Properties

Label 588.6.i.o.361.1
Level $588$
Weight $6$
Character 588.361
Analytic conductor $94.306$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [588,6,Mod(361,588)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(588, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("588.361");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 588.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(94.3056860500\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} + 703x^{6} + 2770x^{5} + 427565x^{4} + 718170x^{3} + 42175732x^{2} - 40929504x + 3559792896 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{6}\cdot 3^{4}\cdot 7^{2} \)
Twist minimal: no (minimal twist has level 84)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 361.1
Root \(-11.2416 + 19.4709i\) of defining polynomial
Character \(\chi\) \(=\) 588.361
Dual form 588.6.i.o.373.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-4.50000 + 7.79423i) q^{3} +(-46.4128 - 80.3893i) q^{5} +(-40.5000 - 70.1481i) q^{9} +O(q^{10})\) \(q+(-4.50000 + 7.79423i) q^{3} +(-46.4128 - 80.3893i) q^{5} +(-40.5000 - 70.1481i) q^{9} +(-70.3812 + 121.904i) q^{11} +1111.24 q^{13} +835.430 q^{15} +(27.4435 - 47.5335i) q^{17} +(-855.929 - 1482.51i) q^{19} +(1643.95 + 2847.41i) q^{23} +(-2745.79 + 4755.85i) q^{25} +729.000 q^{27} -3790.72 q^{29} +(-2423.66 + 4197.90i) q^{31} +(-633.431 - 1097.13i) q^{33} +(5683.35 + 9843.86i) q^{37} +(-5000.59 + 8661.28i) q^{39} +10385.6 q^{41} +7137.16 q^{43} +(-3759.43 + 6511.53i) q^{45} +(-8207.53 - 14215.9i) q^{47} +(246.991 + 427.801i) q^{51} +(10487.2 - 18164.3i) q^{53} +13066.3 q^{55} +15406.7 q^{57} +(-18106.0 + 31360.5i) q^{59} +(2474.35 + 4285.70i) q^{61} +(-51575.9 - 89332.0i) q^{65} +(11482.8 - 19888.8i) q^{67} -29591.2 q^{69} -26341.8 q^{71} +(27693.7 - 47966.9i) q^{73} +(-24712.1 - 42802.6i) q^{75} +(24978.3 + 43263.7i) q^{79} +(-3280.50 + 5681.99i) q^{81} -44858.9 q^{83} -5094.91 q^{85} +(17058.2 - 29545.8i) q^{87} +(63972.5 + 110804. i) q^{89} +(-21812.9 - 37781.1i) q^{93} +(-79452.1 + 137615. i) q^{95} +65685.9 q^{97} +11401.8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 36 q^{3} - 324 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 36 q^{3} - 324 q^{9} - 462 q^{11} + 1204 q^{13} - 228 q^{17} - 358 q^{19} - 2148 q^{23} - 5454 q^{25} + 5832 q^{27} - 11064 q^{29} - 830 q^{31} - 4158 q^{33} - 3914 q^{37} - 5418 q^{39} + 16632 q^{41} - 29036 q^{43} - 41700 q^{47} - 2052 q^{51} + 22164 q^{53} - 7784 q^{55} + 6444 q^{57} - 32886 q^{59} - 83732 q^{61} - 93192 q^{65} - 80034 q^{67} + 38664 q^{69} + 89544 q^{71} + 22470 q^{73} - 49086 q^{75} - 75286 q^{79} - 26244 q^{81} + 34836 q^{83} + 278504 q^{85} + 49788 q^{87} - 28944 q^{89} - 7470 q^{93} - 144120 q^{95} + 433356 q^{97} + 74844 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/588\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(295\) \(493\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −4.50000 + 7.79423i −0.288675 + 0.500000i
\(4\) 0 0
\(5\) −46.4128 80.3893i −0.830257 1.43805i −0.897834 0.440333i \(-0.854860\pi\)
0.0675775 0.997714i \(-0.478473\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −40.5000 70.1481i −0.166667 0.288675i
\(10\) 0 0
\(11\) −70.3812 + 121.904i −0.175378 + 0.303763i −0.940292 0.340369i \(-0.889448\pi\)
0.764914 + 0.644132i \(0.222781\pi\)
\(12\) 0 0
\(13\) 1111.24 1.82369 0.911844 0.410537i \(-0.134659\pi\)
0.911844 + 0.410537i \(0.134659\pi\)
\(14\) 0 0
\(15\) 835.430 0.958698
\(16\) 0 0
\(17\) 27.4435 47.5335i 0.0230312 0.0398912i −0.854280 0.519813i \(-0.826002\pi\)
0.877311 + 0.479922i \(0.159335\pi\)
\(18\) 0 0
\(19\) −855.929 1482.51i −0.543943 0.942138i −0.998673 0.0515079i \(-0.983597\pi\)
0.454729 0.890630i \(-0.349736\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 1643.95 + 2847.41i 0.647993 + 1.12236i 0.983602 + 0.180355i \(0.0577247\pi\)
