Properties

Label 588.6.i.o.361.4
Level $588$
Weight $6$
Character 588.361
Analytic conductor $94.306$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [588,6,Mod(361,588)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(588, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("588.361");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 588.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(94.3056860500\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} + 703x^{6} + 2770x^{5} + 427565x^{4} + 718170x^{3} + 42175732x^{2} - 40929504x + 3559792896 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{6}\cdot 3^{4}\cdot 7^{2} \)
Twist minimal: no (minimal twist has level 84)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 361.4
Root \(4.59067 - 7.95128i\) of defining polynomial
Character \(\chi\) \(=\) 588.361
Dual form 588.6.i.o.373.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-4.50000 + 7.79423i) q^{3} +(39.3359 + 68.1317i) q^{5} +(-40.5000 - 70.1481i) q^{9} +O(q^{10})\) \(q+(-4.50000 + 7.79423i) q^{3} +(39.3359 + 68.1317i) q^{5} +(-40.5000 - 70.1481i) q^{9} +(-345.759 + 598.873i) q^{11} -818.732 q^{13} -708.046 q^{15} +(554.638 - 960.661i) q^{17} +(-286.523 - 496.273i) q^{19} +(-1258.80 - 2180.30i) q^{23} +(-1532.12 + 2653.71i) q^{25} +729.000 q^{27} -3258.19 q^{29} +(5059.55 - 8763.40i) q^{31} +(-3111.84 - 5389.86i) q^{33} +(-2434.81 - 4217.21i) q^{37} +(3684.30 - 6381.39i) q^{39} +13094.3 q^{41} -9303.64 q^{43} +(3186.21 - 5518.67i) q^{45} +(6452.90 + 11176.8i) q^{47} +(4991.74 + 8645.95i) q^{51} +(9770.12 - 16922.3i) q^{53} -54403.0 q^{55} +5157.42 q^{57} +(-12560.2 + 21755.0i) q^{59} +(-15681.1 - 27160.5i) q^{61} +(-32205.6 - 55781.7i) q^{65} +(-27971.9 + 48448.8i) q^{67} +22658.4 q^{69} +20501.0 q^{71} +(-33825.0 + 58586.6i) q^{73} +(-13789.1 - 23883.4i) q^{75} +(-7039.95 - 12193.5i) q^{79} +(-3280.50 + 5681.99i) q^{81} +77129.1 q^{83} +87268.6 q^{85} +(14661.9 - 25395.1i) q^{87} +(160.396 + 277.815i) q^{89} +(45536.0 + 78870.6i) q^{93} +(22541.3 - 39042.6i) q^{95} +112009. q^{97} +56013.0 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 36 q^{3} - 324 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 36 q^{3} - 324 q^{9} - 462 q^{11} + 1204 q^{13} - 228 q^{17} - 358 q^{19} - 2148 q^{23} - 5454 q^{25} + 5832 q^{27} - 11064 q^{29} - 830 q^{31} - 4158 q^{33} - 3914 q^{37} - 5418 q^{39} + 16632 q^{41} - 29036 q^{43} - 41700 q^{47} - 2052 q^{51} + 22164 q^{53} - 7784 q^{55} + 6444 q^{57} - 32886 q^{59} - 83732 q^{61} - 93192 q^{65} - 80034 q^{67} + 38664 q^{69} + 89544 q^{71} + 22470 q^{73} - 49086 q^{75} - 75286 q^{79} - 26244 q^{81} + 34836 q^{83} + 278504 q^{85} + 49788 q^{87} - 28944 q^{89} - 7470 q^{93} - 144120 q^{95} + 433356 q^{97} + 74844 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/588\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(295\) \(493\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −4.50000 + 7.79423i −0.288675 + 0.500000i
\(4\) 0 0
\(5\) 39.3359 + 68.1317i 0.703662 + 1.21878i 0.967172 + 0.254121i \(0.0817862\pi\)
−0.263511 + 0.964656i \(0.584880\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −40.5000 70.1481i −0.166667 0.288675i
\(10\) 0 0
\(11\) −345.759 + 598.873i −0.861574 + 1.49229i 0.00883597 + 0.999961i \(0.497187\pi\)
−0.870410 + 0.492328i \(0.836146\pi\)
\(12\) 0 0
\(13\) −818.732 −1.34364 −0.671821 0.740714i \(-0.734488\pi\)
−0.671821 + 0.740714i \(0.734488\pi\)
\(14\) 0 0
\(15\) −708.046 −0.812518
\(16\) 0 0
\(17\) 554.638 960.661i 0.465465 0.806209i −0.533757 0.845638i \(-0.679220\pi\)
0.999222 + 0.0394286i \(0.0125538\pi\)
\(18\) 0 0
\(19\) −286.523 496.273i −0.182086 0.315382i 0.760505 0.649332i \(-0.224951\pi\)
−0.942591 + 0.333951i \(0.891618\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −1258.80 2180.30i −0.496177 0.859403i 0.503814 0.863812i \(-0.331930\pi\)
−0.999990 + 0.00440926i \(0.998596\pi\)
\(24\) 0 0
\(25\) −1532.12 + 2653.71i −0.490279 + 0.849189i
\(26\) 0 0
\(27\) 729.000 0.192450
\(28\) 0 0
\(29\) −3258.19 −0.719419 −0.359710 0.933064i \(-0.617124\pi\)
