) 8.29277e9 1.86412 0.932059 0.362306i \(-0.118010\pi\)
0.932059 + 0.362306i \(0.118010\pi\)
\(572\) 0 0
\(573\) 1.10478e9 0.245320
\(574\) 0 0
\(575\) −1.35024e8 −0.0296192
\(576\) 0 0
\(577\) 5.88000e9 1.27427 0.637135 0.770752i \(-0.280119\pi\)
0.637135 + 0.770752i \(0.280119\pi\)
\(578\) 0 0
\(579\) −4.42333e9 −0.947052
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −1.68858e9 −0.352925
\(584\) 0 0
\(585\) −2.40133e8 −0.0495913
\(586\) 0 0
\(587\) 1.43194e9 0.292207 0.146103 0.989269i \(-0.453327\pi\)
0.146103 + 0.989269i \(0.453327\pi\)
\(588\) 0 0
\(589\) −7.82610e8 −0.157813
\(590\) 0 0
\(591\) 2.16561e9 0.431542
\(592\) 0 0
\(593\) −3.48138e9 −0.685584 −0.342792 0.939411i \(-0.611373\pi\)
−0.342792 + 0.939411i \(0.611373\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −2.65469e9 −0.510627
\(598\) 0 0
\(599\) 7.93597e9 1.50871 0.754356 0.656466i \(-0.227949\pi\)
0.754356 + 0.656466i \(0.227949\pi\)
\(600\) 0 0
\(601\) 4.05169e9 0.761335 0.380668 0.924712i \(-0.375694\pi\)
0.380668 + 0.924712i \(0.375694\pi\)
\(602\) 0 0
\(603\) 1.54780e9 0.287477
\(604\) 0 0
\(605\) 1.17921e9 0.216495
\(606\) 0 0
\(607\) −5.19159e9 −0.942194 −0.471097 0.882081i \(-0.656142\pi\)
−0.471097 + 0.882081i \(0.656142\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 2.16586e9 0.384137
\(612\) 0 0
\(613\) 3.69807e9 0.648430 0.324215 0.945983i \(-0.394900\pi\)
0.324215 + 0.945983i \(0.394900\pi\)
\(614\) 0 0
\(615\) −7.16818e8 −0.124264
\(616\) 0 0
\(617\) −6.19879e9 −1.06245 −0.531226 0.847230i \(-0.678268\pi\)
−0.531226 + 0.847230i \(0.678268\pi\)
\(618\) 0 0
\(619\) 2.85137e9 0.483211 0.241605 0.970375i \(-0.422326\pi\)
0.241605 + 0.970375i \(0.422326\pi\)
\(620\) 0 0
\(621\) 3.90117e7 0.00653694
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 3.85977e9 0.632384
\(626\) 0 0
\(627\) −4.97622e8 −0.0806238
\(628\) 0 0
\(629\) 1.98055e9 0.317328
\(630\) 0 0
\(631\) −7.56414e9 −1.19855 −0.599276 0.800543i \(-0.704545\pi\)
−0.599276 + 0.800543i \(0.704545\pi\)
\(632\) 0 0
\(633\) 3.68067e9 0.576785
\(634\) 0 0
\(635\) −8.08309e8 −0.125276
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −8.68395e8 −0.131663
\(640\) 0 0
\(641\) 1.12019e10 1.67991 0.839957 0.542653i \(-0.182580\pi\)
0.839957 + 0.542653i \(0.182580\pi\)
\(642\) 0 0
\(643\) −7.87742e9 −1.16855 −0.584273 0.811557i \(-0.698620\pi\)
−0.584273 + 0.811557i \(0.698620\pi\)
\(644\) 0 0
\(645\) 2.51888e8 0.0369615
\(646\) 0 0
\(647\) −1.24945e9 −0.181365 −0.0906825 0.995880i \(-0.528905\pi\)
−0.0906825 + 0.995880i \(0.528905\pi\)
\(648\) 0 0
\(649\) 1.48720e9 0.213556
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 7.52696e9 1.05785 0.528924 0.848669i \(-0.322596\pi\)
0.528924 + 0.848669i \(0.322596\pi\)
\(654\) 0 0
