Properties

Label 588.6.i.o.373.3
Level $588$
Weight $6$
Character 588.373
Analytic conductor $94.306$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [588,6,Mod(361,588)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(588, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("588.361");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 588.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(94.3056860500\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} + 703x^{6} + 2770x^{5} + 427565x^{4} + 718170x^{3} + 42175732x^{2} - 40929504x + 3559792896 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{6}\cdot 3^{4}\cdot 7^{2} \)
Twist minimal: no (minimal twist has level 84)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 373.3
Root \(-5.49618 - 9.51967i\) of defining polynomial
Character \(\chi\) \(=\) 588.373
Dual form 588.6.i.o.361.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-4.50000 - 7.79423i) q^{3} +(23.0577 - 39.9371i) q^{5} +(-40.5000 + 70.1481i) q^{9} +O(q^{10})\) \(q+(-4.50000 - 7.79423i) q^{3} +(23.0577 - 39.9371i) q^{5} +(-40.5000 + 70.1481i) q^{9} +(315.582 + 546.605i) q^{11} +1079.22 q^{13} -415.038 q^{15} +(80.5778 + 139.565i) q^{17} +(588.428 - 1019.19i) q^{19} +(-1081.73 + 1873.61i) q^{23} +(499.186 + 864.615i) q^{25} +729.000 q^{27} -4492.01 q^{29} +(159.130 + 275.621i) q^{31} +(2840.24 - 4919.44i) q^{33} +(-7593.41 + 13152.2i) q^{37} +(-4856.51 - 8411.73i) q^{39} -20587.2 q^{41} -455.118 q^{43} +(1867.67 + 3234.90i) q^{45} +(-10381.4 + 17981.1i) q^{47} +(725.200 - 1256.08i) q^{51} +(9650.03 + 16714.3i) q^{53} +29106.4 q^{55} -10591.7 q^{57} +(3184.15 + 5515.11i) q^{59} +(-24572.6 + 42560.9i) q^{61} +(24884.4 - 43101.1i) q^{65} +(-17027.0 - 29491.7i) q^{67} +19471.1 q^{69} +62962.4 q^{71} +(-4433.88 - 7679.70i) q^{73} +(4492.67 - 7781.54i) q^{75} +(-17206.6 + 29802.7i) q^{79} +(-3280.50 - 5681.99i) q^{81} +7041.42 q^{83} +7431.75 q^{85} +(20214.1 + 35011.8i) q^{87} +(-10121.4 + 17530.7i) q^{89} +(1432.17 - 2480.59i) q^{93} +(-27135.6 - 47000.2i) q^{95} -54066.6 q^{97} -51124.4 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 36 q^{3} - 324 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 36 q^{3} - 324 q^{9} - 462 q^{11} + 1204 q^{13} - 228 q^{17} - 358 q^{19} - 2148 q^{23} - 5454 q^{25} + 5832 q^{27} - 11064 q^{29} - 830 q^{31} - 4158 q^{33} - 3914 q^{37} - 5418 q^{39} + 16632 q^{41} - 29036 q^{43} - 41700 q^{47} - 2052 q^{51} + 22164 q^{53} - 7784 q^{55} + 6444 q^{57} - 32886 q^{59} - 83732 q^{61} - 93192 q^{65} - 80034 q^{67} + 38664 q^{69} + 89544 q^{71} + 22470 q^{73} - 49086 q^{75} - 75286 q^{79} - 26244 q^{81} + 34836 q^{83} + 278504 q^{85} + 49788 q^{87} - 28944 q^{89} - 7470 q^{93} - 144120 q^{95} + 433356 q^{97} + 74844 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/588\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(295\) \(493\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −4.50000 7.79423i −0.288675 0.500000i
\(4\) 0 0
\(5\) 23.0577 39.9371i 0.412469 0.714416i −0.582691 0.812694i \(-0.698000\pi\)
0.995159 + 0.0982777i \(0.0313333\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −40.5000 + 70.1481i −0.166667 + 0.288675i
\(10\) 0 0
\(11\) 315.582 + 546.605i 0.786378 + 1.36205i 0.928173 + 0.372150i \(0.121379\pi\)
−0.141795 + 0.989896i \(0.545287\pi\)
\(12\) 0 0
\(13\) 1079.22 1.77114 0.885571 0.464503i \(-0.153767\pi\)
0.885571 + 0.464503i \(0.153767\pi\)
\(14\) 0 0
\(15\) −415.038 −0.476278
\(16\) 0 0
\(17\) 80.5778 + 139.565i 0.0676228 + 0.117126i 0.897854 0.440292i \(-0.145125\pi\)
−0.830232 + 0.557419i \(0.811792\pi\)
\(18\) 0 0
\(19\) 588.428 1019.19i 0.373946 0.647694i −0.616222 0.787572i \(-0.711338\pi\)
0.990169 + 0.139878i \(0.0446711\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −1081.73 + 1873.61i −0.426382 + 0.738516i −0.996548 0.0830136i \(-0.973546\pi\)
0.570166 + 0.821529i \(0.306879\pi\)
\(24\) 0 0
\(25\) 499.186 + 864.615i 0.159739 + 0.276677i
\(26\) 0 0
\(27\) 729.000 0.192450
\(28\) 0 0
\(29\) −4492.01 −0.991850 −0.495925 0.868365i \(-0.665171\pi\)
−0.495925 + 0.868365i \(0.665171\pi\)