−0.359710 + 0.933064i \(0.617124\pi\)
\(30\) 0 0
\(31\) 5059.55 8763.40i 0.945601 1.63783i 0.191056 0.981579i \(-0.438809\pi\)
0.754544 0.656249i \(-0.227858\pi\)
\(32\) 0 0
\(33\) −3111.84 5389.86i −0.497430 0.861574i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −2434.81 4217.21i −0.292389 0.506432i 0.681985 0.731366i \(-0.261117\pi\)
−0.974374 + 0.224934i \(0.927783\pi\)
\(38\) 0 0
\(39\) 3684.30 6381.39i 0.387876 0.671821i
\(40\) 0 0
\(41\) 13094.3 1.21653 0.608265 0.793734i \(-0.291866\pi\)
0.608265 + 0.793734i \(0.291866\pi\)
\(42\) 0 0
\(43\) −9303.64 −0.767329 −0.383664 0.923473i \(-0.625338\pi\)
−0.383664 + 0.923473i \(0.625338\pi\)
\(44\) 0 0
\(45\) 3186.21 5518.67i 0.234554 0.406259i
\(46\) 0 0
\(47\) 6452.90 + 11176.8i 0.426099 + 0.738025i 0.996522 0.0833256i \(-0.0265542\pi\)
−0.570423 + 0.821351i \(0.693221\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 4991.74 + 8645.95i 0.268736 + 0.465465i
\(52\) 0 0
\(53\) 9770.12 16922.3i 0.477760 0.827505i −0.521915 0.852998i \(-0.674782\pi\)
0.999675 + 0.0254926i \(0.00811542\pi\)
\(54\) 0 0
\(55\) −54403.0 −2.42503
\(56\) 0 0
\(57\) 5157.42 0.210254
\(58\) 0 0
\(59\) −12560.2 + 21755.0i −0.469751 + 0.813632i −0.999402 0.0345835i \(-0.988990\pi\)
0.529651 + 0.848216i \(0.322323\pi\)
\(60\) 0 0
\(61\) −15681.1 27160.5i −0.539575 0.934571i −0.998927 0.0463168i \(-0.985252\pi\)
0.459352 0.888254i \(-0.348082\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −32205.6 55781.7i −0.945469 1.63760i
\(66\) 0 0
\(67\) −27971.9 + 48448.8i −0.761264 + 1.31855i 0.180936 + 0.983495i \(0.442087\pi\)
−0.942200 + 0.335052i \(0.891246\pi\)
\(68\) 0 0
\(69\) 22658.4 0.572935
\(70\) 0 0
\(71\) 20501.0 0.482647 0.241323 0.970445i \(-0.422419\pi\)
0.241323 + 0.970445i \(0.422419\pi\)
\(72\) 0 0
\(73\) −33825.0 + 58586.6i −0.742900 + 1.28674i 0.208270 + 0.978071i \(0.433217\pi\)
−0.951170 + 0.308669i \(0.900116\pi\)
\(74\) 0 0
\(75\) −13789.1 23883.4i −0.283063 0.490279i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −7039.95 12193.5i −0.126912 0.219818i 0.795567 0.605866i \(-0.207173\pi\)
−0.922479 + 0.386048i \(0.873840\pi\)
\(80\) 0 0
\(81\) −3280.50 + 5681.99i −0.0555556 + 0.0962250i
\(82\) 0 0
\(83\) 77129.1 1.22892 0.614459 0.788949i \(-0.289374\pi\)
0.614459 + 0.788949i \(0.289374\pi\)
\(84\) 0 0
\(85\) 87268.6 1.31012
\(86\) 0 0
\(87\) 14661.9 25395.1i 0.207678 0.359710i
\(88\) 0 0
\(89\) 160.396 + 277.815i 0.00214644 + 0.00371775i 0.867097 0.498140i \(-0.165983\pi\)
−0.864950 + 0.501858i \(0.832650\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 45536.0 + 78870.6i 0.545943 + 0.945601i
\(94\) 0 0
\(95\) 22541.3 39042.6i 0.256253 0.443844i
\(96\) 0 0
\(97\) 112009. 1.20871 0.604355 0.796715i \(-0.293431\pi\)
0.604355 + 0.796715i \(0.293431\pi\)
\(98\) 0 0
\(99\) 56013.0 0.574382
\(100\) 0 0
\(101\) 33627.0 58243.7i 0.328008 0.568127i −0.654108 0.756401i \(-0.726956\pi\)
0.982117 + 0.188274i \(0.0602893\pi\)
\(102\) 0 0
\(103\) −58317.6 101009.i −0.541635 0.938140i −0.998810 0.0487630i \(-0.984472\pi\)
0.457175 0.889377i \(-0.348861\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 80322.6 + 139123.i 0.678232 + 1.17473i 0.975513 + 0.219942i \(0.0705869\pi\)
−0.297281 + 0.954790i \(0.596080\pi\)
\(108\) 0 0
\(109\) −59668.3 + 103349.i −0.481036 + 0.833179i −0.999763 0.0217610i \(-0.993073\pi\)
0.518727 + 0.854940i \(0.326406\pi\)
\(110\) 0 0
\(111\) 43826.6 0.337622
\(112\) 0 0
\(113\) −110893. −0.816972 −0.408486 0.912765i \(-0.633943\pi\)
−0.408486 + 0.912765i \(0.633943\pi\)
\(114\) 0 0
\(115\) 99031.8 171528.i 0.698281 1.20946i
\(116\) 0 0
\(117\) 33158.7 + 57432.5i 0.223940 + 0.387876i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −158574. 274658.i −0.984618 1.70541i
\(122\) 0 0
\(123\) −58924.4 + 102060.i −0.351182 + 0.608265i
\(124\) 0 0
\(125\) 4779.64 0.0273603
\(126\) 0 0
\(127\) 315184. 1.73402 0.867012 0.498287i \(-0.166038\pi\)
0.867012 + 0.498287i \(0.166038\pi\)
\(128\) 0 0
\(129\) 41866.4 72514.7i 0.221509 0.383664i
\(130\) 0 0
\(131\) 42832.3 + 74187.6i 0.218068 + 0.377705i 0.954217 0.299114i \(-0.0966911\pi\)