−0.335609 + 0.942001i \(0.608942\pi\)
\(24\) 0 0
\(25\) −2745.79 + 4755.85i −0.878653 + 1.52187i
\(26\) 0 0
\(27\) 729.000 0.192450
\(28\) 0 0
\(29\) −3790.72 −0.837003 −0.418501 0.908216i \(-0.637445\pi\)
−0.418501 + 0.908216i \(0.637445\pi\)
\(30\) 0 0
\(31\) −2423.66 + 4197.90i −0.452968 + 0.784563i −0.998569 0.0534817i \(-0.982968\pi\)
0.545601 + 0.838045i \(0.316301\pi\)
\(32\) 0 0
\(33\) −633.431 1097.13i −0.101254 0.175378i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 5683.35 + 9843.86i 0.682496 + 1.18212i 0.974217 + 0.225615i \(0.0724391\pi\)
−0.291720 + 0.956504i \(0.594228\pi\)
\(38\) 0 0
\(39\) −5000.59 + 8661.28i −0.526453 + 0.911844i
\(40\) 0 0
\(41\) 10385.6 0.964881 0.482440 0.875929i \(-0.339751\pi\)
0.482440 + 0.875929i \(0.339751\pi\)
\(42\) 0 0
\(43\) 7137.16 0.588646 0.294323 0.955706i \(-0.404906\pi\)
0.294323 + 0.955706i \(0.404906\pi\)
\(44\) 0 0
\(45\) −3759.43 + 6511.53i −0.276752 + 0.479349i
\(46\) 0 0
\(47\) −8207.53 14215.9i −0.541961 0.938704i −0.998791 0.0491499i \(-0.984349\pi\)
0.456831 0.889554i \(-0.348985\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 246.991 + 427.801i 0.0132971 + 0.0230312i
\(52\) 0 0
\(53\) 10487.2 18164.3i 0.512824 0.888238i −0.487065 0.873366i \(-0.661933\pi\)
0.999889 0.0148720i \(-0.00473407\pi\)
\(54\) 0 0
\(55\) 13066.3 0.582435
\(56\) 0 0
\(57\) 15406.7 0.628092
\(58\) 0 0
\(59\) −18106.0 + 31360.5i −0.677161 + 1.17288i 0.298672 + 0.954356i \(0.403456\pi\)
−0.975832 + 0.218521i \(0.929877\pi\)
\(60\) 0 0
\(61\) 2474.35 + 4285.70i 0.0851405 + 0.147468i 0.905451 0.424451i \(-0.139533\pi\)
−0.820311 + 0.571918i \(0.806199\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −51575.9 89332.0i −1.51413 2.62255i
\(66\) 0 0
\(67\) 11482.8 19888.8i 0.312507 0.541279i −0.666397 0.745597i \(-0.732164\pi\)
0.978905 + 0.204318i \(0.0654978\pi\)
\(68\) 0 0
\(69\) −29591.2 −0.748238
\(70\) 0 0
\(71\) −26341.8 −0.620154 −0.310077 0.950711i \(-0.600355\pi\)
−0.310077 + 0.950711i \(0.600355\pi\)
\(72\) 0 0
\(73\) 27693.7 47966.9i 0.608238 1.05350i −0.383293 0.923627i \(-0.625210\pi\)
0.991531 0.129872i \(-0.0414568\pi\)
\(74\) 0 0
\(75\) −24712.1 42802.6i −0.507291 0.878653i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 24978.3 + 43263.7i 0.450293 + 0.779930i 0.998404 0.0564752i \(-0.0179862\pi\)
−0.548111 + 0.836406i \(0.684653\pi\)
\(80\) 0 0
\(81\) −3280.50 + 5681.99i −0.0555556 + 0.0962250i
\(82\) 0 0
\(83\) −44858.9 −0.714749 −0.357374 0.933961i \(-0.616328\pi\)
−0.357374 + 0.933961i \(0.616328\pi\)
\(84\) 0 0
\(85\) −5094.91 −0.0764873
\(86\) 0 0
\(87\) 17058.2 29545.8i 0.241622 0.418501i
\(88\) 0 0
\(89\) 63972.5 + 110804.i 0.856087 + 1.48279i 0.875633 + 0.482978i \(0.160445\pi\)
−0.0195454 + 0.999809i \(0.506222\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −21812.9 37781.1i −0.261521 0.452968i
\(94\) 0 0
\(95\) −79452.1 + 137615.i −0.903226 + 1.56443i
\(96\) 0 0
\(97\) 65685.9 0.708831 0.354415 0.935088i \(-0.384680\pi\)
0.354415 + 0.935088i \(0.384680\pi\)
\(98\) 0 0
\(99\) 11401.8 0.116919
\(100\) 0 0
\(101\) 87891.4 152232.i 0.857320 1.48492i −0.0171565 0.999853i \(-0.505461\pi\)
0.874476 0.485068i \(-0.161205\pi\)
\(102\) 0 0
\(103\) −77054.7 133463.i −0.715659 1.23956i −0.962705 0.270554i \(-0.912793\pi\)
0.247046 0.969004i \(-0.420540\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −91681.0 158796.i −0.774141 1.34085i −0.935276 0.353919i \(-0.884849\pi\)
0.161135 0.986932i \(-0.448485\pi\)
\(108\) 0 0
\(109\) 67322.3 116606.i 0.542741 0.940055i −0.456004 0.889978i \(-0.650720\pi\)
0.998745 0.0500775i \(-0.0159468\pi\)
\(110\) 0 0
\(111\) −102300. −0.788079
\(112\) 0 0
\(113\) 176955. 1.30367 0.651833 0.758362i \(-0.274000\pi\)
0.651833 + 0.758362i \(0.274000\pi\)