\(30\) 0 0
\(31\) 159.130 + 275.621i 0.0297405 + 0.0515120i 0.880513 0.474023i \(-0.157199\pi\)
−0.850772 + 0.525535i \(0.823865\pi\)
\(32\) 0 0
\(33\) 2840.24 4919.44i 0.454015 0.786378i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −7593.41 + 13152.2i −0.911869 + 1.57940i −0.100447 + 0.994942i \(0.532027\pi\)
−0.811422 + 0.584461i \(0.801306\pi\)
\(38\) 0 0
\(39\) −4856.51 8411.73i −0.511285 0.885571i
\(40\) 0 0
\(41\) −20587.2 −1.91266 −0.956330 0.292289i \(-0.905583\pi\)
−0.956330 + 0.292289i \(0.905583\pi\)
\(42\) 0 0
\(43\) −455.118 −0.0375364 −0.0187682 0.999824i \(-0.505974\pi\)
−0.0187682 + 0.999824i \(0.505974\pi\)
\(44\) 0 0
\(45\) 1867.67 + 3234.90i 0.137490 + 0.238139i
\(46\) 0 0
\(47\) −10381.4 + 17981.1i −0.685504 + 1.18733i 0.287774 + 0.957698i \(0.407085\pi\)
−0.973278 + 0.229630i \(0.926248\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 725.200 1256.08i 0.0390420 0.0676228i
\(52\) 0 0
\(53\) 9650.03 + 16714.3i 0.471888 + 0.817334i 0.999483 0.0321622i \(-0.0102393\pi\)
−0.527595 + 0.849496i \(0.676906\pi\)
\(54\) 0 0
\(55\) 29106.4 1.29742
\(56\) 0 0
\(57\) −10591.7 −0.431796
\(58\) 0 0
\(59\) 3184.15 + 5515.11i 0.119087 + 0.206264i 0.919406 0.393310i \(-0.128670\pi\)
−0.800319 + 0.599574i \(0.795337\pi\)
\(60\) 0 0
\(61\) −24572.6 + 42560.9i −0.845524 + 1.46449i 0.0396416 + 0.999214i \(0.487378\pi\)
−0.885165 + 0.465276i \(0.845955\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 24884.4 43101.1i 0.730541 1.26533i
\(66\) 0 0
\(67\) −17027.0 29491.7i −0.463395 0.802624i 0.535732 0.844388i \(-0.320036\pi\)
−0.999128 + 0.0417639i \(0.986702\pi\)
\(68\) 0 0
\(69\) 19471.1 0.492344
\(70\) 0 0
\(71\) 62962.4 1.48230 0.741149 0.671341i \(-0.234281\pi\)
0.741149 + 0.671341i \(0.234281\pi\)
\(72\) 0 0
\(73\) −4433.88 7679.70i −0.0973815 0.168670i 0.813219 0.581958i \(-0.197713\pi\)
−0.910600 + 0.413289i \(0.864380\pi\)
\(74\) 0 0
\(75\) 4492.67 7781.54i 0.0922256 0.159739i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −17206.6 + 29802.7i −0.310190 + 0.537265i −0.978403 0.206705i \(-0.933726\pi\)
0.668213 + 0.743970i \(0.267059\pi\)
\(80\) 0 0
\(81\) −3280.50 5681.99i −0.0555556 0.0962250i
\(82\) 0 0
\(83\) 7041.42 0.112193 0.0560964 0.998425i \(-0.482135\pi\)
0.0560964 + 0.998425i \(0.482135\pi\)
\(84\) 0 0
\(85\) 7431.75 0.111569
\(86\) 0 0
\(87\) 20214.1 + 35011.8i 0.286323 + 0.495925i
\(88\) 0 0
\(89\) −10121.4 + 17530.7i −0.135445 + 0.234598i −0.925768 0.378093i \(-0.876580\pi\)
0.790322 + 0.612692i \(0.209913\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 1432.17 2480.59i 0.0171707 0.0297405i
\(94\) 0 0
\(95\) −27135.6 47000.2i −0.308482 0.534307i
\(96\) 0 0
\(97\) −54066.6 −0.583444 −0.291722 0.956503i \(-0.594228\pi\)
−0.291722 + 0.956503i \(0.594228\pi\)
\(98\) 0 0
\(99\) −51124.4 −0.524252
\(100\) 0 0
\(101\) −45743.2 79229.5i −0.446193 0.772829i 0.551942 0.833883i \(-0.313887\pi\)
−0.998134 + 0.0610540i \(0.980554\pi\)
\(102\) 0 0
\(103\) 37690.7 65282.2i 0.350059 0.606320i −0.636201 0.771524i \(-0.719495\pi\)
0.986259 + 0.165204i \(0.0528283\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −76066.3 + 131751.i −0.642293 + 1.11248i 0.342627 + 0.939472i \(0.388683\pi\)
−0.984920 + 0.173012i \(0.944650\pi\)
\(108\) 0 0
\(109\) −38336.0 66399.8i −0.309058 0.535304i 0.669099 0.743174i \(-0.266680\pi\)
−0.978157 + 0.207869i \(0.933347\pi\)
\(110\) 0 0
\(111\) 136681. 1.05294
\(112\) 0 0
\(113\) 228515. 1.68352 0.841760 0.539852i \(-0.181520\pi\)
0.841760 + 0.539852i \(0.181520\pi\)
\(114\) 0 0
\(115\) 49884.4 + 86402.3i 0.351739 + 0.609229i
\(116\) 0 0
\(117\) −43708.6 + 75705.5i −0.295190 + 0.511285i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −118659. + 205524.i −0.736780 + 1.27614i
\(122\) 0 0
\(123\) 92642.4 + 160461.i 0.552137 + 0.956330i
\(124\) 0 0
\(125\) 190151. 1.08849
\(126\) 0 0
\(127\) 122111. 0.671809 0.335905 0.941896i \(-0.390958\pi\)
0.335905 + 0.941896i \(0.390958\pi\)
\(128\) 0 0
\(129\) 2048.03 + 3547.30i 0.0108358 + 0.0187682i
\(130\) 0 0
\(131\) 37897.7 65640.7i 0.192945 0.334191i −0.753280 0.657700i \(-0.771529\pi\)