\(655\) −1.97585e9 −0.274733
\(656\) 0 0
\(657\) −7.70137e8 −0.105947
\(658\) 0 0
\(659\) 2.29417e9 0.312268 0.156134 0.987736i \(-0.450097\pi\)
0.156134 + 0.987736i \(0.450097\pi\)
\(660\) 0 0
\(661\) 5.08384e9 0.684679 0.342339 0.939576i \(-0.388781\pi\)
0.342339 + 0.939576i \(0.388781\pi\)
\(662\) 0 0
\(663\) −5.24734e8 −0.0699265
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −4.12466e8 −0.0538205
\(668\) 0 0
\(669\) −3.41166e9 −0.440529
\(670\) 0 0
\(671\) 4.98513e9 0.637012
\(672\) 0 0
\(673\) −5.62649e9 −0.711516 −0.355758 0.934578i \(-0.615777\pi\)
−0.355758 + 0.934578i \(0.615777\pi\)
\(674\) 0 0
\(675\) −1.34090e9 −0.167816
\(676\) 0 0
\(677\) 1.02745e10 1.27263 0.636314 0.771430i \(-0.280458\pi\)
0.636314 + 0.771430i \(0.280458\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −6.31819e9 −0.766616
\(682\) 0 0
\(683\) 1.55246e10 1.86443 0.932217 0.361901i \(-0.117872\pi\)
0.932217 + 0.361901i \(0.117872\pi\)
\(684\) 0 0
\(685\) 4.80896e9 0.571655
\(686\) 0 0
\(687\) −1.84574e9 −0.217181
\(688\) 0 0
\(689\) −2.00512e9 −0.233546
\(690\) 0 0
\(691\) −8.23449e9 −0.949432 −0.474716 0.880139i \(-0.657449\pi\)
−0.474716 + 0.880139i \(0.657449\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 1.37173e9 0.154997
\(696\) 0 0
\(697\) −1.56638e9 −0.175219
\(698\) 0 0
\(699\) 4.87039e9 0.539378
\(700\) 0 0
\(701\) −4.88820e9 −0.535964 −0.267982 0.963424i \(-0.586357\pi\)
−0.267982 + 0.963424i \(0.586357\pi\)
\(702\) 0 0
\(703\) 2.23030e9 0.242114
\(704\) 0 0
\(705\) −1.77529e9 −0.190813
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −7.95106e9 −0.837844 −0.418922 0.908022i \(-0.637592\pi\)
−0.418922 + 0.908022i \(0.637592\pi\)
\(710\) 0 0
\(711\) 7.27895e8 0.0759495
\(712\) 0 0
\(713\) 2.33464e8 0.0241216
\(714\) 0 0
\(715\) −9.13756e8 −0.0934887
\(716\) 0 0
\(717\) 7.05053e9 0.714340
\(718\) 0 0
\(719\) 1.30035e10 1.30469 0.652346 0.757921i \(-0.273785\pi\)
0.652346 + 0.757921i \(0.273785\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −5.33942e8 −0.0525424
\(724\) 0 0
\(725\) 1.41772e10 1.38168
\(726\) 0 0
\(727\) 1.73805e10 1.67761 0.838805 0.544431i \(-0.183255\pi\)
0.838805 + 0.544431i \(0.183255\pi\)
\(728\) 0 0
\(729\) 3.87420e8 0.0370370
\(730\) 0 0
\(731\) 5.50423e8 0.0521177
\(732\) 0 0
\(733\) −9.47114e9 −0.888256 −0.444128 0.895963i \(-0.646487\pi\)
−0.444128 + 0.895963i \(0.646487\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 5.88969e9 0.541946
\(738\) 0 0
\(739\) 5.52914e9 0.503967 0.251983 0.967732i \(-0.418917\pi\)
0.251983 + 0.967732i \(0.418917\pi\)
\(740\) 0 0
\(741\) −5.90904e8 −0.0533523
\(742\) 0 0
\(743\) −1.53701e10 −1.37472 −0.687362 0.726315i \(-0.741231\pi\)
−0.687362 + 0.726315i \(0.741231\pi\)
\(744\) 0 0
\(745\) 7.07104e9 0.626522