\(114\) 0 0
\(115\) 152601. 264313.i 1.07600 1.86369i
\(116\) 0 0
\(117\) −45005.3 77951.5i −0.303948 0.526453i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 70618.5 + 122315.i 0.438485 + 0.759479i
\(122\) 0 0
\(123\) −46735.4 + 80948.0i −0.278537 + 0.482440i
\(124\) 0 0
\(125\) 219679. 1.25752
\(126\) 0 0
\(127\) 144432. 0.794608 0.397304 0.917687i \(-0.369946\pi\)
0.397304 + 0.917687i \(0.369946\pi\)
\(128\) 0 0
\(129\) −32117.2 + 55628.6i −0.169927 + 0.294323i
\(130\) 0 0
\(131\) −118754. 205688.i −0.604602 1.04720i −0.992114 0.125337i \(-0.959999\pi\)
0.387512 0.921865i \(-0.373335\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −33834.9 58603.8i −0.159783 0.276752i
\(136\) 0 0
\(137\) 48101.6 83314.5i 0.218957 0.379244i −0.735533 0.677489i \(-0.763068\pi\)
0.954489 + 0.298245i \(0.0964013\pi\)
\(138\) 0 0
\(139\) 391373. 1.71812 0.859060 0.511874i \(-0.171049\pi\)
0.859060 + 0.511874i \(0.171049\pi\)
\(140\) 0 0
\(141\) 147736. 0.625802
\(142\) 0 0
\(143\) −78210.6 + 135465.i −0.319835 + 0.553970i
\(144\) 0 0
\(145\) 175938. + 304733.i 0.694927 + 1.20365i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 40339.4 + 69869.9i 0.148855 + 0.257825i 0.930805 0.365517i \(-0.119108\pi\)
−0.781949 + 0.623342i \(0.785775\pi\)
\(150\) 0 0
\(151\) −47841.3 + 82863.6i −0.170750 + 0.295748i −0.938682 0.344783i \(-0.887952\pi\)
0.767932 + 0.640531i \(0.221286\pi\)
\(152\) 0 0
\(153\) −4445.84 −0.0153541
\(154\) 0 0
\(155\) 449955. 1.50432
\(156\) 0 0
\(157\) −97812.7 + 169417.i −0.316699 + 0.548538i −0.979797 0.199994i \(-0.935908\pi\)
0.663098 + 0.748532i \(0.269241\pi\)
\(158\) 0 0
\(159\) 94384.5 + 163479.i 0.296079 + 0.512824i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −18822.8 32602.1i −0.0554902 0.0961118i 0.836946 0.547286i \(-0.184339\pi\)
−0.892436 + 0.451174i \(0.851005\pi\)
\(164\) 0 0
\(165\) −58798.5 + 101842.i −0.168134 + 0.291217i
\(166\) 0 0
\(167\) −646778. −1.79458 −0.897292 0.441437i \(-0.854469\pi\)
−0.897292 + 0.441437i \(0.854469\pi\)
\(168\) 0 0
\(169\) 863568. 2.32584
\(170\) 0 0
\(171\) −69330.3 + 120084.i −0.181314 + 0.314046i
\(172\) 0 0
\(173\) −193454. 335072.i −0.491431 0.851184i 0.508520 0.861050i \(-0.330193\pi\)
−0.999951 + 0.00986616i \(0.996859\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −162954. 282244.i −0.390959 0.677161i
\(178\) 0 0
\(179\) −13705.3 + 23738.2i −0.0319709 + 0.0553752i −0.881568 0.472057i \(-0.843512\pi\)
0.849597 + 0.527432i \(0.176845\pi\)
\(180\) 0 0
\(181\) 196155. 0.445044 0.222522 0.974928i \(-0.428571\pi\)
0.222522 + 0.974928i \(0.428571\pi\)
\(182\) 0 0
\(183\) −44538.3 −0.0983118
\(184\) 0 0
\(185\) 527560. 913761.i 1.13329 1.96292i
\(186\) 0 0
\(187\) 3863.01 + 6690.93i 0.00807833 + 0.0139921i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −133491. 231213.i −0.264770 0.458595i 0.702733 0.711453i \(-0.251963\pi\)
−0.967503 + 0.252858i \(0.918629\pi\)
\(192\) 0 0
\(193\) 50681.9 87783.6i 0.0979398 0.169637i −0.812892 0.582415i \(-0.802108\pi\)
0.910832 + 0.412778i \(0.135441\pi\)
\(194\) 0 0
\(195\) 928366. 1.74837
\(196\) 0 0
\(197\) 362366. 0.665245 0.332623 0.943060i \(-0.392066\pi\)
0.332623 + 0.943060i \(0.392066\pi\)
\(198\) 0 0
\(199\) 112706. 195213.i 0.201751 0.349443i −0.747342 0.664440i \(-0.768670\pi\)
0.949093 + 0.314997i \(0.102003\pi\)
\(200\) 0 0
\(201\) 103345. + 178999.i 0.180426 + 0.312507i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −482026. 834894.i −0.801099 1.38754i
\(206\) 0 0
\(207\) 133160. 230640.i 0.215998 0.374119i
\(208\) 0 0
\(209\) 240965. 0.381583
\(210\) 0 0
\(211\) −327801. −0.506878 −0.253439 0.967351i \(-0.581562\pi\)
−0.253439 + 0.967351i \(0.581562\pi\)
\(212\) 0 0
\(213\) 118538. 205314.i 0.179023 0.310077i
\(214\) 0 0
