Properties

Label 588.6.i.o.361.3
Level $588$
Weight $6$
Character 588.361
Analytic conductor $94.306$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [588,6,Mod(361,588)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(588, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("588.361");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 588.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(94.3056860500\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} + 703x^{6} + 2770x^{5} + 427565x^{4} + 718170x^{3} + 42175732x^{2} - 40929504x + 3559792896 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{6}\cdot 3^{4}\cdot 7^{2} \)
Twist minimal: no (minimal twist has level 84)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 361.3
Root \(-5.49618 + 9.51967i\) of defining polynomial
Character \(\chi\) \(=\) 588.361
Dual form 588.6.i.o.373.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-4.50000 + 7.79423i) q^{3} +(23.0577 + 39.9371i) q^{5} +(-40.5000 - 70.1481i) q^{9} +(315.582 - 546.605i) q^{11} +1079.22 q^{13} -415.038 q^{15} +(80.5778 - 139.565i) q^{17} +(588.428 + 1019.19i) q^{19} +(-1081.73 - 1873.61i) q^{23} +(499.186 - 864.615i) q^{25} +729.000 q^{27} -4492.01 q^{29} +(159.130 - 275.621i) q^{31} +(2840.24 + 4919.44i) q^{33} +(-7593.41 - 13152.2i) q^{37} +(-4856.51 + 8411.73i) q^{39} -20587.2 q^{41} -455.118 q^{43} +(1867.67 - 3234.90i) q^{45} +(-10381.4 - 17981.1i) q^{47} +(725.200 + 1256.08i) q^{51} +(9650.03 - 16714.3i) q^{53} +29106.4 q^{55} -10591.7 q^{57} +(3184.15 - 5515.11i) q^{59} +(-24572.6 - 42560.9i) q^{61} +(24884.4 + 43101.1i) q^{65} +(-17027.0 + 29491.7i) q^{67} +19471.1 q^{69} +62962.4 q^{71} +(-4433.88 + 7679.70i) q^{73} +(4492.67 + 7781.54i) q^{75} +(-17206.6 - 29802.7i) q^{79} +(-3280.50 + 5681.99i) q^{81} +7041.42 q^{83} +7431.75 q^{85} +(20214.1 - 35011.8i) q^{87} +(-10121.4 - 17530.7i) q^{89} +(1432.17 + 2480.59i) q^{93} +(-27135.6 + 47000.2i) q^{95} -54066.6 q^{97} -51124.4 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 36 q^{3} - 324 q^{9} - 462 q^{11} + 1204 q^{13} - 228 q^{17} - 358 q^{19} - 2148 q^{23} - 5454 q^{25} + 5832 q^{27} - 11064 q^{29} - 830 q^{31} - 4158 q^{33} - 3914 q^{37} - 5418 q^{39} + 16632 q^{41}+ \cdots + 74844 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/588\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(295\) \(493\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −4.50000 + 7.79423i −0.288675 + 0.500000i
\(4\) 0 0
\(5\) 23.0577 + 39.9371i 0.412469 + 0.714416i 0.995159 0.0982777i \(-0.0313333\pi\)
−0.582691 + 0.812694i \(0.698000\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −40.5000 70.1481i −0.166667 0.288675i
\(10\) 0 0
\(11\) 315.582 546.605i 0.786378 1.36205i −0.141795 0.989896i \(-0.545287\pi\)
0.928173 0.372150i \(-0.121379\pi\)
\(12\) 0 0
\(13\) 1079.22 1.77114 0.885571 0.464503i \(-0.153767\pi\)
0.885571 + 0.464503i \(0.153767\pi\)
\(14\) 0 0
\(15\) −415.038 −0.476278
\(16\) 0 0
\(17\) 80.5778 139.565i 0.0676228 0.117126i −0.830232 0.557419i \(-0.811792\pi\)
0.897854 + 0.440292i \(0.145125\pi\)
\(18\) 0 0
\(19\) 588.428 + 1019.19i 0.373946 + 0.647694i 0.990169 0.139878i \(-0.0446711\pi\)
−0.616222 + 0.787572i \(0.711338\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −1081.73 1873.61i −0.426382 0.738516i 0.570166 0.821529i \(-0.306879\pi\)
−0.996548 + 0.0830136i \(0.973546\pi\)
\(24\) 0 0
\(25\) 499.186 864.615i 0.159739 0.276677i
\(26\) 0 0
\(27\) 729.000 0.192450
\(28\) 0 0
\(29\) −4492.01 −0.991850 −0.495925 0.868365i \(-0.665171\pi\)
−0.495925 + 0.868365i \(0.665171\pi\)
\(30\) 0 0
\(31\) 159.130 275.621i 0.0297405 0.0515120i −0.850772 0.525535i \(-0.823865\pi\)
0.880513 + 0.474023i \(0.157199\pi\)
\(32\) 0 0
\(33\) 2840.24 + 4919.44i 0.454015 + 0.786378i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −7593.41 13152.2i −0.911869 1.57940i −0.811422 0.584461i \(-0.801306\pi\)
−0.100447 0.994942i \(-0.532027\pi\)
\(38\) 0 0
\(39\) −4856.51 + 8411.73i −0.511285 + 0.885571i
\(40\) 0 0