\(746\) 0 0
\(747\) −2.84164e9 −0.249429
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −8.51950e9 −0.733964 −0.366982 0.930228i \(-0.619609\pi\)
−0.366982 + 0.930228i \(0.619609\pi\)
\(752\) 0 0
\(753\) −4.15178e9 −0.354366
\(754\) 0 0
\(755\) 2.56970e9 0.217304
\(756\) 0 0
\(757\) −4.72648e8 −0.0396006 −0.0198003 0.999804i \(-0.506303\pi\)
−0.0198003 + 0.999804i \(0.506303\pi\)
\(758\) 0 0
\(759\) 1.48448e8 0.0123233
\(760\) 0 0
\(761\) 1.43465e10 1.18005 0.590025 0.807385i \(-0.299118\pi\)
0.590025 + 0.807385i \(0.299118\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 4.30110e8 0.0347348
\(766\) 0 0
\(767\) 1.76598e9 0.141319
\(768\) 0 0
\(769\) −1.39480e10 −1.10603 −0.553017 0.833170i \(-0.686524\pi\)
−0.553017 + 0.833170i \(0.686524\pi\)
\(770\) 0 0
\(771\) 3.87073e9 0.304160
\(772\) 0 0
\(773\) 4.32337e9 0.336662 0.168331 0.985731i \(-0.446162\pi\)
0.168331 + 0.985731i \(0.446162\pi\)
\(774\) 0 0
\(775\) −8.02458e9 −0.619250
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −1.76390e9 −0.133688
\(780\) 0 0
\(781\) −3.30443e9 −0.248209
\(782\) 0 0
\(783\) −4.09615e9 −0.304937
\(784\) 0 0
\(785\) 2.09180e9 0.154339
\(786\) 0 0
\(787\) −6.71201e9 −0.490842 −0.245421 0.969417i \(-0.578926\pi\)
−0.245421 + 0.969417i \(0.578926\pi\)
\(788\) 0 0
\(789\) −1.36971e10 −0.992796
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 5.91961e9 0.421539
\(794\) 0 0
\(795\) 1.64354e9 0.116010
\(796\) 0 0
\(797\) −5.61333e9 −0.392750 −0.196375 0.980529i \(-0.562917\pi\)
−0.196375 + 0.980529i \(0.562917\pi\)
\(798\) 0 0
\(799\) −3.87934e9 −0.269057
\(800\) 0 0
\(801\) 3.36969e9 0.231674
\(802\) 0 0
\(803\) −2.93054e9 −0.199730
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −1.42529e10 −0.954655
\(808\) 0 0
\(809\) 4.15844e9 0.276128 0.138064 0.990423i \(-0.455912\pi\)
0.138064 + 0.990423i \(0.455912\pi\)
\(810\) 0 0
\(811\) 1.11994e10 0.737259 0.368629 0.929576i \(-0.379827\pi\)
0.368629 + 0.929576i \(0.379827\pi\)
\(812\) 0 0
\(813\) 1.36576e10 0.891367
\(814\) 0 0
\(815\) −5.44160e9 −0.352107
\(816\) 0 0
\(817\) 6.19832e8 0.0397646
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 2.32872e10 1.46864 0.734322 0.678801i \(-0.237500\pi\)
0.734322 + 0.678801i \(0.237500\pi\)
\(822\) 0 0
\(823\) 9.31943e9 0.582761 0.291380 0.956607i \(-0.405886\pi\)
0.291380 + 0.956607i \(0.405886\pi\)
\(824\) 0 0
\(825\) −5.10243e9 −0.316365
\(826\) 0 0
\(827\) −1.16608e10 −0.716902 −0.358451 0.933548i \(-0.616695\pi\)
−0.358451 + 0.933548i \(0.616695\pi\)
\(828\) 0 0
\(829\) 2.31007e8 0.0140826 0.00704132 0.999975i \(-0.497759\pi\)
0.00704132 + 0.999975i \(0.497759\pi\)
\(830\) 0 0
\(831\) −1.58918e10 −0.960660
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 6.41888e8 0.0381554
\(836\) 0 0