−0.736149 + 0.676819i \(0.763358\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 28675.9 + 49668.0i 0.135420 + 0.234554i
\(136\) 0 0
\(137\) 16316.1 28260.3i 0.0742703 0.128640i −0.826498 0.562939i \(-0.809671\pi\)
0.900769 + 0.434299i \(0.143004\pi\)
\(138\) 0 0
\(139\) −206590. −0.906925 −0.453462 0.891275i \(-0.649811\pi\)
−0.453462 + 0.891275i \(0.649811\pi\)
\(140\) 0 0
\(141\) −116152. −0.492017
\(142\) 0 0
\(143\) 283084. 490317.i 1.15765 2.00510i
\(144\) 0 0
\(145\) −128164. 221986.i −0.506228 0.876812i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −241855. 418906.i −0.892463 1.54579i −0.836913 0.547335i \(-0.815642\pi\)
−0.0555495 0.998456i \(-0.517691\pi\)
\(150\) 0 0
\(151\) 83610.4 144818.i 0.298413 0.516867i −0.677360 0.735652i \(-0.736876\pi\)
0.975773 + 0.218785i \(0.0702093\pi\)
\(152\) 0 0
\(153\) −89851.3 −0.310310
\(154\) 0 0
\(155\) 796087. 2.66153
\(156\) 0 0
\(157\) −7054.26 + 12218.3i −0.0228403 + 0.0395606i −0.877220 0.480089i \(-0.840604\pi\)
0.854379 + 0.519650i \(0.173938\pi\)
\(158\) 0 0
\(159\) 87931.0 + 152301.i 0.275835 + 0.477760i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −327188. 566706.i −0.964558 1.67066i −0.710797 0.703397i \(-0.751665\pi\)
−0.253762 0.967267i \(-0.581668\pi\)
\(164\) 0 0
\(165\) 244814. 424030.i 0.700044 1.21251i
\(166\) 0 0
\(167\) −182945. −0.507610 −0.253805 0.967255i \(-0.581682\pi\)
−0.253805 + 0.967255i \(0.581682\pi\)
\(168\) 0 0
\(169\) 299030. 0.805374
\(170\) 0 0
\(171\) −23208.4 + 40198.1i −0.0606952 + 0.105127i
\(172\) 0 0
\(173\) −146004. 252887.i −0.370894 0.642407i 0.618809 0.785541i \(-0.287615\pi\)
−0.989703 + 0.143134i \(0.954282\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −113042. 195795.i −0.271211 0.469751i
\(178\) 0 0
\(179\) −97383.8 + 168674.i −0.227172 + 0.393473i −0.956969 0.290191i \(-0.906281\pi\)
0.729797 + 0.683664i \(0.239615\pi\)
\(180\) 0 0
\(181\) 256634. 0.582261 0.291130 0.956683i \(-0.405969\pi\)
0.291130 + 0.956683i \(0.405969\pi\)
\(182\) 0 0
\(183\) 282260. 0.623047
\(184\) 0 0
\(185\) 191551. 331776.i 0.411486 0.712714i
\(186\) 0 0
\(187\) 383542. + 664315.i 0.802065 + 1.38922i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 146975. + 254567.i 0.291513 + 0.504916i 0.974168 0.225825i \(-0.0725079\pi\)
−0.682654 + 0.730741i \(0.739175\pi\)
\(192\) 0 0
\(193\) 34565.0 59868.4i 0.0667950 0.115692i −0.830694 0.556730i \(-0.812056\pi\)
0.897489 + 0.441037i \(0.145389\pi\)
\(194\) 0 0
\(195\) 579700. 1.09173
\(196\) 0 0
\(197\) 331748. 0.609037 0.304518 0.952506i \(-0.401505\pi\)
0.304518 + 0.952506i \(0.401505\pi\)
\(198\) 0 0
\(199\) 287214. 497470.i 0.514130 0.890500i −0.485735 0.874106i \(-0.661448\pi\)
0.999866 0.0163939i \(-0.00521858\pi\)
\(200\) 0 0
\(201\) −251747. 436039.i −0.439516 0.761264i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 515076. + 892138.i 0.856025 + 1.48268i
\(206\) 0 0
\(207\) −101963. + 176604.i −0.165392 + 0.286468i
\(208\) 0 0
\(209\) 396272. 0.627521
\(210\) 0 0
\(211\) −383999. −0.593777 −0.296889 0.954912i \(-0.595949\pi\)
−0.296889 + 0.954912i \(0.595949\pi\)
\(212\) 0 0
\(213\) −92254.5 + 159790.i −0.139328 + 0.241323i
\(214\) 0 0
\(215\) −365967. 633873.i −0.539940 0.935203i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −304425. 527279.i −0.428913 0.742900i
\(220\) 0 0
\(221\) −454100. + 786524.i −0.625418 + 1.08326i
\(222\) 0 0
\(223\) 347165. 0.467492 0.233746 0.972298i \(-0.424902\pi\)
0.233746 + 0.972298i \(0.424902\pi\)
\(224\) 0 0
\(225\) 248204. 0.326853
\(226\) 0 0
\(227\) 180641. 312879.i 0.232676 0.403006i −0.725919 0.687780i \(-0.758585\pi\)
0.958595 + 0.284774i \(0.0919186\pi\)
\(228\) 0 0
\(229\) −376492. 652102.i −0.474424 0.821726i 0.525147 0.851011i \(-0.324010\pi\)
−0.999571 + 0.0292852i \(0.990677\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −357199. 618686.i −0.431042 0.746587i 0.565921 0.824460i \(-0.308521\pi\)
−0.996963 + 0.0778721i \(0.975187\pi\)
\(234\) 0 0
\(235\) −507661. + 879295.i −0.599659 + 1.03864i
\(236\) 0 0
\(237\) 126719. 0.146545
\(238\) 0 0
\(239\) 343587. 0.389083 0.194541 0.980894i \(-0.437678\pi\)