\(41\) −20587.2 −1.91266 −0.956330 0.292289i \(-0.905583\pi\)
−0.956330 + 0.292289i \(0.905583\pi\)
\(42\) 0 0
\(43\) −455.118 −0.0375364 −0.0187682 0.999824i \(-0.505974\pi\)
−0.0187682 + 0.999824i \(0.505974\pi\)
\(44\) 0 0
\(45\) 1867.67 3234.90i 0.137490 0.238139i
\(46\) 0 0
\(47\) −10381.4 17981.1i −0.685504 1.18733i −0.973278 0.229630i \(-0.926248\pi\)
0.287774 0.957698i \(-0.407085\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 725.200 + 1256.08i 0.0390420 + 0.0676228i
\(52\) 0 0
\(53\) 9650.03 16714.3i 0.471888 0.817334i −0.527595 0.849496i \(-0.676906\pi\)
0.999483 + 0.0321622i \(0.0102393\pi\)
\(54\) 0 0
\(55\) 29106.4 1.29742
\(56\) 0 0
\(57\) −10591.7 −0.431796
\(58\) 0 0
\(59\) 3184.15 5515.11i 0.119087 0.206264i −0.800319 0.599574i \(-0.795337\pi\)
0.919406 + 0.393310i \(0.128670\pi\)
\(60\) 0 0
\(61\) −24572.6 42560.9i −0.845524 1.46449i −0.885165 0.465276i \(-0.845955\pi\)
0.0396416 0.999214i \(-0.487378\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 24884.4 + 43101.1i 0.730541 + 1.26533i
\(66\) 0 0
\(67\) −17027.0 + 29491.7i −0.463395 + 0.802624i −0.999128 0.0417639i \(-0.986702\pi\)
0.535732 + 0.844388i \(0.320036\pi\)
\(68\) 0 0
\(69\) 19471.1 0.492344
\(70\) 0 0
\(71\) 62962.4 1.48230 0.741149 0.671341i \(-0.234281\pi\)
0.741149 + 0.671341i \(0.234281\pi\)
\(72\) 0 0
\(73\) −4433.88 + 7679.70i −0.0973815 + 0.168670i −0.910600 0.413289i \(-0.864380\pi\)
0.813219 + 0.581958i \(0.197713\pi\)
\(74\) 0 0
\(75\) 4492.67 + 7781.54i 0.0922256 + 0.159739i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −17206.6 29802.7i −0.310190 0.537265i 0.668213 0.743970i \(-0.267059\pi\)
−0.978403 + 0.206705i \(0.933726\pi\)
\(80\) 0 0
\(81\) −3280.50 + 5681.99i −0.0555556 + 0.0962250i
\(82\) 0 0
\(83\) 7041.42 0.112193 0.0560964 0.998425i \(-0.482135\pi\)
0.0560964 + 0.998425i \(0.482135\pi\)
\(84\) 0 0
\(85\) 7431.75 0.111569
\(86\) 0 0
\(87\) 20214.1 35011.8i 0.286323 0.495925i
\(88\) 0 0
\(89\) −10121.4 17530.7i −0.135445 0.234598i 0.790322 0.612692i \(-0.209913\pi\)
−0.925768 + 0.378093i \(0.876580\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 1432.17 + 2480.59i 0.0171707 + 0.0297405i
\(94\) 0 0
\(95\) −27135.6 + 47000.2i −0.308482 + 0.534307i
\(96\) 0 0
\(97\) −54066.6 −0.583444 −0.291722 0.956503i \(-0.594228\pi\)
−0.291722 + 0.956503i \(0.594228\pi\)
\(98\) 0 0
\(99\) −51124.4 −0.524252
\(100\) 0 0
\(101\) −45743.2 + 79229.5i −0.446193 + 0.772829i −0.998134 0.0610540i \(-0.980554\pi\)
0.551942 + 0.833883i \(0.313887\pi\)
\(102\) 0 0
\(103\) 37690.7 + 65282.2i 0.350059 + 0.606320i 0.986259 0.165204i \(-0.0528283\pi\)
−0.636201 + 0.771524i \(0.719495\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −76066.3 131751.i −0.642293 1.11248i −0.984920 0.173012i \(-0.944650\pi\)
0.342627 0.939472i \(-0.388683\pi\)
\(108\) 0 0
\(109\) −38336.0 + 66399.8i −0.309058 + 0.535304i −0.978157 0.207869i \(-0.933347\pi\)
0.669099 + 0.743174i \(0.266680\pi\)
\(110\) 0 0
\(111\) 136681. 1.05294
\(112\) 0 0
\(113\) 228515. 1.68352 0.841760 0.539852i \(-0.181520\pi\)
0.841760 + 0.539852i \(0.181520\pi\)
\(114\) 0 0
\(115\) 49884.4 86402.3i 0.351739 0.609229i
\(116\) 0 0
\(117\) −43708.6 75705.5i −0.295190 0.511285i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −118659. 205524.i −0.736780 1.27614i
\(122\) 0 0
\(123\) 92642.4 160461.i 0.552137 0.956330i
\(124\) 0 0
\(125\) 190151. 1.08849
\(126\) 0 0
\(127\) 122111. 0.671809 0.335905 0.941896i \(-0.390958\pi\)
0.335905 + 0.941896i \(0.390958\pi\)
\(128\) 0 0
\(129\) 2048.03 3547.30i 0.0108358 0.0187682i
\(130\) 0 0
\(131\) 37897.7 + 65640.7i 0.192945 + 0.334191i 0.946225 0.323509i \(-0.104863\pi\)
−0.753280 + 0.657700i \(0.771529\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 16809.1 + 29114.1i 0.0793796 + 0.137490i
\(136\) 0 0
\(137\) 120806. 209242.i 0.549903 0.952460i −0.448378 0.893844i \(-0.647998\pi\)
0.998281 0.0586154i \(-0.0186686\pi\)
\(138\) 0 0
\(139\) −125657. −0.551634 −0.275817 0.961210i \(-0.588948\pi\)
−0.275817 + 0.961210i \(0.588948\pi\)
\(140\) 0 0