0.946225 + 0.323509i \(0.104863\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 16809.1 29114.1i 0.0793796 0.137490i
\(136\) 0 0
\(137\) 120806. + 209242.i 0.549903 + 0.952460i 0.998281 + 0.0586154i \(0.0186686\pi\)
−0.448378 + 0.893844i \(0.647998\pi\)
\(138\) 0 0
\(139\) −125657. −0.551634 −0.275817 0.961210i \(-0.588948\pi\)
−0.275817 + 0.961210i \(0.588948\pi\)
\(140\) 0 0
\(141\) 186865. 0.791552
\(142\) 0 0
\(143\) 340584. + 589910.i 1.39279 + 2.41238i
\(144\) 0 0
\(145\) −103575. + 179398.i −0.409107 + 0.708594i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −18023.3 + 31217.2i −0.0665071 + 0.115194i −0.897362 0.441296i \(-0.854519\pi\)
0.830854 + 0.556490i \(0.187852\pi\)
\(150\) 0 0
\(151\) −75334.0 130482.i −0.268874 0.465703i 0.699697 0.714439i \(-0.253318\pi\)
−0.968571 + 0.248736i \(0.919985\pi\)
\(152\) 0 0
\(153\) −13053.6 −0.0450819
\(154\) 0 0
\(155\) 14676.7 0.0490680
\(156\) 0 0
\(157\) 213207. + 369285.i 0.690323 + 1.19567i 0.971732 + 0.236086i \(0.0758648\pi\)
−0.281409 + 0.959588i \(0.590802\pi\)
\(158\) 0 0
\(159\) 86850.3 150429.i 0.272445 0.471888i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 96255.0 166718.i 0.283762 0.491490i −0.688546 0.725192i \(-0.741751\pi\)
0.972308 + 0.233702i \(0.0750841\pi\)
\(164\) 0 0
\(165\) −130979. 226862.i −0.374534 0.648712i
\(166\) 0 0
\(167\) −164987. −0.457782 −0.228891 0.973452i \(-0.573510\pi\)
−0.228891 + 0.973452i \(0.573510\pi\)
\(168\) 0 0
\(169\) 793433. 2.13695
\(170\) 0 0
\(171\) 47662.6 + 82554.1i 0.124649 + 0.215898i
\(172\) 0 0
\(173\) −164749. + 285353.i −0.418511 + 0.724883i −0.995790 0.0916644i \(-0.970781\pi\)
0.577279 + 0.816547i \(0.304115\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 28657.4 49636.0i 0.0687548 0.119087i
\(178\) 0 0
\(179\) −184174. 318999.i −0.429631 0.744143i 0.567209 0.823574i \(-0.308023\pi\)
−0.996840 + 0.0794308i \(0.974690\pi\)
\(180\) 0 0
\(181\) 79607.3 0.180616 0.0903080 0.995914i \(-0.471215\pi\)
0.0903080 + 0.995914i \(0.471215\pi\)
\(182\) 0 0
\(183\) 442306. 0.976327
\(184\) 0 0
\(185\) 350173. + 606517.i 0.752234 + 1.30291i
\(186\) 0 0
\(187\) −50857.9 + 88088.4i −0.106354 + 0.184211i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −282957. + 490096.i −0.561225 + 0.972070i 0.436165 + 0.899867i \(0.356336\pi\)
−0.997390 + 0.0722036i \(0.976997\pi\)
\(192\) 0 0
\(193\) 19332.9 + 33485.6i 0.0373597 + 0.0647089i 0.884101 0.467296i \(-0.154772\pi\)
−0.846741 + 0.532005i \(0.821439\pi\)
\(194\) 0 0
\(195\) −447920. −0.843556
\(196\) 0 0
\(197\) −334957. −0.614927 −0.307463 0.951560i \(-0.599480\pi\)
−0.307463 + 0.951560i \(0.599480\pi\)
\(198\) 0 0
\(199\) −300123. 519828.i −0.537237 0.930522i −0.999051 0.0435454i \(-0.986135\pi\)
0.461814 0.886977i \(-0.347199\pi\)
\(200\) 0 0
\(201\) −153243. + 265425.i −0.267541 + 0.463395i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −474693. + 822193.i −0.788912 + 1.36644i
\(206\) 0 0
\(207\) −87620.1 151762.i −0.142127 0.246172i
\(208\) 0 0
\(209\) 742790. 1.17625
\(210\) 0 0
\(211\) 1.06504e6 1.64687 0.823433 0.567414i \(-0.192056\pi\)
0.823433 + 0.567414i \(0.192056\pi\)
\(212\) 0 0
\(213\) −283331. 490743.i −0.427903 0.741149i
\(214\) 0 0
\(215\) −10494.0 + 18176.1i −0.0154826 + 0.0268166i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −39904.9 + 69117.3i −0.0562232 + 0.0973815i
\(220\) 0 0
\(221\) 86961.6 + 150622.i 0.119770 + 0.207447i
\(222\) 0 0
\(223\) 1.37380e6 1.84995 0.924976 0.380027i \(-0.124085\pi\)
0.924976 + 0.380027i \(0.124085\pi\)
\(224\) 0 0
\(225\) −80868.1 −0.106493
\(226\) 0 0
\(227\) 162440. + 281354.i 0.209232 + 0.362400i 0.951473 0.307733i \(-0.0995703\pi\)
−0.742241 + 0.670133i \(0.766237\pi\)
\(228\) 0 0
\(229\) −411196. + 712212.i −0.518155 + 0.897472i 0.481622 + 0.876379i \(0.340048\pi\)
−0.999778 + 0.0210926i \(0.993286\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −569070. + 985657.i −0.686713 + 1.18942i 0.286182 + 0.958175i \(0.407614\pi\)
−0.972895 + 0.231247i \(0.925719\pi\)
\(234\) 0 0
\(235\) 478741. + 829204.i 0.565498 + 0.979471i
\(236\) 0 0