0.194541 + 0.980894i \(0.437678\pi\)
\(240\) 0 0
\(241\) −38152.5 + 66082.0i −0.0423136 + 0.0732893i −0.886407 0.462908i \(-0.846806\pi\)
0.844093 + 0.536197i \(0.180140\pi\)
\(242\) 0 0
\(243\) −29524.5 51137.9i −0.0320750 0.0555556i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 234586. + 406314.i 0.244658 + 0.423760i
\(248\) 0 0
\(249\) −347081. + 601162.i −0.354758 + 0.614459i
\(250\) 0 0
\(251\) −196249. −0.196618 −0.0983090 0.995156i \(-0.531343\pi\)
−0.0983090 + 0.995156i \(0.531343\pi\)
\(252\) 0 0
\(253\) 1.74096e6 1.70997
\(254\) 0 0
\(255\) −392709. + 680192.i −0.378199 + 0.655060i
\(256\) 0 0
\(257\) −854554. 1.48013e6i −0.807062 1.39787i −0.914890 0.403703i \(-0.867723\pi\)
0.107828 0.994170i \(-0.465610\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 131957. + 228556.i 0.119903 + 0.207678i
\(262\) 0 0
\(263\) 395762. 685481.i 0.352814 0.611091i −0.633928 0.773392i \(-0.718558\pi\)
0.986741 + 0.162301i \(0.0518917\pi\)
\(264\) 0 0
\(265\) 1.53726e6 1.34473
\(266\) 0 0
\(267\) −2887.13 −0.00247850
\(268\) 0 0
\(269\) 579502. 1.00373e6i 0.488286 0.845736i −0.511623 0.859210i \(-0.670956\pi\)
0.999909 + 0.0134740i \(0.00428905\pi\)
\(270\) 0 0
\(271\) 111567. + 193240.i 0.0922811 + 0.159836i 0.908471 0.417949i \(-0.137251\pi\)
−0.816190 + 0.577784i \(0.803917\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −1.05949e6 1.83509e6i −0.844823 1.46328i
\(276\) 0 0
\(277\) 234523. 406205.i 0.183648 0.318087i −0.759472 0.650540i \(-0.774543\pi\)
0.943120 + 0.332452i \(0.107876\pi\)
\(278\) 0 0
\(279\) −819647. −0.630400
\(280\) 0 0
\(281\) −1.51447e6 −1.14418 −0.572090 0.820191i \(-0.693867\pi\)
−0.572090 + 0.820191i \(0.693867\pi\)
\(282\) 0 0
\(283\) −535303. + 927171.i −0.397314 + 0.688167i −0.993393 0.114758i \(-0.963391\pi\)
0.596080 + 0.802925i \(0.296724\pi\)
\(284\) 0 0
\(285\) 202871. + 351384.i 0.147948 + 0.256253i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 94682.6 + 163995.i 0.0666846 + 0.115501i
\(290\) 0 0
\(291\) −504039. + 873021.i −0.348925 + 0.604355i
\(292\) 0 0
\(293\) −1.45450e6 −0.989794 −0.494897 0.868952i \(-0.664794\pi\)
−0.494897 + 0.868952i \(0.664794\pi\)
\(294\) 0 0
\(295\) −1.97627e6 −1.32218
\(296\) 0 0
\(297\) −252059. + 436578.i −0.165810 + 0.287191i
\(298\) 0 0
\(299\) 1.03062e6 + 1.78508e6i 0.666684 + 1.15473i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 302643. + 524193.i 0.189376 + 0.328008i
\(304\) 0 0
\(305\) 1.23366e6 2.13676e6i 0.759356 1.31524i
\(306\) 0 0
\(307\) 2.23869e6 1.35565 0.677824 0.735224i \(-0.262923\pi\)
0.677824 + 0.735224i \(0.262923\pi\)
\(308\) 0 0
\(309\) 1.04972e6 0.625426
\(310\) 0 0
\(311\) −750695. + 1.30024e6i −0.440111 + 0.762295i −0.997697 0.0678240i \(-0.978394\pi\)
0.557586 + 0.830119i \(0.311728\pi\)
\(312\) 0 0
\(313\) −890067. 1.54164e6i −0.513525 0.889452i −0.999877 0.0156888i \(-0.995006\pi\)
0.486352 0.873763i \(-0.338327\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −735500. 1.27392e6i −0.411088 0.712025i 0.583921 0.811810i \(-0.301518\pi\)
−0.995009 + 0.0997854i \(0.968184\pi\)
\(318\) 0 0
\(319\) 1.12655e6 1.95124e6i 0.619832 1.07358i
\(320\) 0 0
\(321\) −1.44581e6 −0.783155
\(322\) 0 0
\(323\) −635666. −0.339018
\(324\) 0 0
\(325\) 1.25440e6 2.17268e6i 0.658760 1.14101i
\(326\) 0 0
\(327\) −537015. 930137.i −0.277726 0.481036i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 914873. + 1.58461e6i 0.458977 + 0.794971i 0.998907 0.0467386i \(-0.0148828\pi\)
−0.539930 + 0.841710i \(0.681549\pi\)
\(332\) 0 0
\(333\) −197220. + 341594.i −0.0974629 + 0.168811i
\(334\) 0 0
\(335\) −4.40120e6 −2.14269
\(336\) 0 0
\(337\) 3.18627e6 1.52830 0.764148 0.645041i \(-0.223160\pi\)
0.764148 + 0.645041i \(0.223160\pi\)
\(338\) 0 0
\(339\) 499018. 864324.i 0.235840 0.408486i
\(340\) 0 0
\(341\) 3.49878e6 + 6.06006e6i 1.62941 + 2.82222i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 891286. + 1.54375e6i 0.403153 + 0.698281i
\(346\) 0 0
\(347\) −1.23895e6 + 2.14592e6i −0.552370 + 0.956732i 0.445733 + 0.895166i \(0.352943\pi\)
−0.998103 + 0.0615664i \(0.980390\pi\)