\(141\) 186865. 0.791552
\(142\) 0 0
\(143\) 340584. 589910.i 1.39279 2.41238i
\(144\) 0 0
\(145\) −103575. 179398.i −0.409107 0.708594i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −18023.3 31217.2i −0.0665071 0.115194i 0.830854 0.556490i \(-0.187852\pi\)
−0.897362 + 0.441296i \(0.854519\pi\)
\(150\) 0 0
\(151\) −75334.0 + 130482.i −0.268874 + 0.465703i −0.968571 0.248736i \(-0.919985\pi\)
0.699697 + 0.714439i \(0.253318\pi\)
\(152\) 0 0
\(153\) −13053.6 −0.0450819
\(154\) 0 0
\(155\) 14676.7 0.0490680
\(156\) 0 0
\(157\) 213207. 369285.i 0.690323 1.19567i −0.281409 0.959588i \(-0.590802\pi\)
0.971732 0.236086i \(-0.0758648\pi\)
\(158\) 0 0
\(159\) 86850.3 + 150429.i 0.272445 + 0.471888i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 96255.0 + 166718.i 0.283762 + 0.491490i 0.972308 0.233702i \(-0.0750841\pi\)
−0.688546 + 0.725192i \(0.741751\pi\)
\(164\) 0 0
\(165\) −130979. + 226862.i −0.374534 + 0.648712i
\(166\) 0 0
\(167\) −164987. −0.457782 −0.228891 0.973452i \(-0.573510\pi\)
−0.228891 + 0.973452i \(0.573510\pi\)
\(168\) 0 0
\(169\) 793433. 2.13695
\(170\) 0 0
\(171\) 47662.6 82554.1i 0.124649 0.215898i
\(172\) 0 0
\(173\) −164749. 285353.i −0.418511 0.724883i 0.577279 0.816547i \(-0.304115\pi\)
−0.995790 + 0.0916644i \(0.970781\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 28657.4 + 49636.0i 0.0687548 + 0.119087i
\(178\) 0 0
\(179\) −184174. + 318999.i −0.429631 + 0.744143i −0.996840 0.0794308i \(-0.974690\pi\)
0.567209 + 0.823574i \(0.308023\pi\)
\(180\) 0 0
\(181\) 79607.3 0.180616 0.0903080 0.995914i \(-0.471215\pi\)
0.0903080 + 0.995914i \(0.471215\pi\)
\(182\) 0 0
\(183\) 442306. 0.976327
\(184\) 0 0
\(185\) 350173. 606517.i 0.752234 1.30291i
\(186\) 0 0
\(187\) −50857.9 88088.4i −0.106354 0.184211i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −282957. 490096.i −0.561225 0.972070i −0.997390 0.0722036i \(-0.976997\pi\)
0.436165 0.899867i \(-0.356336\pi\)
\(192\) 0 0
\(193\) 19332.9 33485.6i 0.0373597 0.0647089i −0.846741 0.532005i \(-0.821439\pi\)
0.884101 + 0.467296i \(0.154772\pi\)
\(194\) 0 0
\(195\) −447920. −0.843556
\(196\) 0 0
\(197\) −334957. −0.614927 −0.307463 0.951560i \(-0.599480\pi\)
−0.307463 + 0.951560i \(0.599480\pi\)
\(198\) 0 0
\(199\) −300123. + 519828.i −0.537237 + 0.930522i 0.461814 + 0.886977i \(0.347199\pi\)
−0.999051 + 0.0435454i \(0.986135\pi\)
\(200\) 0 0
\(201\) −153243. 265425.i −0.267541 0.463395i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −474693. 822193.i −0.788912 1.36644i
\(206\) 0 0
\(207\) −87620.1 + 151762.i −0.142127 + 0.246172i
\(208\) 0 0
\(209\) 742790. 1.17625
\(210\) 0 0
\(211\) 1.06504e6 1.64687 0.823433 0.567414i \(-0.192056\pi\)
0.823433 + 0.567414i \(0.192056\pi\)
\(212\) 0 0
\(213\) −283331. + 490743.i −0.427903 + 0.741149i
\(214\) 0 0
\(215\) −10494.0 18176.1i −0.0154826 0.0268166i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −39904.9 69117.3i −0.0562232 0.0973815i
\(220\) 0 0
\(221\) 86961.6 150622.i 0.119770 0.207447i
\(222\) 0 0
\(223\) 1.37380e6 1.84995 0.924976 0.380027i \(-0.124085\pi\)
0.924976 + 0.380027i \(0.124085\pi\)
\(224\) 0 0
\(225\) −80868.1 −0.106493
\(226\) 0 0
\(227\) 162440. 281354.i 0.209232 0.362400i −0.742241 0.670133i \(-0.766237\pi\)
0.951473 + 0.307733i \(0.0995703\pi\)
\(228\) 0 0
\(229\) −411196. 712212.i −0.518155 0.897472i −0.999778 0.0210926i \(-0.993286\pi\)
0.481622 0.876379i \(-0.340048\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −569070. 985657.i −0.686713 1.18942i −0.972895 0.231247i \(-0.925719\pi\)
0.286182 0.958175i \(-0.407614\pi\)
\(234\) 0 0
\(235\) 478741. 829204.i 0.565498 0.979471i
\(236\) 0 0
\(237\) 309719. 0.358176
\(238\) 0 0
\(239\) 483125. 0.547097 0.273549 0.961858i \(-0.411803\pi\)
0.273549 + 0.961858i \(0.411803\pi\)
\(240\) 0 0
\(241\) 507406. 878853.i 0.562747 0.974706i −0.434509 0.900668i \(-0.643078\pi\)
0.997255 0.0740384i \(-0.0235888\pi\)
\(242\) 0 0
\(243\) −29524.5 51137.9i −0.0320750 0.0555556i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 635046. + 1.09993e6i 0.662312 + 1.14716i