\(237\) 309719. 0.358176
\(238\) 0 0
\(239\) 483125. 0.547097 0.273549 0.961858i \(-0.411803\pi\)
0.273549 + 0.961858i \(0.411803\pi\)
\(240\) 0 0
\(241\) 507406. + 878853.i 0.562747 + 0.974706i 0.997255 + 0.0740384i \(0.0235888\pi\)
−0.434509 + 0.900668i \(0.643078\pi\)
\(242\) 0 0
\(243\) −29524.5 + 51137.9i −0.0320750 + 0.0555556i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 635046. 1.09993e6i 0.662312 1.14716i
\(248\) 0 0
\(249\) −31686.4 54882.4i −0.0323873 0.0560964i
\(250\) 0 0
\(251\) −415812. −0.416593 −0.208297 0.978066i \(-0.566792\pi\)
−0.208297 + 0.978066i \(0.566792\pi\)
\(252\) 0 0
\(253\) −1.36550e6 −1.34119
\(254\) 0 0
\(255\) −33442.9 57924.8i −0.0322072 0.0557845i
\(256\) 0 0
\(257\) 505998. 876414.i 0.477876 0.827706i −0.521802 0.853067i \(-0.674740\pi\)
0.999678 + 0.0253604i \(0.00807332\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 181927. 315106.i 0.165308 0.286323i
\(262\) 0 0
\(263\) −1.02885e6 1.78202e6i −0.917195 1.58863i −0.803656 0.595094i \(-0.797115\pi\)
−0.113539 0.993534i \(-0.536219\pi\)
\(264\) 0 0
\(265\) 890030. 0.778556
\(266\) 0 0
\(267\) 182185. 0.156399
\(268\) 0 0
\(269\) −403998. 699745.i −0.340407 0.589602i 0.644101 0.764940i \(-0.277232\pi\)
−0.984508 + 0.175338i \(0.943898\pi\)
\(270\) 0 0
\(271\) 98011.4 169761.i 0.0810687 0.140415i −0.822641 0.568562i \(-0.807500\pi\)
0.903709 + 0.428147i \(0.140833\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −315069. + 545715.i −0.251231 + 0.435145i
\(276\) 0 0
\(277\) −151292. 262046.i −0.118472 0.205200i 0.800690 0.599079i \(-0.204466\pi\)
−0.919162 + 0.393879i \(0.871133\pi\)
\(278\) 0 0
\(279\) −25779.0 −0.0198270
\(280\) 0 0
\(281\) 646014. 0.488063 0.244032 0.969767i \(-0.421530\pi\)
0.244032 + 0.969767i \(0.421530\pi\)
\(282\) 0 0
\(283\) −553748. 959119.i −0.411004 0.711879i 0.583996 0.811757i \(-0.301488\pi\)
−0.995000 + 0.0998771i \(0.968155\pi\)
\(284\) 0 0
\(285\) −244220. + 423002.i −0.178102 + 0.308482i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 696943. 1.20714e6i 0.490854 0.850185i
\(290\) 0 0
\(291\) 243300. + 421407.i 0.168426 + 0.291722i
\(292\) 0 0
\(293\) −1.89396e6 −1.28885 −0.644425 0.764668i \(-0.722903\pi\)
−0.644425 + 0.764668i \(0.722903\pi\)
\(294\) 0 0
\(295\) 293677. 0.196478
\(296\) 0 0
\(297\) 230060. + 398475.i 0.151338 + 0.262126i
\(298\) 0 0
\(299\) −1.16743e6 + 2.02205e6i −0.755184 + 1.30802i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −411688. + 713065.i −0.257610 + 0.446193i
\(304\) 0 0
\(305\) 1.13317e6 + 1.96271e6i 0.697504 + 1.20811i
\(306\) 0 0
\(307\) −1.97803e6 −1.19781 −0.598905 0.800820i \(-0.704397\pi\)
−0.598905 + 0.800820i \(0.704397\pi\)
\(308\) 0 0
\(309\) −678432. −0.404213
\(310\) 0 0
\(311\) 1.29393e6 + 2.24116e6i 0.758596 + 1.31393i 0.943566 + 0.331183i \(0.107448\pi\)
−0.184970 + 0.982744i \(0.559219\pi\)
\(312\) 0 0
\(313\) −70678.5 + 122419.i −0.0407781 + 0.0706297i −0.885694 0.464269i \(-0.846317\pi\)
0.844916 + 0.534899i \(0.179650\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −586423. + 1.01571e6i −0.327765 + 0.567706i −0.982068 0.188527i \(-0.939629\pi\)
0.654303 + 0.756233i \(0.272962\pi\)
\(318\) 0 0
\(319\) −1.41760e6 2.45536e6i −0.779969 1.35095i
\(320\) 0 0
\(321\) 1.36919e6 0.741656
\(322\) 0 0
\(323\) 189657. 0.101149
\(324\) 0 0
\(325\) 538734. + 933114.i 0.282921 + 0.490034i
\(326\) 0 0
\(327\) −345024. + 597598.i −0.178435 + 0.309058i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −653305. + 1.13156e6i −0.327752 + 0.567684i −0.982066 0.188540i \(-0.939624\pi\)
0.654313 + 0.756224i \(0.272958\pi\)
\(332\) 0 0
\(333\) −615066. 1.06533e6i −0.303956 0.526468i
\(334\) 0 0
\(335\) −1.57041e6 −0.764544
\(336\) 0 0
\(337\) −265059. −0.127136 −0.0635679 0.997978i \(-0.520248\pi\)
−0.0635679 + 0.997978i \(0.520248\pi\)
\(338\) 0 0
\(339\) −1.02832e6 1.78110e6i −0.485991 0.841760i
\(340\) 0 0
\(341\) −100437. + 173962.i −0.0467745 + 0.0810157i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 448959. 777621.i 0.203076 0.351739i
\(346\) 0 0
\(347\) 1.52791e6 + 2.64642e6i 0.681200 + 1.17987i 0.974615 + 0.223888i \(0.0718751\pi\)