\(348\) 0 0
\(349\) −1.81720e6 −0.798618 −0.399309 0.916816i \(-0.630750\pi\)
−0.399309 + 0.916816i \(0.630750\pi\)
\(350\) 0 0
\(351\) −596856. −0.258584
\(352\) 0 0
\(353\) 1.57678e6 2.73106e6i 0.673493 1.16652i −0.303413 0.952859i \(-0.598126\pi\)
0.976907 0.213666i \(-0.0685403\pi\)
\(354\) 0 0
\(355\) 806425. + 1.39677e6i 0.339620 + 0.588239i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −1.35105e6 2.34008e6i −0.553266 0.958285i −0.998036 0.0626404i \(-0.980048\pi\)
0.444770 0.895645i \(-0.353285\pi\)
\(360\) 0 0
\(361\) 1.07386e6 1.85998e6i 0.433690 0.751173i
\(362\) 0 0
\(363\) 2.85433e6 1.13694
\(364\) 0 0
\(365\) −5.32214e6 −2.09100
\(366\) 0 0
\(367\) −1.80573e6 + 3.12762e6i −0.699824 + 1.21213i 0.268703 + 0.963223i \(0.413405\pi\)
−0.968527 + 0.248908i \(0.919928\pi\)
\(368\) 0 0
\(369\) −530319. 918540.i −0.202755 0.351182i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 216759. + 375438.i 0.0806688 + 0.139722i 0.903537 0.428509i \(-0.140961\pi\)
−0.822869 + 0.568232i \(0.807628\pi\)
\(374\) 0 0
\(375\) −21508.4 + 37253.6i −0.00789823 + 0.0136801i
\(376\) 0 0
\(377\) 2.66759e6 0.966642
\(378\) 0 0
\(379\) −2.12163e6 −0.758704 −0.379352 0.925252i \(-0.623853\pi\)
−0.379352 + 0.925252i \(0.623853\pi\)
\(380\) 0 0
\(381\) −1.41833e6 + 2.45662e6i −0.500570 + 0.867012i
\(382\) 0 0
\(383\) −2.12339e6 3.67782e6i −0.739662 1.28113i −0.952647 0.304077i \(-0.901652\pi\)
0.212985 0.977055i \(-0.431681\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 376797. + 652632.i 0.127888 + 0.221509i
\(388\) 0 0
\(389\) 1.76088e6 3.04994e6i 0.590006 1.02192i −0.404224 0.914660i \(-0.632459\pi\)
0.994231 0.107261i \(-0.0342081\pi\)
\(390\) 0 0
\(391\) −2.79271e6 −0.923811
\(392\) 0 0
\(393\) −770981. −0.251804
\(394\) 0 0
\(395\) 553845. 959288.i 0.178606 0.309354i
\(396\) 0 0
\(397\) −367025. 635706.i −0.116874 0.202432i 0.801653 0.597790i \(-0.203954\pi\)
−0.918527 + 0.395357i \(0.870621\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 111135. + 192492.i 0.0345136 + 0.0597793i 0.882766 0.469812i \(-0.155678\pi\)
−0.848253 + 0.529592i \(0.822345\pi\)
\(402\) 0 0
\(403\) −4.14242e6 + 7.17488e6i −1.27055 + 2.20065i
\(404\) 0 0
\(405\) −516165. −0.156369
\(406\) 0 0
\(407\) 3.36743e6 1.00766
\(408\) 0 0
\(409\) −1.75379e6 + 3.03765e6i −0.518405 + 0.897904i 0.481366 + 0.876520i \(0.340141\pi\)
−0.999771 + 0.0213846i \(0.993193\pi\)
\(410\) 0 0
\(411\) 146845. + 254343.i 0.0428800 + 0.0742703i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 3.03394e6 + 5.25494e6i 0.864742 + 1.49778i
\(416\) 0 0
\(417\) 929653. 1.61021e6i 0.261807 0.453462i
\(418\) 0 0
\(419\) 1.97040e6 0.548302 0.274151 0.961687i \(-0.411603\pi\)
0.274151 + 0.961687i \(0.411603\pi\)
\(420\) 0 0
\(421\) −7.19318e6 −1.97795 −0.988976 0.148079i \(-0.952691\pi\)
−0.988976 + 0.148079i \(0.952691\pi\)
\(422\) 0 0
\(423\) 522685. 905317.i 0.142033 0.246008i
\(424\) 0 0
\(425\) 1.69955e6 + 2.94370e6i 0.456416 + 0.790535i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 2.54776e6 + 4.41285e6i 0.668367 + 1.15765i
\(430\) 0 0
\(431\) −262091. + 453955.i −0.0679608 + 0.117712i −0.898004 0.439988i \(-0.854983\pi\)
0.830043 + 0.557700i \(0.188316\pi\)
\(432\) 0 0
\(433\) −1.49326e6 −0.382750 −0.191375 0.981517i \(-0.561295\pi\)
−0.191375 + 0.981517i \(0.561295\pi\)
\(434\) 0 0
\(435\) 2.30695e6 0.584541
\(436\) 0 0
\(437\) −721349. + 1.24941e6i −0.180693 + 0.312970i
\(438\) 0 0
\(439\) 1.32835e6 + 2.30077e6i 0.328966 + 0.569786i 0.982307 0.187278i \(-0.0599664\pi\)
−0.653341 + 0.757064i \(0.726633\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 2.34399e6 + 4.05991e6i 0.567474 + 0.982895i 0.996815 + 0.0797518i \(0.0254128\pi\)
−0.429340 + 0.903143i \(0.641254\pi\)
\(444\) 0 0
\(445\) −12618.7 + 21856.2i −0.00302074 + 0.00523207i
\(446\) 0 0
\(447\) 4.35340e6 1.03053
\(448\) 0 0
\(449\) −3.45899e6 −0.809716 −0.404858 0.914379i \(-0.632679\pi\)
−0.404858 + 0.914379i \(0.632679\pi\)
\(450\) 0 0
\(451\) −4.52748e6 + 7.84182e6i −1.04813 + 1.81541i
\(452\) 0 0