\(248\) 0 0
\(249\) −31686.4 + 54882.4i −0.0323873 + 0.0560964i
\(250\) 0 0
\(251\) −415812. −0.416593 −0.208297 0.978066i \(-0.566792\pi\)
−0.208297 + 0.978066i \(0.566792\pi\)
\(252\) 0 0
\(253\) −1.36550e6 −1.34119
\(254\) 0 0
\(255\) −33442.9 + 57924.8i −0.0322072 + 0.0557845i
\(256\) 0 0
\(257\) 505998. + 876414.i 0.477876 + 0.827706i 0.999678 0.0253604i \(-0.00807332\pi\)
−0.521802 + 0.853067i \(0.674740\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 181927. + 315106.i 0.165308 + 0.286323i
\(262\) 0 0
\(263\) −1.02885e6 + 1.78202e6i −0.917195 + 1.58863i −0.113539 + 0.993534i \(0.536219\pi\)
−0.803656 + 0.595094i \(0.797115\pi\)
\(264\) 0 0
\(265\) 890030. 0.778556
\(266\) 0 0
\(267\) 182185. 0.156399
\(268\) 0 0
\(269\) −403998. + 699745.i −0.340407 + 0.589602i −0.984508 0.175338i \(-0.943898\pi\)
0.644101 + 0.764940i \(0.277232\pi\)
\(270\) 0 0
\(271\) 98011.4 + 169761.i 0.0810687 + 0.140415i 0.903709 0.428147i \(-0.140833\pi\)
−0.822641 + 0.568562i \(0.807500\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −315069. 545715.i −0.251231 0.435145i
\(276\) 0 0
\(277\) −151292. + 262046.i −0.118472 + 0.205200i −0.919162 0.393879i \(-0.871133\pi\)
0.800690 + 0.599079i \(0.204466\pi\)
\(278\) 0 0
\(279\) −25779.0 −0.0198270
\(280\) 0 0
\(281\) 646014. 0.488063 0.244032 0.969767i \(-0.421530\pi\)
0.244032 + 0.969767i \(0.421530\pi\)
\(282\) 0 0
\(283\) −553748. + 959119.i −0.411004 + 0.711879i −0.995000 0.0998771i \(-0.968155\pi\)
0.583996 + 0.811757i \(0.301488\pi\)
\(284\) 0 0
\(285\) −244220. 423002.i −0.178102 0.308482i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 696943. + 1.20714e6i 0.490854 + 0.850185i
\(290\) 0 0
\(291\) 243300. 421407.i 0.168426 0.291722i
\(292\) 0 0
\(293\) −1.89396e6 −1.28885 −0.644425 0.764668i \(-0.722903\pi\)
−0.644425 + 0.764668i \(0.722903\pi\)
\(294\) 0 0
\(295\) 293677. 0.196478
\(296\) 0 0
\(297\) 230060. 398475.i 0.151338 0.262126i
\(298\) 0 0
\(299\) −1.16743e6 2.02205e6i −0.755184 1.30802i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −411688. 713065.i −0.257610 0.446193i
\(304\) 0 0
\(305\) 1.13317e6 1.96271e6i 0.697504 1.20811i
\(306\) 0 0
\(307\) −1.97803e6 −1.19781 −0.598905 0.800820i \(-0.704397\pi\)
−0.598905 + 0.800820i \(0.704397\pi\)
\(308\) 0 0
\(309\) −678432. −0.404213
\(310\) 0 0
\(311\) 1.29393e6 2.24116e6i 0.758596 1.31393i −0.184970 0.982744i \(-0.559219\pi\)
0.943566 0.331183i \(-0.107448\pi\)
\(312\) 0 0
\(313\) −70678.5 122419.i −0.0407781 0.0706297i 0.844916 0.534899i \(-0.179650\pi\)
−0.885694 + 0.464269i \(0.846317\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −586423. 1.01571e6i −0.327765 0.567706i 0.654303 0.756233i \(-0.272962\pi\)
−0.982068 + 0.188527i \(0.939629\pi\)
\(318\) 0 0
\(319\) −1.41760e6 + 2.45536e6i −0.779969 + 1.35095i
\(320\) 0 0
\(321\) 1.36919e6 0.741656
\(322\) 0 0
\(323\) 189657. 0.101149
\(324\) 0 0
\(325\) 538734. 933114.i 0.282921 0.490034i
\(326\) 0 0
\(327\) −345024. 597598.i −0.178435 0.309058i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −653305. 1.13156e6i −0.327752 0.567684i 0.654313 0.756224i \(-0.272958\pi\)
−0.982066 + 0.188540i \(0.939624\pi\)
\(332\) 0 0
\(333\) −615066. + 1.06533e6i −0.303956 + 0.526468i
\(334\) 0 0
\(335\) −1.57041e6 −0.764544
\(336\) 0 0
\(337\) −265059. −0.127136 −0.0635679 0.997978i \(-0.520248\pi\)
−0.0635679 + 0.997978i \(0.520248\pi\)
\(338\) 0 0
\(339\) −1.02832e6 + 1.78110e6i −0.485991 + 0.841760i
\(340\) 0 0
\(341\) −100437. 173962.i −0.0467745 0.0810157i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 448959. + 777621.i 0.203076 + 0.351739i
\(346\) 0 0
\(347\) 1.52791e6 2.64642e6i 0.681200 1.17987i −0.293414 0.955985i \(-0.594792\pi\)
0.974615 0.223888i \(-0.0718751\pi\)
\(348\) 0 0
\(349\) 1.47164e6 0.646753 0.323377 0.946270i \(-0.395182\pi\)
0.323377 + 0.946270i \(0.395182\pi\)
\(350\) 0 0
\(351\) 786755. 0.340857
\(352\) 0 0
\(353\) −192592. + 333578.i −0.0822623 + 0.142482i −0.904221 0.427064i \(-0.859548\pi\)
0.821959 + 0.569547i \(0.192881\pi\)