\(215\) −331255. 573751.i −0.488727 0.846501i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 249243. + 431702.i 0.351166 + 0.608238i
\(220\) 0 0
\(221\) 30496.4 52821.2i 0.0420017 0.0727492i
\(222\) 0 0
\(223\) −109690. −0.147708 −0.0738538 0.997269i \(-0.523530\pi\)
−0.0738538 + 0.997269i \(0.523530\pi\)
\(224\) 0 0
\(225\) 444818. 0.585769
\(226\) 0 0
\(227\) 608733. 1.05436e6i 0.784083 1.35807i −0.145463 0.989364i \(-0.546467\pi\)
0.929545 0.368708i \(-0.120200\pi\)
\(228\) 0 0
\(229\) −668013. 1.15703e6i −0.841776 1.45800i −0.888392 0.459086i \(-0.848177\pi\)
0.0466161 0.998913i \(-0.485156\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −23394.2 40520.0i −0.0282305 0.0488967i 0.851565 0.524249i \(-0.175654\pi\)
−0.879795 + 0.475352i \(0.842321\pi\)
\(234\) 0 0
\(235\) −761868. + 1.31959e6i −0.899933 + 1.55873i
\(236\) 0 0
\(237\) −449609. −0.519954
\(238\) 0 0
\(239\) 86350.2 0.0977841 0.0488921 0.998804i \(-0.484431\pi\)
0.0488921 + 0.998804i \(0.484431\pi\)
\(240\) 0 0
\(241\) 412649. 714730.i 0.457655 0.792682i −0.541181 0.840906i \(-0.682023\pi\)
0.998837 + 0.0482236i \(0.0153560\pi\)
\(242\) 0 0
\(243\) −29524.5 51137.9i −0.0320750 0.0555556i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −951145. 1.64743e6i −0.991983 1.71817i
\(248\) 0 0
\(249\) 201865. 349641.i 0.206330 0.357374i
\(250\) 0 0
\(251\) 130188. 0.130432 0.0652162 0.997871i \(-0.479226\pi\)
0.0652162 + 0.997871i \(0.479226\pi\)
\(252\) 0 0
\(253\) −462814. −0.454574
\(254\) 0 0
\(255\) 22927.1 39710.9i 0.0220800 0.0382436i
\(256\) 0 0
\(257\) 51395.1 + 89018.9i 0.0485388 + 0.0840716i 0.889274 0.457375i \(-0.151210\pi\)
−0.840735 + 0.541446i \(0.817877\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 153524. + 265912.i 0.139500 + 0.241622i
\(262\) 0 0
\(263\) 17750.4 30744.5i 0.0158241 0.0274081i −0.858005 0.513641i \(-0.828296\pi\)
0.873829 + 0.486233i \(0.161630\pi\)
\(264\) 0 0
\(265\) −1.94695e6 −1.70310
\(266\) 0 0
\(267\) −1.15150e6 −0.988524
\(268\) 0 0
\(269\) 523171. 906158.i 0.440821 0.763525i −0.556929 0.830560i \(-0.688021\pi\)
0.997751 + 0.0670350i \(0.0213539\pi\)
\(270\) 0 0
\(271\) 88639.2 + 153528.i 0.0733167 + 0.126988i 0.900353 0.435160i \(-0.143308\pi\)
−0.827036 + 0.562148i \(0.809975\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −386504. 669445.i −0.308193 0.533805i
\(276\) 0 0
\(277\) −72793.0 + 126081.i −0.0570020 + 0.0987304i −0.893118 0.449822i \(-0.851487\pi\)
0.836116 + 0.548552i \(0.184821\pi\)
\(278\) 0 0
\(279\) 392633. 0.301979
\(280\) 0 0
\(281\) −1.03073e6 −0.778714 −0.389357 0.921087i \(-0.627303\pi\)
−0.389357 + 0.921087i \(0.627303\pi\)
\(282\) 0 0
\(283\) −558631. + 967577.i −0.414628 + 0.718157i −0.995389 0.0959167i \(-0.969422\pi\)
0.580761 + 0.814074i \(0.302755\pi\)
\(284\) 0 0
\(285\) −715069. 1.23854e6i −0.521478 0.903226i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 708422. + 1.22702e6i 0.498939 + 0.864188i
\(290\) 0 0
\(291\) −295586. + 511971.i −0.204622 + 0.354415i
\(292\) 0 0
\(293\) 2.02032e6 1.37484 0.687418 0.726262i \(-0.258744\pi\)
0.687418 + 0.726262i \(0.258744\pi\)
\(294\) 0 0
\(295\) 3.36139e6 2.24887
\(296\) 0 0
\(297\) −51307.9 + 88867.9i −0.0337515 + 0.0584593i
\(298\) 0 0
\(299\) 1.82683e6 + 3.16417e6i 1.18174 + 2.04683i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 791022. + 1.37009e6i 0.494974 + 0.857320i
\(304\) 0 0
\(305\) 229683. 397822.i 0.141377 0.244872i
\(306\) 0 0
\(307\) 535150. 0.324063 0.162031 0.986786i \(-0.448195\pi\)
0.162031 + 0.986786i \(0.448195\pi\)
\(308\) 0 0
\(309\) 1.38698e6 0.826372
\(310\) 0 0
\(311\) −1.15009e6 + 1.99202e6i −0.674268 + 1.16787i 0.302415 + 0.953176i \(0.402207\pi\)
−0.976682 + 0.214689i \(0.931126\pi\)
\(312\) 0 0
\(313\) −1.37863e6 2.38786e6i −0.795404 1.37768i −0.922582 0.385801i \(-0.873925\pi\)