\(453\) 752494. + 1.30336e6i 0.172289 + 0.298413i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −359140. 622048.i −0.0804401 0.139326i 0.822999 0.568043i \(-0.192299\pi\)
−0.903439 + 0.428717i \(0.858966\pi\)
\(458\) 0 0
\(459\) 404331. 700322.i 0.0895788 0.155155i
\(460\) 0 0
\(461\) −5.07998e6 −1.11329 −0.556647 0.830749i \(-0.687912\pi\)
−0.556647 + 0.830749i \(0.687912\pi\)
\(462\) 0 0
\(463\) 3.40607e6 0.738416 0.369208 0.929347i \(-0.379629\pi\)
0.369208 + 0.929347i \(0.379629\pi\)
\(464\) 0 0
\(465\) −3.58239e6 + 6.20489e6i −0.768318 + 1.33077i
\(466\) 0 0
\(467\) 921342. + 1.59581e6i 0.195492 + 0.338602i 0.947062 0.321052i \(-0.104036\pi\)
−0.751570 + 0.659654i \(0.770703\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −63488.3 109965.i −0.0131869 0.0228403i
\(472\) 0 0
\(473\) 3.21682e6 5.57170e6i 0.661110 1.14508i
\(474\) 0 0
\(475\) 1.75595e6 0.357091
\(476\) 0 0
\(477\) −1.58276e6 −0.318507
\(478\) 0 0
\(479\) 4.55714e6 7.89319e6i 0.907514 1.57186i 0.0900071 0.995941i \(-0.471311\pi\)
0.817507 0.575919i \(-0.195356\pi\)
\(480\) 0 0
\(481\) 1.99346e6 + 3.45277e6i 0.392866 + 0.680464i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 4.40596e6 + 7.63134e6i 0.850523 + 1.47315i
\(486\) 0 0
\(487\) −2.19220e6 + 3.79701e6i −0.418850 + 0.725469i −0.995824 0.0912933i \(-0.970900\pi\)
0.576974 + 0.816762i \(0.304233\pi\)
\(488\) 0 0
\(489\) 5.88939e6 1.11378
\(490\) 0 0
\(491\) −9.50592e6 −1.77947 −0.889735 0.456478i \(-0.849111\pi\)
−0.889735 + 0.456478i \(0.849111\pi\)
\(492\) 0 0
\(493\) −1.80712e6 + 3.13002e6i −0.334864 + 0.580002i
\(494\) 0 0
\(495\) 2.20332e6 + 3.81627e6i 0.404171 + 0.700044i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −1.68783e6 2.92341e6i −0.303444 0.525580i 0.673470 0.739215i \(-0.264803\pi\)
−0.976914 + 0.213635i \(0.931470\pi\)
\(500\) 0 0
\(501\) 823255. 1.42592e6i 0.146535 0.253805i
\(502\) 0 0
\(503\) −7.82645e6 −1.37926 −0.689628 0.724164i \(-0.742226\pi\)
−0.689628 + 0.724164i \(0.742226\pi\)
\(504\) 0 0
\(505\) 5.29099e6 0.923227
\(506\) 0 0
\(507\) −1.34563e6 + 2.33070e6i −0.232491 + 0.402687i
\(508\) 0 0
\(509\) −3.71219e6 6.42969e6i −0.635090 1.10001i −0.986496 0.163785i \(-0.947630\pi\)
0.351406 0.936223i \(-0.385704\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −208875. 361783.i −0.0350424 0.0606952i
\(514\) 0 0
\(515\) 4.58795e6 7.94656e6i 0.762256 1.32027i
\(516\) 0 0
\(517\) −8.92461e6 −1.46846
\(518\) 0 0
\(519\) 2.62807e6 0.428272
\(520\) 0 0
\(521\) −530710. + 919217.i −0.0856570 + 0.148362i −0.905671 0.423981i \(-0.860632\pi\)
0.820014 + 0.572344i \(0.193966\pi\)
\(522\) 0 0
\(523\) −956760. 1.65716e6i −0.152950 0.264917i 0.779361 0.626575i \(-0.215544\pi\)
−0.932311 + 0.361659i \(0.882211\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −5.61243e6 9.72102e6i −0.880288 1.52470i
\(528\) 0 0
\(529\) 49029.1 84921.0i 0.00761755 0.0131940i
\(530\) 0 0
\(531\) 2.03476e6 0.313167
\(532\) 0 0
\(533\) −1.07207e7 −1.63458
\(534\) 0 0
\(535\) −6.31912e6 + 1.09450e7i −0.954492 + 1.65323i
\(536\) 0 0
\(537\) −876454. 1.51806e6i −0.131158 0.227172i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −5.83140e6 1.01003e7i −0.856603 1.48368i −0.875150 0.483852i \(-0.839237\pi\)
0.0185472 0.999828i \(-0.494096\pi\)
\(542\) 0 0
\(543\) −1.15485e6 + 2.00026e6i −0.168084 + 0.291130i
\(544\) 0 0
\(545\) −9.38842e6 −1.35395
\(546\) 0 0
\(547\) −6.36659e6 −0.909785 −0.454893 0.890546i \(-0.650322\pi\)
−0.454893 + 0.890546i \(0.650322\pi\)
\(548\) 0 0
\(549\) −1.27017e6 + 2.20000e6i −0.179858 + 0.311524i
\(550\) 0 0
\(551\) 933548. + 1.61695e6i 0.130996 + 0.226891i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 1.72396e6 + 2.98598e6i 0.237571 + 0.411486i
\(556\) 0 0
\(557\) −4.86221e6 + 8.42159e6i −0.664042 + 1.15015i 0.315502 + 0.948925i \(0.397827\pi\)
−0.979544 + 0.201230i \(0.935506\pi\)
\(558\) 0 0
\(559\) 7.61719e6 1.03102
\(560\) 0 0
\(561\) −6.90376e6 −0.926145
\(562\) 0 0
\(563\) 3.15133e6 5.45826e6i 0.419008 0.725744i −0.576832 0.816863i \(-0.695711\pi\)
0.995840 + 0.0911193i \(0.0290445\pi\)
\(564\) 0 0