\(354\) 0 0
\(355\) 1.45177e6 + 2.51454e6i 0.611401 + 1.05898i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 820939. + 1.42191e6i 0.336182 + 0.582285i 0.983711 0.179756i \(-0.0575309\pi\)
−0.647529 + 0.762041i \(0.724198\pi\)
\(360\) 0 0
\(361\) 545555. 944929.i 0.220328 0.381620i
\(362\) 0 0
\(363\) 2.13586e6 0.850760
\(364\) 0 0
\(365\) −408940. −0.160667
\(366\) 0 0
\(367\) −561616. + 972747.i −0.217658 + 0.376994i −0.954091 0.299516i \(-0.903175\pi\)
0.736434 + 0.676510i \(0.236508\pi\)
\(368\) 0 0
\(369\) 833782. + 1.44415e6i 0.318777 + 0.552137i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 2.11052e6 + 3.65554e6i 0.785450 + 1.36044i 0.928730 + 0.370757i \(0.120902\pi\)
−0.143280 + 0.989682i \(0.545765\pi\)
\(374\) 0 0
\(375\) −855679. + 1.48208e6i −0.314219 + 0.544244i
\(376\) 0 0
\(377\) −4.84789e6 −1.75671
\(378\) 0 0
\(379\) −4.49923e6 −1.60894 −0.804471 0.593993i \(-0.797551\pi\)
−0.804471 + 0.593993i \(0.797551\pi\)
\(380\) 0 0
\(381\) −549500. + 951762.i −0.193935 + 0.335905i
\(382\) 0 0
\(383\) 2.21557e6 + 3.83748e6i 0.771771 + 1.33675i 0.936591 + 0.350423i \(0.113962\pi\)
−0.164820 + 0.986324i \(0.552704\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 18432.3 + 31925.7i 0.00625607 + 0.0108358i
\(388\) 0 0
\(389\) 2.72111e6 4.71311e6i 0.911744 1.57919i 0.100144 0.994973i \(-0.468070\pi\)
0.811600 0.584214i \(-0.198597\pi\)
\(390\) 0 0
\(391\) −348654. −0.115333
\(392\) 0 0
\(393\) −682158. −0.222794
\(394\) 0 0
\(395\) 793489. 1.37436e6i 0.255887 0.443209i
\(396\) 0 0
\(397\) 1.34397e6 + 2.32782e6i 0.427969 + 0.741264i 0.996693 0.0812644i \(-0.0258958\pi\)
−0.568723 + 0.822529i \(0.692562\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −221647. 383904.i −0.0688337 0.119223i 0.829554 0.558426i \(-0.188594\pi\)
−0.898388 + 0.439202i \(0.855261\pi\)
\(402\) 0 0
\(403\) 171737. 297457.i 0.0526746 0.0912351i
\(404\) 0 0
\(405\) −302563. −0.0916597
\(406\) 0 0
\(407\) −9.58539e6 −2.86829
\(408\) 0 0
\(409\) −2.44789e6 + 4.23987e6i −0.723575 + 1.25327i 0.235983 + 0.971757i \(0.424169\pi\)
−0.959558 + 0.281511i \(0.909164\pi\)
\(410\) 0 0
\(411\) 1.08725e6 + 1.88317e6i 0.317487 + 0.549903i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 162359. + 281214.i 0.0462760 + 0.0801523i
\(416\) 0 0
\(417\) 565458. 979402.i 0.159243 0.275817i
\(418\) 0 0
\(419\) 2.23186e6 0.621058 0.310529 0.950564i \(-0.399494\pi\)
0.310529 + 0.950564i \(0.399494\pi\)
\(420\) 0 0
\(421\) 5.48208e6 1.50744 0.753721 0.657195i \(-0.228257\pi\)
0.753721 + 0.657195i \(0.228257\pi\)
\(422\) 0 0
\(423\) −840891. + 1.45647e6i −0.228501 + 0.395776i
\(424\) 0 0
\(425\) −80446.6 139338.i −0.0216041 0.0374193i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 3.06526e6 + 5.30919e6i 0.804126 + 1.39279i
\(430\) 0 0
\(431\) −2.31183e6 + 4.00421e6i −0.599463 + 1.03830i 0.393437 + 0.919352i \(0.371286\pi\)
−0.992900 + 0.118949i \(0.962047\pi\)
\(432\) 0 0
\(433\) 3.08314e6 0.790267 0.395134 0.918624i \(-0.370698\pi\)
0.395134 + 0.918624i \(0.370698\pi\)
\(434\) 0 0
\(435\) 1.86436e6 0.472396
\(436\) 0 0
\(437\) 1.27304e6 2.20497e6i 0.318888 0.552330i
\(438\) 0 0
\(439\) 217235. + 376262.i 0.0537983 + 0.0931815i 0.891670 0.452685i \(-0.149534\pi\)
−0.837872 + 0.545867i \(0.816201\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −860317. 1.49011e6i −0.208281 0.360753i 0.742892 0.669411i \(-0.233453\pi\)
−0.951173 + 0.308658i \(0.900120\pi\)
\(444\) 0 0
\(445\) 466751. 808437.i 0.111734 0.193529i
\(446\) 0 0
\(447\) 324419. 0.0767958
\(448\) 0 0
\(449\) −4.06508e6 −0.951598 −0.475799 0.879554i \(-0.657841\pi\)
−0.475799 + 0.879554i \(0.657841\pi\)
\(450\) 0 0
\(451\) −6.49696e6 + 1.12531e7i −1.50407 + 2.60513i
\(452\) 0 0
\(453\) −678006. 1.17434e6i −0.155234 0.268874i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −1.13092e6 1.95881e6i −0.253303 0.438734i 0.711130 0.703061i \(-0.248184\pi\)
−0.964433 + 0.264326i \(0.914850\pi\)
\(458\) 0 0
\(459\) 58741.2 101743.i 0.0130140 0.0225409i
\(460\) 0 0