0.127178 0.991880i \(-0.459408\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −1.27404e6 2.20671e6i −0.712092 1.23338i −0.964070 0.265647i \(-0.914414\pi\)
0.251978 0.967733i \(-0.418919\pi\)
\(318\) 0 0
\(319\) 266795. 462103.i 0.146792 0.254251i
\(320\) 0 0
\(321\) 1.65026e6 0.893901
\(322\) 0 0
\(323\) −93958.7 −0.0501107
\(324\) 0 0
\(325\) −3.05124e6 + 5.28490e6i −1.60239 + 2.77542i
\(326\) 0 0
\(327\) 605901. + 1.04945e6i 0.313352 + 0.542741i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 244667. + 423776.i 0.122746 + 0.212602i 0.920849 0.389918i \(-0.127497\pi\)
−0.798104 + 0.602520i \(0.794163\pi\)
\(332\) 0 0
\(333\) 460352. 797352.i 0.227499 0.394039i
\(334\) 0 0
\(335\) −2.13179e6 −1.03785
\(336\) 0 0
\(337\) −1.47140e6 −0.705757 −0.352878 0.935669i \(-0.614797\pi\)
−0.352878 + 0.935669i \(0.614797\pi\)
\(338\) 0 0
\(339\) −796297. + 1.37923e6i −0.376336 + 0.651833i
\(340\) 0 0
\(341\) −341160. 590907.i −0.158881 0.275190i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 1.37341e6 + 2.37881e6i 0.621229 + 1.07600i
\(346\) 0 0
\(347\) 1.20963e6 2.09513e6i 0.539296 0.934088i −0.459646 0.888102i \(-0.652024\pi\)
0.998942 0.0459859i \(-0.0146429\pi\)
\(348\) 0 0
\(349\) 2.58571e6 1.13636 0.568180 0.822905i \(-0.307648\pi\)
0.568180 + 0.822905i \(0.307648\pi\)
\(350\) 0 0
\(351\) 810096. 0.350969
\(352\) 0 0
\(353\) 502198. 869832.i 0.214505 0.371534i −0.738614 0.674128i \(-0.764519\pi\)
0.953119 + 0.302594i \(0.0978528\pi\)
\(354\) 0 0
\(355\) 1.22260e6 + 2.11760e6i 0.514887 + 0.891811i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 1.13383e6 + 1.96384e6i 0.464313 + 0.804213i 0.999170 0.0407292i \(-0.0129681\pi\)
−0.534858 + 0.844942i \(0.679635\pi\)
\(360\) 0 0
\(361\) −227180. + 393487.i −0.0917490 + 0.158914i
\(362\) 0 0
\(363\) −1.27113e6 −0.506319
\(364\) 0 0
\(365\) −5.14136e6 −2.01998
\(366\) 0 0
\(367\) 2.39312e6 4.14500e6i 0.927467 1.60642i 0.139923 0.990162i \(-0.455315\pi\)
0.787545 0.616258i \(-0.211352\pi\)
\(368\) 0 0
\(369\) −420618. 728532.i −0.160813 0.278537i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 2.31351e6 + 4.00711e6i 0.860991 + 1.49128i 0.870973 + 0.491331i \(0.163489\pi\)
−0.00998166 + 0.999950i \(0.503177\pi\)
\(374\) 0 0
\(375\) −988557. + 1.71223e6i −0.363014 + 0.628759i
\(376\) 0 0
\(377\) −4.21241e6 −1.52643
\(378\) 0 0
\(379\) −497760. −0.178001 −0.0890004 0.996032i \(-0.528367\pi\)
−0.0890004 + 0.996032i \(0.528367\pi\)
\(380\) 0 0
\(381\) −649942. + 1.12573e6i −0.229384 + 0.397304i
\(382\) 0 0
\(383\) 693745. + 1.20160e6i 0.241659 + 0.418566i 0.961187 0.275898i \(-0.0889751\pi\)
−0.719528 + 0.694463i \(0.755642\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −289055. 500658.i −0.0981077 0.169927i
\(388\) 0 0
\(389\) 293028. 507539.i 0.0981826 0.170057i −0.812750 0.582613i \(-0.802030\pi\)
0.910932 + 0.412556i \(0.135364\pi\)
\(390\) 0 0
\(391\) 180463. 0.0596962
\(392\) 0 0
\(393\) 2.13757e6 0.698135
\(394\) 0 0
\(395\) 2.31862e6 4.01598e6i 0.747718 1.29509i
\(396\) 0 0
\(397\) 1.52668e6 + 2.64429e6i 0.486151 + 0.842039i 0.999873 0.0159181i \(-0.00506709\pi\)
−0.513722 + 0.857957i \(0.671734\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −2.76158e6 4.78320e6i −0.857624 1.48545i −0.874189 0.485585i \(-0.838607\pi\)
0.0165657 0.999863i \(-0.494727\pi\)
\(402\) 0 0
\(403\) −2.69327e6 + 4.66489e6i −0.826072 + 1.43080i
\(404\) 0 0
\(405\) 609028. 0.184502
\(406\) 0 0
\(407\) −1.60000e6 −0.478779
\(408\) 0 0
\(409\) −1.67464e6 + 2.90055e6i −0.495008 + 0.857379i −0.999983 0.00575475i \(-0.998168\pi\)
0.504975 + 0.863134i \(0.331502\pi\)
\(410\) 0 0
\(411\) 432915. + 749830.i 0.126415 + 0.218957i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 2.08203e6 + 3.60618e6i 0.593425 + 1.02784i
\(416\) 0 0
\(417\) −1.76118e6 + 3.05045e6i −0.495979 + 0.859060i
\(418\) 0 0