\(837\) 2.31850e9 0.136668
\(838\) 0 0
\(839\) 2.77032e10 1.61943 0.809716 0.586822i \(-0.199621\pi\)
0.809716 + 0.586822i \(0.199621\pi\)
\(840\) 0 0
\(841\) 2.60582e10 1.51063
\(842\) 0 0
\(843\) 2.33588e9 0.134293
\(844\) 0 0
\(845\) 5.18981e9 0.295905
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 4.24712e9 0.238187
\(850\) 0 0
\(851\) −6.65330e8 −0.0370070
\(852\) 0 0
\(853\) −2.87010e10 −1.58335 −0.791673 0.610944i \(-0.790790\pi\)
−0.791673 + 0.610944i \(0.790790\pi\)
\(854\) 0 0
\(855\) 4.84348e8 0.0265018
\(856\) 0 0
\(857\) −1.44528e9 −0.0784366 −0.0392183 0.999231i \(-0.512487\pi\)
−0.0392183 + 0.999231i \(0.512487\pi\)
\(858\) 0 0
\(859\) −2.94906e10 −1.58748 −0.793738 0.608260i \(-0.791868\pi\)
−0.793738 + 0.608260i \(0.791868\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 8.87258e9 0.469907 0.234954 0.972007i \(-0.424506\pi\)
0.234954 + 0.972007i \(0.424506\pi\)
\(864\) 0 0
\(865\) −5.46532e9 −0.287117
\(866\) 0 0
\(867\) −1.01393e10 −0.528372
\(868\) 0 0
\(869\) 2.76979e9 0.143179
\(870\) 0 0
\(871\) 6.99374e9 0.358630
\(872\) 0 0
\(873\) −1.11447e10 −0.566918
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 1.57308e10 0.787504 0.393752 0.919217i \(-0.371177\pi\)
0.393752 + 0.919217i \(0.371177\pi\)
\(878\) 0 0
\(879\) −1.83860e10 −0.913117
\(880\) 0 0
\(881\) 9.12522e9 0.449602 0.224801 0.974405i \(-0.427827\pi\)
0.224801 + 0.974405i \(0.427827\pi\)
\(882\) 0 0
\(883\) 2.24538e10 1.09756 0.548778 0.835968i \(-0.315093\pi\)
0.548778 + 0.835968i \(0.315093\pi\)
\(884\) 0 0
\(885\) −1.44752e9 −0.0701979
\(886\) 0 0
\(887\) 3.43569e10 1.65303 0.826516 0.562913i \(-0.190320\pi\)
0.826516 + 0.562913i \(0.190320\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 1.47422e9 0.0698216
\(892\) 0 0
\(893\) −4.36854e9 −0.205284
\(894\) 0 0
\(895\) 3.76658e9 0.175617
\(896\) 0 0
\(897\) 1.76275e8 0.00815488
\(898\) 0 0
\(899\) −2.45132e10 −1.12523
\(900\) 0 0
\(901\) 3.59144e9 0.163580
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 1.76788e9 0.0792835
\(906\) 0 0
\(907\) −4.01062e10 −1.78478 −0.892392 0.451261i \(-0.850974\pi\)
−0.892392 + 0.451261i \(0.850974\pi\)
\(908\) 0 0
\(909\) −1.63200e9 −0.0720688
\(910\) 0 0
\(911\) −3.70230e10 −1.62240 −0.811200 0.584769i \(-0.801185\pi\)
−0.811200 + 0.584769i \(0.801185\pi\)
\(912\) 0 0
\(913\) −1.08131e10 −0.470220
\(914\) 0 0
\(915\) −4.85214e9 −0.209392
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −3.37645e10 −1.43501 −0.717507 0.696551i \(-0.754717\pi\)
−0.717507 + 0.696551i \(0.754717\pi\)
\(920\) 0 0
\(921\) −7.60681e9 −0.320844
\(922\) 0 0
\(923\) −3.92386e9 −0.164251
\(924\) 0 0
\(925\) 2.28686e10 0.950044
\(926\) 0 0
\(927\) −9.07621e9 −0.374219
\(928\) 0 0