\(461\) −7.80980e6 −1.71154 −0.855771 0.517355i \(-0.826917\pi\)
−0.855771 + 0.517355i \(0.826917\pi\)
\(462\) 0 0
\(463\) −525518. −0.113929 −0.0569647 0.998376i \(-0.518142\pi\)
−0.0569647 + 0.998376i \(0.518142\pi\)
\(464\) 0 0
\(465\) −66045.0 + 114393.i −0.0141647 + 0.0245340i
\(466\) 0 0
\(467\) 2.79688e6 + 4.84434e6i 0.593447 + 1.02788i 0.993764 + 0.111503i \(0.0355665\pi\)
−0.400318 + 0.916376i \(0.631100\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 1.91886e6 + 3.32357e6i 0.398558 + 0.690323i
\(472\) 0 0
\(473\) −143627. + 248770.i −0.0295178 + 0.0511264i
\(474\) 0 0
\(475\) 1.17494e6 0.238936
\(476\) 0 0
\(477\) −1.56330e6 −0.314592
\(478\) 0 0
\(479\) 906232. 1.56964e6i 0.180468 0.312580i −0.761572 0.648080i \(-0.775572\pi\)
0.942040 + 0.335500i \(0.108905\pi\)
\(480\) 0 0
\(481\) −8.19499e6 1.41941e7i −1.61505 2.79735i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −1.24665e6 2.15926e6i −0.240652 0.416822i
\(486\) 0 0
\(487\) −720340. + 1.24767e6i −0.137631 + 0.238383i −0.926599 0.376050i \(-0.877282\pi\)
0.788969 + 0.614433i \(0.210615\pi\)
\(488\) 0 0
\(489\) −1.73259e6 −0.327660
\(490\) 0 0
\(491\) 5.25026e6 0.982827 0.491413 0.870926i \(-0.336480\pi\)
0.491413 + 0.870926i \(0.336480\pi\)
\(492\) 0 0
\(493\) −361957. + 626927.i −0.0670717 + 0.116172i
\(494\) 0 0
\(495\) −1.17881e6 2.04176e6i −0.216237 0.374534i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 4.07080e6 + 7.05083e6i 0.731861 + 1.26762i 0.956087 + 0.293083i \(0.0946811\pi\)
−0.224227 + 0.974537i \(0.571986\pi\)
\(500\) 0 0
\(501\) 742442. 1.28595e6i 0.132150 0.228891i
\(502\) 0 0
\(503\) 7.98029e6 1.40637 0.703183 0.711009i \(-0.251761\pi\)
0.703183 + 0.711009i \(0.251761\pi\)
\(504\) 0 0
\(505\) −4.21893e6 −0.736162
\(506\) 0 0
\(507\) −3.57045e6 + 6.18420e6i −0.616883 + 1.06847i
\(508\) 0 0
\(509\) 4.07141e6 + 7.05189e6i 0.696547 + 1.20646i 0.969656 + 0.244472i \(0.0786148\pi\)
−0.273109 + 0.961983i \(0.588052\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 428964. + 742987.i 0.0719660 + 0.124649i
\(514\) 0 0
\(515\) −1.73812e6 + 3.01051e6i −0.288776 + 0.500176i
\(516\) 0 0
\(517\) −1.31047e7 −2.15626
\(518\) 0 0
\(519\) 2.96548e6 0.483255
\(520\) 0 0
\(521\) 2.55984e6 4.43377e6i 0.413160 0.715613i −0.582074 0.813136i \(-0.697759\pi\)
0.995233 + 0.0975227i \(0.0310919\pi\)
\(522\) 0 0
\(523\) 2.36736e6 + 4.10040e6i 0.378452 + 0.655498i 0.990837 0.135061i \(-0.0431231\pi\)
−0.612385 + 0.790560i \(0.709790\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −25644.7 44417.9i −0.00402226 0.00696677i
\(528\) 0 0
\(529\) 877893. 1.52055e6i 0.136396 0.236245i
\(530\) 0 0
\(531\) −515833. −0.0793912
\(532\) 0 0
\(533\) −2.22182e7 −3.38759
\(534\) 0 0
\(535\) 3.50783e6 6.07574e6i 0.529851 0.917729i
\(536\) 0 0
\(537\) −1.65757e6 2.87099e6i −0.248048 0.429631i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 4.10226e6 + 7.10533e6i 0.602602 + 1.04374i 0.992426 + 0.122848i \(0.0392026\pi\)
−0.389824 + 0.920890i \(0.627464\pi\)
\(542\) 0 0
\(543\) −358233. + 620477.i −0.0521394 + 0.0903080i
\(544\) 0 0
\(545\) −3.53575e6 −0.509907
\(546\) 0 0
\(547\) −1.57733e6 −0.225400 −0.112700 0.993629i \(-0.535950\pi\)
−0.112700 + 0.993629i \(0.535950\pi\)
\(548\) 0 0
\(549\) −1.99038e6 + 3.44744e6i −0.281841 + 0.488163i
\(550\) 0 0
\(551\) −2.64323e6 4.57820e6i −0.370899 0.642415i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 3.15156e6 + 5.45865e6i 0.434303 + 0.752234i
\(556\) 0 0
\(557\) 1.05205e6 1.82221e6i 0.143681 0.248863i −0.785199 0.619244i \(-0.787439\pi\)
0.928880 + 0.370380i \(0.120773\pi\)
\(558\) 0 0
\(559\) −491175. −0.0664824
\(560\) 0 0
\(561\) 915442. 0.122807
\(562\) 0 0
\(563\) 3.84583e6 6.66118e6i 0.511351 0.885687i −0.488562 0.872529i \(-0.662478\pi\)
0.999913 0.0131574i \(-0.00418826\pi\)
\(564\) 0 0
\(565\) 5.26903e6 + 9.12622e6i 0.694399 + 1.20273i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −3.65070e6 6.32319e6i −0.472710 0.818758i 0.526802 0.849988i \(-0.323391\pi\)
−0.999512 + 0.0312298i \(0.990058\pi\)
\(570\) 0 0