\(419\) −2.97012e6 −0.826493 −0.413247 0.910619i \(-0.635605\pi\)
−0.413247 + 0.910619i \(0.635605\pi\)
\(420\) 0 0
\(421\) −5.41478e6 −1.48894 −0.744468 0.667658i \(-0.767297\pi\)
−0.744468 + 0.667658i \(0.767297\pi\)
\(422\) 0 0
\(423\) −664810. + 1.15148e6i −0.180654 + 0.312901i
\(424\) 0 0
\(425\) 150708. + 261034.i 0.0404729 + 0.0701011i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −703895. 1.21918e6i −0.184657 0.319835i
\(430\) 0 0
\(431\) 2.52975e6 4.38165e6i 0.655970 1.13617i −0.325679 0.945480i \(-0.605593\pi\)
0.981650 0.190694i \(-0.0610737\pi\)
\(432\) 0 0
\(433\) −3.84174e6 −0.984711 −0.492355 0.870394i \(-0.663864\pi\)
−0.492355 + 0.870394i \(0.663864\pi\)
\(434\) 0 0
\(435\) −3.16688e6 −0.802433
\(436\) 0 0
\(437\) 2.81422e6 4.87437e6i 0.704943 1.22100i
\(438\) 0 0
\(439\) −762859. 1.32131e6i −0.188922 0.327223i 0.755969 0.654607i \(-0.227166\pi\)
−0.944891 + 0.327385i \(0.893833\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 735068. + 1.27317e6i 0.177958 + 0.308233i 0.941181 0.337903i \(-0.109717\pi\)
−0.763223 + 0.646135i \(0.776384\pi\)
\(444\) 0 0
\(445\) 5.93828e6 1.02854e7i 1.42154 2.46219i
\(446\) 0 0
\(447\) −726110. −0.171883
\(448\) 0 0
\(449\) −6.05071e6 −1.41641 −0.708207 0.706004i \(-0.750496\pi\)
−0.708207 + 0.706004i \(0.750496\pi\)
\(450\) 0 0
\(451\) −730954. + 1.26605e6i −0.169219 + 0.293095i
\(452\) 0 0
\(453\) −430572. 745772.i −0.0985826 0.170750i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 2.87710e6 + 4.98328e6i 0.644413 + 1.11616i 0.984437 + 0.175739i \(0.0562315\pi\)
−0.340024 + 0.940417i \(0.610435\pi\)
\(458\) 0 0
\(459\) 20006.3 34651.9i 0.00443236 0.00767707i
\(460\) 0 0
\(461\) −2.83684e6 −0.621703 −0.310851 0.950458i \(-0.600614\pi\)
−0.310851 + 0.950458i \(0.600614\pi\)
\(462\) 0 0
\(463\) 5.19089e6 1.12535 0.562677 0.826677i \(-0.309771\pi\)
0.562677 + 0.826677i \(0.309771\pi\)
\(464\) 0 0
\(465\) −2.02480e6 + 3.50705e6i −0.434260 + 0.752160i
\(466\) 0 0
\(467\) 544520. + 943136.i 0.115537 + 0.200116i 0.917994 0.396594i \(-0.129808\pi\)
−0.802457 + 0.596710i \(0.796474\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −880315. 1.52475e6i −0.182846 0.316699i
\(472\) 0 0
\(473\) −502322. + 870047.i −0.103235 + 0.178809i
\(474\) 0 0
\(475\) 9.40081e6 1.91175
\(476\) 0 0
\(477\) −1.69892e6 −0.341883
\(478\) 0 0
\(479\) −2.84705e6 + 4.93124e6i −0.566966 + 0.982013i 0.429898 + 0.902877i \(0.358549\pi\)
−0.996864 + 0.0791359i \(0.974784\pi\)
\(480\) 0 0
\(481\) 6.31559e6 + 1.09389e7i 1.24466 + 2.15582i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −3.04866e6 5.28044e6i −0.588512 1.01933i
\(486\) 0 0
\(487\) 2.05713e6 3.56305e6i 0.393042 0.680768i −0.599807 0.800144i \(-0.704756\pi\)
0.992849 + 0.119376i \(0.0380895\pi\)
\(488\) 0 0
\(489\) 338811. 0.0640745
\(490\) 0 0
\(491\) −609530. −0.114101 −0.0570507 0.998371i \(-0.518170\pi\)
−0.0570507 + 0.998371i \(0.518170\pi\)
\(492\) 0 0
\(493\) −104031. + 180186.i −0.0192772 + 0.0333891i
\(494\) 0 0
\(495\) −529187. 916579.i −0.0970725 0.168134i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −497896. 862382.i −0.0895133 0.155042i 0.817792 0.575514i \(-0.195198\pi\)
−0.907306 + 0.420472i \(0.861864\pi\)
\(500\) 0 0
\(501\) 2.91050e6 5.04113e6i 0.518052 0.897292i
\(502\) 0 0
\(503\) −1.02730e7 −1.81042 −0.905209 0.424966i \(-0.860286\pi\)
−0.905209 + 0.424966i \(0.860286\pi\)
\(504\) 0 0
\(505\) −1.63171e7 −2.84718
\(506\) 0 0
\(507\) −3.88605e6 + 6.73084e6i −0.671412 + 1.16292i
\(508\) 0 0
\(509\) −1.39213e6 2.41125e6i −0.238170 0.412522i 0.722020 0.691873i \(-0.243214\pi\)
−0.960189 + 0.279351i \(0.909881\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −623972. 1.08075e6i −0.104682 0.181314i
\(514\) 0 0
\(515\) −7.15264e6 + 1.23887e7i −1.18836 + 2.05830i
\(516\) 0 0
\(517\) 2.31062e6 0.380192