\(565\) −4.36207e6 7.55532e6i −0.574872 0.995708i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −4.08244e6 7.07099e6i −0.528614 0.915586i −0.999443 0.0333620i \(-0.989379\pi\)
0.470829 0.882224i \(-0.343955\pi\)
\(570\) 0 0
\(571\) 6.43857e6 1.11519e7i 0.826416 1.43139i −0.0744158 0.997227i \(-0.523709\pi\)
0.900832 0.434168i \(-0.142957\pi\)
\(572\) 0 0
\(573\) −2.64554e6 −0.336611
\(574\) 0 0
\(575\) 7.71453e6 0.973061
\(576\) 0 0
\(577\) 5.70887e6 9.88805e6i 0.713856 1.23643i −0.249543 0.968364i \(-0.580280\pi\)
0.963399 0.268071i \(-0.0863862\pi\)
\(578\) 0 0
\(579\) 311085. + 538816.i 0.0385641 + 0.0667950i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 6.75622e6 + 1.17021e7i 0.823251 + 1.42591i
\(584\) 0 0
\(585\) −2.60865e6 + 4.51831e6i −0.315156 + 0.545867i
\(586\) 0 0
\(587\) −2.12781e6 −0.254882 −0.127441 0.991846i \(-0.540676\pi\)
−0.127441 + 0.991846i \(0.540676\pi\)
\(588\) 0 0
\(589\) −5.79871e6 −0.688721
\(590\) 0 0
\(591\) −1.49287e6 + 2.58572e6i −0.175814 + 0.304518i
\(592\) 0 0
\(593\) −4.28689e6 7.42511e6i −0.500617 0.867094i −1.00000 0.000712836i \(-0.999773\pi\)
0.499383 0.866382i \(-0.333560\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 2.58493e6 + 4.47723e6i 0.296833 + 0.514130i
\(598\) 0 0
\(599\) −5.64372e6 + 9.77521e6i −0.642686 + 1.11316i 0.342145 + 0.939647i \(0.388846\pi\)
−0.984831 + 0.173517i \(0.944487\pi\)
\(600\) 0 0
\(601\) 1.58260e7 1.78725 0.893625 0.448814i \(-0.148153\pi\)
0.893625 + 0.448814i \(0.148153\pi\)
\(602\) 0 0
\(603\) 4.53145e6 0.507509
\(604\) 0 0
\(605\) 1.24753e7 2.16078e7i 1.38568 2.40006i
\(606\) 0 0
\(607\) 4.87183e6 + 8.43826e6i 0.536686 + 0.929568i 0.999080 + 0.0428932i \(0.0136575\pi\)
−0.462393 + 0.886675i \(0.653009\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −5.28320e6 9.15077e6i −0.572525 0.991642i
\(612\) 0 0
\(613\) −3.07524e6 + 5.32647e6i −0.330543 + 0.572517i −0.982618 0.185637i \(-0.940565\pi\)
0.652075 + 0.758154i \(0.273899\pi\)
\(614\) 0 0
\(615\) −9.27137e6 −0.988453
\(616\) 0 0
\(617\) −3.36084e6 −0.355414 −0.177707 0.984083i \(-0.556868\pi\)
−0.177707 + 0.984083i \(0.556868\pi\)
\(618\) 0 0
\(619\) 3.44329e6 5.96396e6i 0.361200 0.625616i −0.626959 0.779052i \(-0.715701\pi\)
0.988159 + 0.153436i \(0.0490339\pi\)
\(620\) 0 0
\(621\) −917663. 1.58944e6i −0.0954892 0.165392i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 4.97590e6 + 8.61850e6i 0.509532 + 0.882535i
\(626\) 0 0
\(627\) −1.78323e6 + 3.08864e6i −0.181150 + 0.313760i
\(628\) 0 0
\(629\) −5.40175e6 −0.544387
\(630\) 0 0
\(631\) 3.59545e6 0.359484 0.179742 0.983714i \(-0.442474\pi\)
0.179742 + 0.983714i \(0.442474\pi\)
\(632\) 0 0
\(633\) 1.72799e6 2.99297e6i 0.171409 0.296889i
\(634\) 0 0
\(635\) 1.23980e7 + 2.14740e7i 1.22017 + 2.11339i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −830291. 1.43811e6i −0.0804411 0.139328i
\(640\) 0 0
\(641\) 9.91433e6 1.71721e7i 0.953056 1.65074i 0.214299 0.976768i \(-0.431253\pi\)
0.738756 0.673973i \(-0.235413\pi\)
\(642\) 0 0
\(643\) 8.10851e6 0.773417 0.386708 0.922202i \(-0.373612\pi\)
0.386708 + 0.922202i \(0.373612\pi\)
\(644\) 0 0
\(645\) 6.58740e6 0.623469
\(646\) 0 0
\(647\) 1.01373e6 1.75583e6i 0.0952053 0.164900i −0.814489 0.580179i \(-0.802983\pi\)
0.909694 + 0.415279i \(0.136316\pi\)
\(648\) 0 0
\(649\) −8.68564e6 1.50440e7i −0.809450 1.40201i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −757133. 1.31139e6i −0.0694847 0.120351i 0.829190 0.558967i \(-0.188802\pi\)
−0.898675 + 0.438616i \(0.855469\pi\)
\(654\) 0 0
\(655\) −3.36969e6 + 5.83647e6i −0.306893 + 0.531554i
\(656\) 0 0
\(657\) 5.47965e6 0.495267
\(658\) 0 0
\(659\) −3.22358e6 −0.289151 −0.144576 0.989494i \(-0.546182\pi\)
−0.144576 + 0.989494i \(0.546182\pi\)
\(660\) 0 0
\(661\) −7.19538e6 + 1.24628e7i −0.640546 + 1.10946i 0.344765 + 0.938689i \(0.387959\pi\)
−0.985311 + 0.170769i \(0.945375\pi\)
\(662\) 0 0
\(663\) −4.08690e6 7.07872e6i −0.361085 0.625418i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 4.10141e6 + 7.10384e6i 0.356959 + 0.618271i
\(668\) 0 0
\(669\) −1.56224e6 + 2.70589e6i −0.134953 + 0.233746i
\(670\) 0 0
\(671\) 2.16875e7 1.85953
\(672\) 0 0