\(571\) −1.70967e6 + 2.96124e6i −0.219443 + 0.380087i −0.954638 0.297769i \(-0.903757\pi\)
0.735195 + 0.677856i \(0.237091\pi\)
\(572\) 0 0
\(573\) 5.09323e6 0.648047
\(574\) 0 0
\(575\) −2.15994e6 −0.272440
\(576\) 0 0
\(577\) −5.46447e6 + 9.46473e6i −0.683295 + 1.18350i 0.290674 + 0.956822i \(0.406120\pi\)
−0.973969 + 0.226680i \(0.927213\pi\)
\(578\) 0 0
\(579\) 173996. + 301370.i 0.0215696 + 0.0373597i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −6.09076e6 1.05495e7i −0.742164 1.28547i
\(584\) 0 0
\(585\) 2.01564e6 3.49119e6i 0.243514 0.421778i
\(586\) 0 0
\(587\) −2.25268e6 −0.269839 −0.134919 0.990857i \(-0.543078\pi\)
−0.134919 + 0.990857i \(0.543078\pi\)
\(588\) 0 0
\(589\) 374546. 0.0444853
\(590\) 0 0
\(591\) 1.50731e6 2.61073e6i 0.177514 0.307463i
\(592\) 0 0
\(593\) −2.84120e6 4.92111e6i −0.331792 0.574680i 0.651072 0.759016i \(-0.274320\pi\)
−0.982863 + 0.184336i \(0.940986\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −2.70110e6 4.67845e6i −0.310174 0.537237i
\(598\) 0 0
\(599\) 6.40132e6 1.10874e7i 0.728958 1.26259i −0.228366 0.973575i \(-0.573338\pi\)
0.957324 0.289017i \(-0.0933283\pi\)
\(600\) 0 0
\(601\) 9.25870e6 1.04560 0.522798 0.852457i \(-0.324888\pi\)
0.522798 + 0.852457i \(0.324888\pi\)
\(602\) 0 0
\(603\) 2.75838e6 0.308930
\(604\) 0 0
\(605\) 5.47201e6 9.47780e6i 0.607797 1.05274i
\(606\) 0 0
\(607\) −200660. 347553.i −0.0221049 0.0382868i 0.854761 0.519021i \(-0.173703\pi\)
−0.876866 + 0.480734i \(0.840370\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −1.12038e7 1.94056e7i −1.21413 2.10293i
\(612\) 0 0
\(613\) −3.41198e6 + 5.90973e6i −0.366738 + 0.635208i −0.989053 0.147558i \(-0.952859\pi\)
0.622316 + 0.782766i \(0.286192\pi\)
\(614\) 0 0
\(615\) 8.54448e6 0.910957
\(616\) 0 0
\(617\) −336274. −0.0355615 −0.0177808 0.999842i \(-0.505660\pi\)
−0.0177808 + 0.999842i \(0.505660\pi\)
\(618\) 0 0
\(619\) −4.80575e6 + 8.32381e6i −0.504121 + 0.873163i 0.495868 + 0.868398i \(0.334850\pi\)
−0.999989 + 0.00476520i \(0.998483\pi\)
\(620\) 0 0
\(621\) −788581. 1.36586e6i −0.0820573 0.142127i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 2.82448e6 + 4.89215e6i 0.289227 + 0.500956i
\(626\) 0 0
\(627\) −3.34255e6 + 5.78947e6i −0.339555 + 0.588126i
\(628\) 0 0
\(629\) −2.44744e6 −0.246652
\(630\) 0 0
\(631\) 1.28813e7 1.28791 0.643957 0.765062i \(-0.277292\pi\)
0.643957 + 0.765062i \(0.277292\pi\)
\(632\) 0 0
\(633\) −4.79266e6 + 8.30113e6i −0.475409 + 0.823433i
\(634\) 0 0
\(635\) 2.81560e6 + 4.87676e6i 0.277100 + 0.479951i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −2.54998e6 4.41669e6i −0.247050 0.427903i
\(640\) 0 0
\(641\) 7.47479e6 1.29467e7i 0.718545 1.24456i −0.243031 0.970018i \(-0.578142\pi\)
0.961576 0.274538i \(-0.0885250\pi\)
\(642\) 0 0
\(643\) 8.03892e6 0.766780 0.383390 0.923587i \(-0.374757\pi\)
0.383390 + 0.923587i \(0.374757\pi\)
\(644\) 0 0
\(645\) 188892. 0.0178778
\(646\) 0 0
\(647\) −3.34388e6 + 5.79176e6i −0.314043 + 0.543939i −0.979234 0.202735i \(-0.935017\pi\)
0.665190 + 0.746674i \(0.268350\pi\)
\(648\) 0 0
\(649\) −2.00973e6 3.48095e6i −0.187294 0.324404i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 522213. + 904499.i 0.0479253 + 0.0830090i 0.888993 0.457921i \(-0.151406\pi\)
−0.841068 + 0.540930i \(0.818072\pi\)
\(654\) 0 0
\(655\) −1.74766e6 + 3.02704e6i −0.159168 + 0.275687i
\(656\) 0 0
\(657\) 718288. 0.0649210
\(658\) 0 0
\(659\) 2.10237e7 1.88580 0.942902 0.333071i \(-0.108085\pi\)
0.942902 + 0.333071i \(0.108085\pi\)
\(660\) 0 0
\(661\) 4.73340e6 8.19849e6i 0.421376 0.729845i −0.574698 0.818365i \(-0.694881\pi\)
0.996074 + 0.0885207i \(0.0282139\pi\)
\(662\) 0 0
\(663\) 782654. + 1.35560e6i 0.0691490 + 0.119770i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 4.85915e6 + 8.41629e6i 0.422908 + 0.732497i
\(668\) 0 0
\(669\) −6.18208e6 + 1.07077e7i −0.534035 + 0.924976i
\(670\) 0 0
\(671\) −3.10187e7 −2.65960
\(672\) 0 0
\(673\) −1.95188e7 −1.66117 −0.830587 0.556889i \(-0.811995\pi\)
−0.830587 + 0.556889i \(0.811995\pi\)
\(674\) 0 0