\(518\) 0 0
\(519\) 3.48218e6 0.567456
\(520\) 0 0
\(521\) 522678. 905306.i 0.0843607 0.146117i −0.820758 0.571276i \(-0.806449\pi\)
0.905119 + 0.425159i \(0.139782\pi\)
\(522\) 0 0
\(523\) −1.81578e6 3.14503e6i −0.290275 0.502771i 0.683600 0.729857i \(-0.260413\pi\)
−0.973875 + 0.227086i \(0.927080\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 133027. + 230410.i 0.0208648 + 0.0361389i
\(528\) 0 0
\(529\) −2.18700e6 + 3.78800e6i −0.339789 + 0.588532i
\(530\) 0 0
\(531\) 2.93317e6 0.451440
\(532\) 0 0
\(533\) 1.15410e7 1.75964
\(534\) 0 0
\(535\) −8.51034e6 + 1.47403e7i −1.28547 + 2.22650i
\(536\) 0 0
\(537\) −123347. 213644.i −0.0184584 0.0319709i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 4.72442e6 + 8.18294e6i 0.693994 + 1.20203i 0.970519 + 0.241025i \(0.0774837\pi\)
−0.276525 + 0.961007i \(0.589183\pi\)
\(542\) 0 0
\(543\) −882698. + 1.52888e6i −0.128473 + 0.222522i
\(544\) 0 0
\(545\) −1.24985e7 −1.80246
\(546\) 0 0
\(547\) 2.69014e6 0.384421 0.192210 0.981354i \(-0.438434\pi\)
0.192210 + 0.981354i \(0.438434\pi\)
\(548\) 0 0
\(549\) 200422. 347142.i 0.0283802 0.0491559i
\(550\) 0 0
\(551\) 3.24459e6 + 5.61979e6i 0.455282 + 0.788572i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 4.74804e6 + 8.22385e6i 0.654308 + 1.13329i
\(556\) 0 0
\(557\) 4.44490e6 7.69880e6i 0.607050 1.05144i −0.384674 0.923052i \(-0.625686\pi\)
0.991724 0.128389i \(-0.0409805\pi\)
\(558\) 0 0
\(559\) 7.93112e6 1.07351
\(560\) 0 0
\(561\) −69534.1 −0.00932805
\(562\) 0 0
\(563\) 629963. 1.09113e6i 0.0837615 0.145079i −0.821101 0.570782i \(-0.806640\pi\)
0.904863 + 0.425703i \(0.139973\pi\)
\(564\) 0 0
\(565\) −8.21297e6 1.42253e7i −1.08238 1.87473i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 2.91019e6 + 5.04059e6i 0.376826 + 0.652681i 0.990598 0.136801i \(-0.0436822\pi\)
−0.613773 + 0.789483i \(0.710349\pi\)
\(570\) 0 0
\(571\) −2.32980e6 + 4.03534e6i −0.299040 + 0.517952i −0.975917 0.218144i \(-0.930000\pi\)
0.676877 + 0.736096i \(0.263333\pi\)
\(572\) 0 0
\(573\) 2.40284e6 0.305730
\(574\) 0 0
\(575\) −1.80558e7 −2.27744
\(576\) 0 0
\(577\) −762391. + 1.32050e6i −0.0953319 + 0.165120i −0.909747 0.415163i \(-0.863725\pi\)
0.814415 + 0.580283i \(0.197058\pi\)
\(578\) 0 0
\(579\) 456137. + 790052.i 0.0565456 + 0.0979398i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 1.47620e6 + 2.55685e6i 0.179876 + 0.311554i
\(584\) 0 0
\(585\) −4.17764e6 + 7.23589e6i −0.504710 + 0.874183i
\(586\) 0 0
\(587\) 1.50087e7 1.79783 0.898914 0.438124i \(-0.144357\pi\)
0.898914 + 0.438124i \(0.144357\pi\)
\(588\) 0 0
\(589\) 8.29792e6 0.985556
\(590\) 0 0
\(591\) −1.63065e6 + 2.82436e6i −0.192040 + 0.332623i
\(592\) 0 0
\(593\) −3.53973e6 6.13099e6i −0.413364 0.715968i 0.581891 0.813267i \(-0.302313\pi\)
−0.995255 + 0.0972987i \(0.968980\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 1.01436e6 + 1.75692e6i 0.116481 + 0.201751i
\(598\) 0 0
\(599\) 1.08761e6 1.88379e6i 0.123853 0.214519i −0.797431 0.603410i \(-0.793808\pi\)
0.921284 + 0.388891i \(0.127142\pi\)
\(600\) 0 0
\(601\) −2.69785e6 −0.304671 −0.152336 0.988329i \(-0.548679\pi\)
−0.152336 + 0.988329i \(0.548679\pi\)
\(602\) 0 0
\(603\) −1.86021e6 −0.208338
\(604\) 0 0
\(605\) 6.55520e6 1.13539e7i 0.728111 1.26112i
\(606\) 0 0
\(607\) 2.49417e6 + 4.32003e6i 0.274760 + 0.475899i 0.970075 0.242807i \(-0.0780682\pi\)
−0.695314 + 0.718706i \(0.744735\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −9.12056e6 1.57973e7i −0.988367 1.71190i
\(612\) 0 0
\(613\) −556820. + 964441.i −0.0598500 + 0.103663i −0.894398 0.447272i \(-0.852396\pi\)
0.834548 + 0.550935i \(0.185729\pi\)
\(614\) 0 0
\(615\) 8.67647e6 0.925029
\(616\) 0 0
\(617\) −5.14757e6 −0.544364 −0.272182 0.962246i \(-0.587745\pi\)
−0.272182 + 0.962246i \(0.587745\pi\)
\(618\) 0 0