\(929\) 4.77100e10 1.95233 0.976167 0.217019i \(-0.0696332\pi\)
0.976167 + 0.217019i \(0.0696332\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 1.13324e10 0.456811
\(934\) 0 0
\(935\) 1.63666e9 0.0654814
\(936\) 0 0
\(937\) −3.86353e8 −0.0153425 −0.00767125 0.999971i \(-0.502442\pi\)
−0.00767125 + 0.999971i \(0.502442\pi\)
\(938\) 0 0
\(939\) 6.17447e9 0.243372
\(940\) 0 0
\(941\) 2.79446e10 1.09329 0.546643 0.837366i \(-0.315905\pi\)
0.546643 + 0.837366i \(0.315905\pi\)
\(942\) 0 0
\(943\) 5.26197e8 0.0204342
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −5.50921e9 −0.210797 −0.105399 0.994430i \(-0.533612\pi\)
−0.105399 + 0.994430i \(0.533612\pi\)
\(948\) 0 0
\(949\) −3.47988e9 −0.132170
\(950\) 0 0
\(951\) 7.18207e9 0.270781
\(952\) 0 0
\(953\) −7.40406e9 −0.277105 −0.138553 0.990355i \(-0.544245\pi\)
−0.138553 + 0.990355i \(0.544245\pi\)
\(954\) 0 0
\(955\) −4.09177e9 −0.152019
\(956\) 0 0
\(957\) −1.55867e10 −0.574861
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −1.36377e10 −0.495687
\(962\) 0 0
\(963\) −5.53209e9 −0.199617
\(964\) 0 0
\(965\) 1.63827e10 0.586867
\(966\) 0 0
\(967\) 1.97731e10 0.703204 0.351602 0.936149i \(-0.385637\pi\)
0.351602 + 0.936149i \(0.385637\pi\)
\(968\) 0 0
\(969\) 1.05839e9 0.0373691
\(970\) 0 0
\(971\) 2.81294e10 0.986037 0.493018 0.870019i \(-0.335894\pi\)
0.493018 + 0.870019i \(0.335894\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −6.05890e9 −0.209352
\(976\) 0 0
\(977\) 9.63337e8 0.0330482 0.0165241 0.999863i \(-0.494740\pi\)
0.0165241 + 0.999863i \(0.494740\pi\)
\(978\) 0 0
\(979\) 1.28224e10 0.436747
\(980\) 0 0
\(981\) 3.76963e9 0.127485
\(982\) 0 0
\(983\) −4.20434e10 −1.41176 −0.705879 0.708332i \(-0.749448\pi\)
−0.705879 + 0.708332i \(0.749448\pi\)
\(984\) 0 0
\(985\) −8.02076e9 −0.267417
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −1.84905e8 −0.00607800
\(990\) 0 0
\(991\) −2.87955e10 −0.939869 −0.469934 0.882701i \(-0.655722\pi\)
−0.469934 + 0.882701i \(0.655722\pi\)
\(992\) 0 0
\(993\) −1.93349e10 −0.626642
\(994\) 0 0
\(995\) 9.83219e9 0.316424
\(996\) 0 0
\(997\) 3.54828e10 1.13393 0.566963 0.823743i \(-0.308118\pi\)
0.566963 + 0.823743i \(0.308118\pi\)
\(998\) 0 0
\(999\) −6.60731e9 −0.209674
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 588.8.a.c.1.1 1
7.2 even 3 588.8.i.c.361.1 2
7.3 odd 6 588.8.i.f.373.1 2
7.4 even 3 588.8.i.c.373.1 2
7.5 odd 6 588.8.i.f.361.1 2
7.6 odd 2 84.8.a.a.1.1 1
21.20 even 2 252.8.a.a.1.1 1
28.27 even 2 336.8.a.j.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
84.8.a.a.1.1 1 7.6 odd 2
252.8.a.a.1.1 1 21.20 even 2
336.8.a.j.1.1 1 28.27 even 2
588.8.a.c.1.1 1 1.1 even 1 trivial
588.8.i.c.361.1 2 7.2 even 3
588.8.i.c.373.1 2 7.4 even 3
588.8.i.f.361.1 2 7.5 odd 6
588.8.i.f.373.1 2 7.3 odd 6