\(673\) 7.33478e6 0.624237 0.312118 0.950043i \(-0.398961\pi\)
0.312118 + 0.950043i \(0.398961\pi\)
\(674\) 0 0
\(675\) −1.11692e6 + 1.93456e6i −0.0943543 + 0.163426i
\(676\) 0 0
\(677\) −1.52642e6 2.64384e6i −0.127998 0.221699i 0.794903 0.606737i \(-0.207522\pi\)
−0.922901 + 0.385038i \(0.874188\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 1.62577e6 + 2.81591e6i 0.134335 + 0.232676i
\(682\) 0 0
\(683\) −7.98793e6 + 1.38355e7i −0.655213 + 1.13486i 0.326627 + 0.945153i \(0.394088\pi\)
−0.981840 + 0.189709i \(0.939245\pi\)
\(684\) 0 0
\(685\) 2.56724e6 0.209045
\(686\) 0 0
\(687\) 6.77685e6 0.547817
\(688\) 0 0
\(689\) −7.99911e6 + 1.38549e7i −0.641939 + 1.11187i
\(690\) 0 0
\(691\) −1.23267e6 2.13504e6i −0.0982087 0.170103i 0.812735 0.582634i \(-0.197978\pi\)
−0.910943 + 0.412532i \(0.864645\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −8.12638e6 1.40753e7i −0.638168 1.10534i
\(696\) 0 0
\(697\) 7.26259e6 1.25792e7i 0.566252 0.980777i
\(698\) 0 0
\(699\) 6.42958e6 0.497725
\(700\) 0 0
\(701\) 1.74893e7 1.34424 0.672122 0.740440i \(-0.265383\pi\)
0.672122 + 0.740440i \(0.265383\pi\)
\(702\) 0 0
\(703\) −1.39526e6 + 2.41666e6i −0.106480 + 0.184428i
\(704\) 0 0
\(705\) −4.56895e6 7.91366e6i −0.346213 0.599659i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 1.09216e7 + 1.89167e7i 0.815961 + 1.41329i 0.908636 + 0.417589i \(0.137125\pi\)
−0.0926752 + 0.995696i \(0.529542\pi\)
\(710\) 0 0
\(711\) −570236. + 987677.i −0.0423039 + 0.0732725i
\(712\) 0 0
\(713\) −2.54758e7 −1.87674
\(714\) 0 0
\(715\) 4.45415e7 3.25837
\(716\) 0 0
\(717\) −1.54614e6 + 2.67800e6i −0.112319 + 0.194541i
\(718\) 0 0
\(719\) 9.55868e6 + 1.65561e7i 0.689566 + 1.19436i 0.971978 + 0.235070i \(0.0755319\pi\)
−0.282413 + 0.959293i \(0.591135\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −343372. 594738.i −0.0244298 0.0423136i
\(724\) 0 0
\(725\) 4.99195e6 8.64632e6i 0.352716 0.610923i
\(726\) 0 0
\(727\) 4.08900e6 0.286933 0.143467 0.989655i \(-0.454175\pi\)
0.143467 + 0.989655i \(0.454175\pi\)
\(728\) 0 0
\(729\) 531441. 0.0370370
\(730\) 0 0
\(731\) −5.16015e6 + 8.93764e6i −0.357165 + 0.618628i
\(732\) 0 0
\(733\) −1.81634e6 3.14599e6i −0.124864 0.216271i 0.796816 0.604222i \(-0.206516\pi\)
−0.921680 + 0.387952i \(0.873183\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −1.93431e7 3.35032e7i −1.31177 2.27205i
\(738\) 0 0
\(739\) −1.08978e6 + 1.88756e6i −0.0734056 + 0.127142i −0.900392 0.435080i \(-0.856720\pi\)
0.826986 + 0.562222i \(0.190053\pi\)
\(740\) 0 0
\(741\) −4.22254e6 −0.282507
\(742\) 0 0
\(743\) 1.21595e7 0.808060 0.404030 0.914746i \(-0.367609\pi\)
0.404030 + 0.914746i \(0.367609\pi\)
\(744\) 0 0
\(745\) 1.90272e7 3.29561e7i 1.25598 2.17543i
\(746\) 0 0
\(747\) −3.12373e6 5.41045e6i −0.204820 0.354758i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −1.16248e7 2.01347e7i −0.752115 1.30270i −0.946796 0.321835i \(-0.895701\pi\)
0.194681 0.980867i \(-0.437633\pi\)
\(752\) 0 0
\(753\) 883121. 1.52961e6i 0.0567587 0.0983090i
\(754\) 0 0
\(755\) 1.31556e7 0.839928
\(756\) 0 0
\(757\) −1.49939e7 −0.950985 −0.475492 0.879720i \(-0.657730\pi\)
−0.475492 + 0.879720i \(0.657730\pi\)
\(758\) 0 0
\(759\) −7.83434e6 + 1.35695e7i −0.493626 + 0.854985i
\(760\) 0 0
\(761\) −6.36596e6 1.10262e7i −0.398476 0.690181i 0.595062 0.803680i \(-0.297127\pi\)
−0.993538 + 0.113499i \(0.963794\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −3.53438e6 6.12173e6i −0.218353 0.378199i
\(766\) 0 0
\(767\) 1.02835e7 1.78115e7i 0.631177 1.09323i
\(768\) 0 0
\(769\) −2.34653e6 −0.143090 −0.0715451 0.997437i \(-0.522793\pi\)
−0.0715451 + 0.997437i \(0.522793\pi\)
\(770\) 0 0
\(771\) 1.53820e7 0.931915
\(772\) 0 0
\(773\) 1.35931e7 2.35440e7i 0.818222 1.41720i −0.0887694 0.996052i \(-0.528293\pi\)
0.906991 0.421150i \(-0.138373\pi\)
\(774\) 0 0
\(775\) 1.55037e7 + 2.68532e7i 0.927217 + 1.60599i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −3.75182e6 6.49834e6i −0.221513 0.383671i
\(780\) 0 0
\(781\) −7.08842e6 + 1.22775e7i −0.415836 + 0.720249i
\(782\) 0 0
\(783\) −2.37522e6 −0.138452
\(784\) 0 0
\(785\) −1.10994e6 −0.0642874