−0.293414 + 0.955985i \(0.594792\pi\)
\(348\) 0 0
\(349\) 1.47164e6 0.646753 0.323377 0.946270i \(-0.395182\pi\)
0.323377 + 0.946270i \(0.395182\pi\)
\(350\) 0 0
\(351\) 786755. 0.340857
\(352\) 0 0
\(353\) −192592. 333578.i −0.0822623 0.142482i 0.821959 0.569547i \(-0.192881\pi\)
−0.904221 + 0.427064i \(0.859548\pi\)
\(354\) 0 0
\(355\) 1.45177e6 2.51454e6i 0.611401 1.05898i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 820939. 1.42191e6i 0.336182 0.582285i −0.647529 0.762041i \(-0.724198\pi\)
0.983711 + 0.179756i \(0.0575309\pi\)
\(360\) 0 0
\(361\) 545555. + 944929.i 0.220328 + 0.381620i
\(362\) 0 0
\(363\) 2.13586e6 0.850760
\(364\) 0 0
\(365\) −408940. −0.160667
\(366\) 0 0
\(367\) −561616. 972747.i −0.217658 0.376994i 0.736434 0.676510i \(-0.236508\pi\)
−0.954091 + 0.299516i \(0.903175\pi\)
\(368\) 0 0
\(369\) 833782. 1.44415e6i 0.318777 0.552137i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 2.11052e6 3.65554e6i 0.785450 1.36044i −0.143280 0.989682i \(-0.545765\pi\)
0.928730 0.370757i \(-0.120902\pi\)
\(374\) 0 0
\(375\) −855679. 1.48208e6i −0.314219 0.544244i
\(376\) 0 0
\(377\) −4.84789e6 −1.75671
\(378\) 0 0
\(379\) −4.49923e6 −1.60894 −0.804471 0.593993i \(-0.797551\pi\)
−0.804471 + 0.593993i \(0.797551\pi\)
\(380\) 0 0
\(381\) −549500. 951762.i −0.193935 0.335905i
\(382\) 0 0
\(383\) 2.21557e6 3.83748e6i 0.771771 1.33675i −0.164820 0.986324i \(-0.552704\pi\)
0.936591 0.350423i \(-0.113962\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 18432.3 31925.7i 0.00625607 0.0108358i
\(388\) 0 0
\(389\) 2.72111e6 + 4.71311e6i 0.911744 + 1.57919i 0.811600 + 0.584214i \(0.198597\pi\)
0.100144 + 0.994973i \(0.468070\pi\)
\(390\) 0 0
\(391\) −348654. −0.115333
\(392\) 0 0
\(393\) −682158. −0.222794
\(394\) 0 0
\(395\) 793489. + 1.37436e6i 0.255887 + 0.443209i
\(396\) 0 0
\(397\) 1.34397e6 2.32782e6i 0.427969 0.741264i −0.568723 0.822529i \(-0.692562\pi\)
0.996693 + 0.0812644i \(0.0258958\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −221647. + 383904.i −0.0688337 + 0.119223i −0.898388 0.439202i \(-0.855261\pi\)
0.829554 + 0.558426i \(0.188594\pi\)
\(402\) 0 0
\(403\) 171737. + 297457.i 0.0526746 + 0.0912351i
\(404\) 0 0
\(405\) −302563. −0.0916597
\(406\) 0 0
\(407\) −9.58539e6 −2.86829
\(408\) 0 0
\(409\) −2.44789e6 4.23987e6i −0.723575 1.25327i −0.959558 0.281511i \(-0.909164\pi\)
0.235983 0.971757i \(-0.424169\pi\)
\(410\) 0 0
\(411\) 1.08725e6 1.88317e6i 0.317487 0.549903i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 162359. 281214.i 0.0462760 0.0801523i
\(416\) 0 0
\(417\) 565458. + 979402.i 0.159243 + 0.275817i
\(418\) 0 0
\(419\) 2.23186e6 0.621058 0.310529 0.950564i \(-0.399494\pi\)
0.310529 + 0.950564i \(0.399494\pi\)
\(420\) 0 0
\(421\) 5.48208e6 1.50744 0.753721 0.657195i \(-0.228257\pi\)
0.753721 + 0.657195i \(0.228257\pi\)
\(422\) 0 0
\(423\) −840891. 1.45647e6i −0.228501 0.395776i
\(424\) 0 0
\(425\) −80446.6 + 139338.i −0.0216041 + 0.0374193i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 3.06526e6 5.30919e6i 0.804126 1.39279i
\(430\) 0 0
\(431\) −2.31183e6 4.00421e6i −0.599463 1.03830i −0.992900 0.118949i \(-0.962047\pi\)
0.393437 0.919352i \(-0.371286\pi\)
\(432\) 0 0
\(433\) 3.08314e6 0.790267 0.395134 0.918624i \(-0.370698\pi\)
0.395134 + 0.918624i \(0.370698\pi\)
\(434\) 0 0
\(435\) 1.86436e6 0.472396
\(436\) 0 0
\(437\) 1.27304e6 + 2.20497e6i 0.318888 + 0.552330i
\(438\) 0 0
\(439\) 217235. 376262.i 0.0537983 0.0931815i −0.837872 0.545867i \(-0.816201\pi\)
0.891670 + 0.452685i \(0.149534\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −860317. + 1.49011e6i −0.208281 + 0.360753i −0.951173 0.308658i \(-0.900120\pi\)
0.742892 + 0.669411i \(0.233453\pi\)
\(444\) 0 0
\(445\) 466751. + 808437.i 0.111734 + 0.193529i
\(446\) 0 0
\(447\) 324419. 0.0767958
\(448\) 0 0
\(449\) −4.06508e6 −0.951598 −0.475799 0.879554i \(-0.657841\pi\)
−0.475799 + 0.879554i \(0.657841\pi\)
\(450\) 0 0
\(451\) −6.49696e6 1.12531e7i −1.50407 2.60513i
\(452\) 0 0