\(675\) 363906. 630304.i 0.0307419 0.0532465i
\(676\) 0 0
\(677\) −8.52722e6 1.47696e7i −0.715049 1.23850i −0.962941 0.269713i \(-0.913071\pi\)
0.247892 0.968788i \(-0.420262\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 1.46196e6 + 2.53219e6i 0.120800 + 0.209232i
\(682\) 0 0
\(683\) −5.47375e6 + 9.48080e6i −0.448986 + 0.777667i −0.998320 0.0579361i \(-0.981548\pi\)
0.549334 + 0.835603i \(0.314881\pi\)
\(684\) 0 0
\(685\) 1.11420e7 0.907270
\(686\) 0 0
\(687\) 7.40153e6 0.598314
\(688\) 0 0
\(689\) 1.04146e7 1.80385e7i 0.835781 1.44762i
\(690\) 0 0
\(691\) 5.22690e6 + 9.05326e6i 0.416437 + 0.721290i 0.995578 0.0939372i \(-0.0299453\pi\)
−0.579141 + 0.815227i \(0.696612\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −2.89737e6 5.01839e6i −0.227532 0.394096i
\(696\) 0 0
\(697\) −1.65887e6 + 2.87325e6i −0.129339 + 0.224022i
\(698\) 0 0
\(699\) 1.02433e7 0.792948
\(700\) 0 0
\(701\) 8.71564e6 0.669891 0.334946 0.942237i \(-0.391282\pi\)
0.334946 + 0.942237i \(0.391282\pi\)
\(702\) 0 0
\(703\) 8.93634e6 1.54782e7i 0.681980 1.18122i
\(704\) 0 0
\(705\) 4.30867e6 + 7.46284e6i 0.326490 + 0.565498i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 469220. + 812712.i 0.0350559 + 0.0607185i 0.883021 0.469333i \(-0.155506\pi\)
−0.847965 + 0.530052i \(0.822172\pi\)
\(710\) 0 0
\(711\) −1.39374e6 + 2.41402e6i −0.103397 + 0.179088i
\(712\) 0 0
\(713\) −688542. −0.0507232
\(714\) 0 0
\(715\) 3.14124e7 2.29792
\(716\) 0 0
\(717\) −2.17406e6 + 3.76559e6i −0.157933 + 0.273549i
\(718\) 0 0
\(719\) 3.29537e6 + 5.70774e6i 0.237729 + 0.411758i 0.960062 0.279787i \(-0.0902638\pi\)
−0.722334 + 0.691545i \(0.756930\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 4.56665e6 + 7.90968e6i 0.324902 + 0.562747i
\(724\) 0 0
\(725\) −2.24235e6 + 3.88386e6i −0.158438 + 0.274422i
\(726\) 0 0
\(727\) 2.32586e7 1.63210 0.816052 0.577979i \(-0.196158\pi\)
0.816052 + 0.577979i \(0.196158\pi\)
\(728\) 0 0
\(729\) 531441. 0.0370370
\(730\) 0 0
\(731\) −36672.4 + 63518.5i −0.00253832 + 0.00439650i
\(732\) 0 0
\(733\) −1.01427e7 1.75677e7i −0.697259 1.20769i −0.969413 0.245434i \(-0.921069\pi\)
0.272154 0.962254i \(-0.412264\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 1.07469e7 + 1.86141e7i 0.728807 + 1.26233i
\(738\) 0 0
\(739\) −296714. + 513923.i −0.0199860 + 0.0346168i −0.875845 0.482592i \(-0.839696\pi\)
0.855859 + 0.517209i \(0.173029\pi\)
\(740\) 0 0
\(741\) −1.14308e7 −0.764772
\(742\) 0 0
\(743\) 7.70228e6 0.511855 0.255928 0.966696i \(-0.417619\pi\)
0.255928 + 0.966696i \(0.417619\pi\)
\(744\) 0 0
\(745\) 831151. 1.43959e6i 0.0548642 0.0950276i
\(746\) 0 0
\(747\) −285177. 493942.i −0.0186988 0.0323873i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 1.34166e7 + 2.32383e7i 0.868048 + 1.50350i 0.863989 + 0.503511i \(0.167959\pi\)
0.00405860 + 0.999992i \(0.498708\pi\)
\(752\) 0 0
\(753\) 1.87115e6 3.24093e6i 0.120260 0.208297i
\(754\) 0 0
\(755\) −6.94811e6 −0.443608
\(756\) 0 0
\(757\) 2.34943e7 1.49013 0.745063 0.666994i \(-0.232419\pi\)
0.745063 + 0.666994i \(0.232419\pi\)
\(758\) 0 0
\(759\) 6.14475e6 1.06430e7i 0.387168 0.670595i
\(760\) 0 0
\(761\) −6.30959e6 1.09285e7i −0.394947 0.684069i 0.598147 0.801386i \(-0.295904\pi\)
−0.993094 + 0.117317i \(0.962571\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −300986. 521323.i −0.0185948 0.0322072i
\(766\) 0 0
\(767\) 3.43642e6 5.95205e6i 0.210920 0.365324i
\(768\) 0 0
\(769\) −2.73674e6 −0.166885 −0.0834425 0.996513i \(-0.526592\pi\)
−0.0834425 + 0.996513i \(0.526592\pi\)
\(770\) 0 0
\(771\) −9.10796e6 −0.551804
\(772\) 0 0
\(773\) 1.07752e7 1.86633e7i 0.648602 1.12341i −0.334856 0.942269i \(-0.608688\pi\)
0.983457 0.181141i \(-0.0579792\pi\)
\(774\) 0 0
\(775\) −158871. 275172.i −0.00950145 0.0164570i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −1.21141e7 2.09822e7i −0.715232 1.23882i
\(780\) 0 0
\(781\) 1.98698e7 3.44156e7i 1.16565 2.01896i
\(782\) 0 0
\(783\) −3.27468e6 −0.190882
\(784\) 0 0
\(785\) 1.96642e7 1.13895
\(786\) 0 0
\(787\) 1.44945e6 2.51053e6i 0.0834195