\(453\) −678006. + 1.17434e6i −0.155234 + 0.268874i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −1.13092e6 + 1.95881e6i −0.253303 + 0.438734i −0.964433 0.264326i \(-0.914850\pi\)
0.711130 + 0.703061i \(0.248184\pi\)
\(458\) 0 0
\(459\) 58741.2 + 101743.i 0.0130140 + 0.0225409i
\(460\) 0 0
\(461\) −7.80980e6 −1.71154 −0.855771 0.517355i \(-0.826917\pi\)
−0.855771 + 0.517355i \(0.826917\pi\)
\(462\) 0 0
\(463\) −525518. −0.113929 −0.0569647 0.998376i \(-0.518142\pi\)
−0.0569647 + 0.998376i \(0.518142\pi\)
\(464\) 0 0
\(465\) −66045.0 114393.i −0.0141647 0.0245340i
\(466\) 0 0
\(467\) 2.79688e6 4.84434e6i 0.593447 1.02788i −0.400318 0.916376i \(-0.631100\pi\)
0.993764 0.111503i \(-0.0355665\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 1.91886e6 3.32357e6i 0.398558 0.690323i
\(472\) 0 0
\(473\) −143627. 248770.i −0.0295178 0.0511264i
\(474\) 0 0
\(475\) 1.17494e6 0.238936
\(476\) 0 0
\(477\) −1.56330e6 −0.314592
\(478\) 0 0
\(479\) 906232. + 1.56964e6i 0.180468 + 0.312580i 0.942040 0.335500i \(-0.108905\pi\)
−0.761572 + 0.648080i \(0.775572\pi\)
\(480\) 0 0
\(481\) −8.19499e6 + 1.41941e7i −1.61505 + 2.79735i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −1.24665e6 + 2.15926e6i −0.240652 + 0.416822i
\(486\) 0 0
\(487\) −720340. 1.24767e6i −0.137631 0.238383i 0.788969 0.614433i \(-0.210615\pi\)
−0.926599 + 0.376050i \(0.877282\pi\)
\(488\) 0 0
\(489\) −1.73259e6 −0.327660
\(490\) 0 0
\(491\) 5.25026e6 0.982827 0.491413 0.870926i \(-0.336480\pi\)
0.491413 + 0.870926i \(0.336480\pi\)
\(492\) 0 0
\(493\) −361957. 626927.i −0.0670717 0.116172i
\(494\) 0 0
\(495\) −1.17881e6 + 2.04176e6i −0.216237 + 0.374534i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 4.07080e6 7.05083e6i 0.731861 1.26762i −0.224227 0.974537i \(-0.571986\pi\)
0.956087 0.293083i \(-0.0946811\pi\)
\(500\) 0 0
\(501\) 742442. + 1.28595e6i 0.132150 + 0.228891i
\(502\) 0 0
\(503\) 7.98029e6 1.40637 0.703183 0.711009i \(-0.251761\pi\)
0.703183 + 0.711009i \(0.251761\pi\)
\(504\) 0 0
\(505\) −4.21893e6 −0.736162
\(506\) 0 0
\(507\) −3.57045e6 6.18420e6i −0.616883 1.06847i
\(508\) 0 0
\(509\) 4.07141e6 7.05189e6i 0.696547 1.20646i −0.273109 0.961983i \(-0.588052\pi\)
0.969656 0.244472i \(-0.0786148\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 428964. 742987.i 0.0719660 0.124649i
\(514\) 0 0
\(515\) −1.73812e6 3.01051e6i −0.288776 0.500176i
\(516\) 0 0
\(517\) −1.31047e7 −2.15626
\(518\) 0 0
\(519\) 2.96548e6 0.483255
\(520\) 0 0
\(521\) 2.55984e6 + 4.43377e6i 0.413160 + 0.715613i 0.995233 0.0975227i \(-0.0310919\pi\)
−0.582074 + 0.813136i \(0.697759\pi\)
\(522\) 0 0
\(523\) 2.36736e6 4.10040e6i 0.378452 0.655498i −0.612385 0.790560i \(-0.709790\pi\)
0.990837 + 0.135061i \(0.0431231\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −25644.7 + 44417.9i −0.00402226 + 0.00696677i
\(528\) 0 0
\(529\) 877893. + 1.52055e6i 0.136396 + 0.236245i
\(530\) 0 0
\(531\) −515833. −0.0793912
\(532\) 0 0
\(533\) −2.22182e7 −3.38759
\(534\) 0 0
\(535\) 3.50783e6 + 6.07574e6i 0.529851 + 0.917729i
\(536\) 0 0
\(537\) −1.65757e6 + 2.87099e6i −0.248048 + 0.429631i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 4.10226e6 7.10533e6i 0.602602 1.04374i −0.389824 0.920890i \(-0.627464\pi\)
0.992426 0.122848i \(-0.0392026\pi\)
\(542\) 0 0
\(543\) −358233. 620477.i −0.0521394 0.0903080i
\(544\) 0 0
\(545\) −3.53575e6 −0.509907
\(546\) 0 0
\(547\) −1.57733e6 −0.225400 −0.112700 0.993629i \(-0.535950\pi\)
−0.112700 + 0.993629i \(0.535950\pi\)
\(548\) 0 0
\(549\) −1.99038e6 3.44744e6i −0.281841 0.488163i
\(550\) 0 0
\(551\) −2.64323e6 + 4.57820e6i −0.370899 + 0.642415i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 3.15156e6 5.45865e6i 0.434303 0.752234i
\(556\) 0 0
\(557\) 1.05205e6 + 1.82221e6i 0.143681 + 0.248863i 0.928880 0.370380i \(-0.120773\pi\)
−0.785199 + 0.619244i \(0.787439\pi\)
\(558\) 0 0
\(559\) −491175. −0.0664824
\(560\) 0 0
\(561\) 915442. 0.122807
\(562\) 0 0
\(563\) 3.84583e6 + 6.66118e6i 0.511351 + 0.885687i 0.999913 + 0.0131574i \(0.00418826\pi\)
−0.488562 + 0.872529i \(0.662478\pi\)
\(564\) 0 0
\(565\) 5.26903e6 9.12622e6i 0.694399 1.20273i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −3.65070e6 + 6.32319e6i −0.472710 + 0.818758i −0.999512 0.0312298i \(-0.990058\pi\)
0.526802 + 0.849988i \(0.323391\pi\)
\(570\) 0 0
\(571\) −1.70967e6 2.96124e6i −0.219443 0.380087i 0.735195 0.677856i \(-0.237091\pi\)
−0.954638 + 0.297769i \(0.903757\pi\)
\(572\) 0 0
\(573\) 5.09323e6 0.648047
\(574\) 0 0
\(575\) −2.15994e6 −0.272440
\(576\) 0 0
\(577\) −5.46447e6 9.46473e6i −0.683295 1.18350i −0.973969 0.226680i \(-0.927213\pi\)
0.290674 0.956822i \(-0.406120\pi\)
\(578\) 0 0
\(579\) 173996. 301370.i 0.0215696 0.0373597i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −6.09076e6 + 1.05495e7i −0.742164 + 1.28547i
\(584\) 0 0
\(585\) 2.01564e6 + 3.49119e6i 0.243514 + 0.421778i
\(586\) 0 0
\(587\) −2.25268e6 −0.269839 −0.134919 0.990857i \(-0.543078\pi\)
−0.134919 + 0.990857i \(0.543078\pi\)
\(588\) 0 0
\(589\) 374546. 0.0444853
\(590\) 0 0
\(591\) 1.50731e6 + 2.61073e6i 0.177514 + 0.307463i
\(592\) 0 0
\(593\) −2.84120e6 + 4.92111e6i −0.331792 + 0.574680i −0.982863 0.184336i \(-0.940986\pi\)
0.651072 + 0.759016i \(0.274320\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −2.70110e6 + 4.67845e6i −0.310174 + 0.537237i
\(598\) 0 0
\(599\) 6.40132e6 + 1.10874e7i 0.728958 + 1.26259i 0.957324 + 0.289017i \(0.0933283\pi\)
−0.228366 + 0.973575i \(0.573338\pi\)
\(600\) 0 0
\(601\) 9.25870e6 1.04560 0.522798 0.852457i \(-0.324888\pi\)
0.522798 + 0.852457i \(0.324888\pi\)
\(602\) 0 0
\(603\) 2.75838e6 0.308930
\(604\) 0 0
\(605\) 5.47201e6 + 9.47780e6i 0.607797 + 1.05274i
\(606\) 0 0
\(607\) −200660. + 347553.i −0.0221049 + 0.0382868i −0.876866 0.480734i \(-0.840370\pi\)
0.854761 + 0.519021i \(0.173703\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −1.12038e7 + 1.94056e7i −1.21413 + 2.10293i
\(612\) 0 0
\(613\) −3.41198e6 5.90973e6i −0.366738 0.635208i 0.622316 0.782766i \(-0.286192\pi\)
−0.989053 + 0.147558i \(0.952859\pi\)
\(614\) 0 0
\(615\) 8.54448e6 0.910957
\(616\) 0 0
\(617\) −336274. −0.0355615 −0.0177808 0.999842i \(-0.505660\pi\)
−0.0177808 + 0.999842i \(0.505660\pi\)
\(618\) 0 0
\(619\) −4.80575e6 8.32381e6i −0.504121 0.873163i −0.999989 0.00476520i \(-0.998483\pi\)
0.495868 0.868398i \(-0.334850\pi\)
\(620\) 0 0
\(621\) −788581. + 1.36586e6i −0.0820573 + 0.142127i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 2.82448e6 4.89215e6i 0.289227 0.500956i
\(626\) 0 0
\(627\) −3.34255e6 5.78947e6i −0.339555 0.588126i
\(628\) 0 0
\(629\) −2.44744e6 −0.246652
\(630\) 0 0
\(631\) 1.28813e7 1.28791 0.643957 0.765062i \(-0.277292\pi\)
0.643957 + 0.765062i \(0.277292\pi\)
\(632\) 0 0
\(633\) −4.79266e6 8.30113e6i −0.475409 0.823433i
\(634\) 0 0
\(635\) 2.81560e6 4.87676e6i 0.277100 0.479951i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −2.54998e6 + 4.41669e6i −0.247050 + 0.427903i
\(640\) 0 0
\(641\) 7.47479e6 + 1.29467e7i 0.718545 + 1.24456i 0.961576 + 0.274538i \(0.0885250\pi\)
−0.243031 + 0.970018i \(0.578142\pi\)
\(642\) 0 0
\(643\) 8.03892e6 0.766780 0.383390 0.923587i \(-0.374757\pi\)
0.383390 + 0.923587i \(0.374757\pi\)
\(644\) 0 0
\(645\) 188892. 0.0178778
\(646\) 0 0
\(647\) −3.34388e6 5.79176e6i −0.314043 0.543939i 0.665190 0.746674i \(-0.268350\pi\)
−0.979234 + 0.202735i \(0.935017\pi\)
\(648\) 0 0
\(649\) −2.00973e6 + 3.48095e6i −0.187294 + 0.324404i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 522213. 904499.i 0.0479253 0.0830090i −0.841068 0.540930i \(-0.818072\pi\)
0.888993 + 0.457921i \(0.151406\pi\)
\(654\) 0 0
\(655\) −1.74766e6 3.02704e6i −0.159168 0.275687i
\(656\) 0 0
\(657\) 718288. 0.0649210
\(658\) 0 0
\(659\) 2.10237e7 1.88580 0.942902 0.333071i \(-0.108085\pi\)
0.942902 + 0.333071i \(0.108085\pi\)
\(660\) 0 0
\(661\) 4.73340e6 + 8.19849e6i 0.421376 + 0.729845i 0.996074 0.0885207i \(-0.0282139\pi\)
−0.574698 + 0.818365i \(0.694881\pi\)
\(662\) 0 0
\(663\) 782654. 1.35560e6i 0.0691490 0.119770i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 4.85915e6 8.41629e6i 0.422908 0.732497i
\(668\) 0 0
\(669\) −6.18208e6 1.07077e7i −0.534035 0.924976i
\(670\) 0 0
\(671\) −3.10187e7 −2.65960
\(672\) 0 0
\(673\) −1.95188e7 −1.66117 −0.830587 0.556889i \(-0.811995\pi\)
−0.830587 + 0.556889i \(0.811995\pi\)
\(674\) 0 0
\(675\) 363906. + 630304.i 0.0307419 + 0.0532465i
\(676\) 0 0
\(677\) −8.52722e6 + 1.47696e7i −0.715049 + 1.23850i 0.247892 + 0.968788i \(0.420262\pi\)
−0.962941 + 0.269713i \(0.913071\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 1.46196e6 2.53219e6i 0.120800 0.209232i
\(682\) 0 0
\(683\) −5.47375e6 9.48080e6i −0.448986 0.777667i 0.549334 0.835603i \(-0.314881\pi\)
−0.998320 + 0.0579361i \(0.981548\pi\)
\(684\) 0 0
\(685\) 1.11420e7 0.907270
\(686\) 0 0
\(687\) 7.40153e6 0.598314
\(688\) 0 0
\(689\) 1.04146e7 + 1.80385e7i 0.835781 + 1.44762i
\(690\) 0 0
\(691\) 5.22690e6 9.05326e6i 0.416437 0.721290i −0.579141 0.815227i \(-0.696612\pi\)
0.995578 + 0.0939372i \(0.0299453\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −2.89737e6 + 5.01839e6i −0.227532 + 0.394096i
\(696\) 0 0
\(697\) −1.65887e6 2.87325e6i −0.129339 0.224022i
\(698\) 0 0
\(699\) 1.02433e7 0.792948
\(700\) 0 0
\(701\) 8.71564e6 0.669891 0.334946 0.942237i \(-0.391282\pi\)
0.334946 + 0.942237i \(0.391282\pi\)
\(702\) 0 0
\(703\) 8.93634e6 + 1.54782e7i 0.681980 + 1.18122i
\(704\) 0 0
\(705\) 4.30867e6 7.46284e6i 0.326490 0.565498i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 469220. 812712.i 0.0350559 0.0607185i −0.847965 0.530052i \(-0.822172\pi\)
0.883021 + 0.469333i \(0.155506\pi\)
\(710\) 0 0
\(711\) −1.39374e6 2.41402e6i −0.103397 0.179088i
\(712\) 0 0
\(713\) −688542. −0.0507232
\(714\) 0 0
\(715\) 3.14124e7 2.29792
\(716\) 0 0
\(717\) −2.17406e6 3.76559e6i −0.157933 0.273549i
\(718\) 0 0
\(719\) 3.29537e6 5.70774e6i 0.237729 0.411758i −0.722334 0.691545i \(-0.756930\pi\)
0.960062 + 0.279787i \(0.0902638\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 4.56665e6 7.90968e6i 0.324902 0.562747i
\(724\) 0 0
\(725\) −2.24235e6 3.88386e6i −0.158438 0.274422i
\(726\) 0 0
\(727\) 2.32586e7 1.63210 0.816052 0.577979i \(-0.196158\pi\)
0.816052 + 0.577979i \(0.196158\pi\)
\(728\) 0 0
\(729\) 531441. 0.0370370
\(730\) 0 0
\(731\) −36672.4 63518.5i −0.00253832 0.00439650i
\(732\) 0 0
\(733\) −1.01427e7 + 1.75677e7i −0.697259 + 1.20769i 0.272154 + 0.962254i \(0.412264\pi\)
−0.969413 + 0.245434i \(0.921069\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 1.07469e7 1.86141e7i 0.728807 1.26233i
\(738\) 0 0
\(739\) −296714. 513923.i −0.0199860 0.0346168i 0.855859 0.517209i \(-0.173029\pi\)
−0.875845 + 0.482592i \(0.839696\pi\)
\(740\) 0 0
\(741\) −1.14308e7 −0.764772
\(742\) 0 0
\(743\) 7.70228e6 0.511855 0.255928 0.966696i \(-0.417619\pi\)
0.255928 + 0.966696i \(0.417619\pi\)
\(744\) 0 0
\(745\) 831151. + 1.43959e6i 0.0548642 + 0.0950276i
\(746\) 0 0
\(747\) −285177. + 493942.i −0.0186988 + 0.0323873i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 1.34166e7 2.32383e7i 0.868048 1.50350i 0.00405860 0.999992i \(-0.498708\pi\)
0.863989 0.503511i \(-0.167959\pi\)
\(752\) 0 0
\(753\) 1.87115e6 + 3.24093e6i 0.120260 + 0.208297i
\(754\) 0 0
\(755\) −6.94811e6 −0.443608
\(756\) 0 0
\(757\) 2.34943e7 1.49013 0.745063 0.666994i \(-0.232419\pi\)
0.745063 + 0.666994i \(0.232419\pi\)
\(758\) 0 0
\(759\) 6.14475e6 + 1.06430e7i 0.387168 + 0.670595i
\(760\) 0 0
\(761\) −6.30959e6 + 1.09285e7i −0.394947 + 0.684069i −0.993094 0.117317i \(-0.962571\pi\)
0.598147 + 0.801386i \(0.295904\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −300986. + 521323.i −0.0185948 + 0.0322072i
\(766\) 0 0
\(767\) 3.43642e6 + 5.95205e6i 0.210920 + 0.365324i
\(768\) 0 0
\(769\) −2.73674e6 −0.166885 −0.0834425 0.996513i \(-0.526592\pi\)
−0.0834425 + 0.996513i \(0.526592\pi\)
\(770\) 0 0
\(771\) −9.10796e6 −0.551804
\(772\) 0 0
\(773\) 1.07752e7 + 1.86633e7i 0.648602 + 1.12341i 0.983457 + 0.181141i \(0.0579792\pi\)
−0.334856 + 0.942269i \(0.608688\pi\)
\(774\) 0 0
\(775\) −158871. + 275172.i −0.00950145 + 0.0164570i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −1.21141e7 + 2.09822e7i −0.715232 + 1.23882i
\(780\) 0 0
\(781\) 1.98698e7 + 3.44156e7i 1.16565 + 2.01896i
\(782\) 0 0
\(783\) −3.27468e6 −0.190882
\(784\) 0 0
\(785\) 1.96642e7 1.13895
\(786\)