\(619\) 121588. 210597.i 0.0127545 0.0220915i −0.859578 0.511005i \(-0.829273\pi\)
0.872332 + 0.488914i \(0.162607\pi\)
\(620\) 0 0
\(621\) 1.19844e6 + 2.07576e6i 0.124706 + 0.215998i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −1.61533e6 2.79783e6i −0.165410 0.286498i
\(626\) 0 0
\(627\) −1.08434e6 + 1.87814e6i −0.110153 + 0.190791i
\(628\) 0 0
\(629\) 623884. 0.0628749
\(630\) 0 0
\(631\) 9.94255e6 0.994087 0.497044 0.867726i \(-0.334419\pi\)
0.497044 + 0.867726i \(0.334419\pi\)
\(632\) 0 0
\(633\) 1.47510e6 2.55495e6i 0.146323 0.253439i
\(634\) 0 0
\(635\) −6.70347e6 1.16108e7i −0.659729 1.14268i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 1.06684e6 + 1.84783e6i 0.103359 + 0.179023i
\(640\) 0 0
\(641\) 5.77767e6 1.00072e7i 0.555402 0.961985i −0.442470 0.896783i \(-0.645898\pi\)
0.997872 0.0652017i \(-0.0207691\pi\)
\(642\) 0 0
\(643\) −1.35139e6 −0.128900 −0.0644500 0.997921i \(-0.520529\pi\)
−0.0644500 + 0.997921i \(0.520529\pi\)
\(644\) 0 0
\(645\) 5.96260e6 0.564334
\(646\) 0 0
\(647\) 8.77678e6 1.52018e7i 0.824279 1.42769i −0.0781895 0.996939i \(-0.524914\pi\)
0.902469 0.430755i \(-0.141753\pi\)
\(648\) 0 0
\(649\) −2.54864e6 4.41437e6i −0.237518 0.411393i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 3.99936e6 + 6.92710e6i 0.367035 + 0.635724i 0.989101 0.147242i \(-0.0470395\pi\)
−0.622065 + 0.782965i \(0.713706\pi\)
\(654\) 0 0
\(655\) −1.10234e7 + 1.90931e7i −1.00395 + 1.73889i
\(656\) 0 0
\(657\) −4.48638e6 −0.405492
\(658\) 0 0
\(659\) 229419. 0.0205786 0.0102893 0.999947i \(-0.496725\pi\)
0.0102893 + 0.999947i \(0.496725\pi\)
\(660\) 0 0
\(661\) −1.64279e6 + 2.84539e6i −0.146244 + 0.253302i −0.929836 0.367973i \(-0.880052\pi\)
0.783593 + 0.621275i \(0.213385\pi\)
\(662\) 0 0
\(663\) 274467. + 475391.i 0.0242497 + 0.0420017i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −6.23177e6 1.07937e7i −0.542372 0.939416i
\(668\) 0 0
\(669\) 493603. 854945.i 0.0426395 0.0738538i
\(670\) 0 0
\(671\) −696590. −0.0597271
\(672\) 0 0
\(673\) 8.22188e6 0.699734 0.349867 0.936799i \(-0.386227\pi\)
0.349867 + 0.936799i \(0.386227\pi\)
\(674\) 0 0
\(675\) −2.00168e6 + 3.46701e6i −0.169097 + 0.292884i
\(676\) 0 0
\(677\) 1.07702e7 + 1.86546e7i 0.903138 + 1.56428i 0.823397 + 0.567465i \(0.192076\pi\)
0.0797405 + 0.996816i \(0.474591\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 5.47859e6 + 9.48920e6i 0.452690 + 0.784083i
\(682\) 0 0
\(683\) 8.08706e6 1.40072e7i 0.663344 1.14895i −0.316387 0.948630i \(-0.602470\pi\)
0.979731 0.200316i \(-0.0641968\pi\)
\(684\) 0 0
\(685\) −8.93012e6 −0.727162
\(686\) 0 0
\(687\) 1.20242e7 0.971999
\(688\) 0 0
\(689\) 1.16538e7 2.01850e7i 0.935231 1.61987i
\(690\) 0 0
\(691\) 5.32318e6 + 9.22002e6i 0.424108 + 0.734576i 0.996337 0.0855179i \(-0.0272545\pi\)
−0.572229 + 0.820094i \(0.693921\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −1.81647e7 3.14622e7i −1.42648 2.47074i
\(696\) 0 0
\(697\) 285018. 493666.i 0.0222224 0.0384903i
\(698\) 0 0
\(699\) 421096. 0.0325978
\(700\) 0 0
\(701\) −4.55461e6 −0.350071 −0.175035 0.984562i \(-0.556004\pi\)
−0.175035 + 0.984562i \(0.556004\pi\)
\(702\) 0 0
\(703\) 9.72909e6 1.68513e7i 0.742479 1.28601i
\(704\) 0 0
\(705\) −6.85682e6 1.18764e7i −0.519577 0.899933i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −6.55174e6 1.13479e7i −0.489487 0.847816i 0.510440 0.859913i \(-0.329483\pi\)
−0.999927 + 0.0120971i \(0.996149\pi\)
\(710\) 0 0
\(711\) 2.02324e6 3.50436e6i 0.150098 0.259977i
\(712\) 0 0
\(713\) −1.59375e7 −1.17408
\(714\) 0 0
\(715\) 1.45199e7 1.06218
\(716\) 0 0
\(717\) −388576. + 673033.i −0.0282278 + 0.0488921i
\(718\) 0 0
\(719\) 8.95942e6 + 1.55182e7i 0.646335 + 1.11949i 0.983991 + 0.178216i \(0.0570325\pi\)
−0.337656 + 0.941269i \(0.609634\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 3.71384e6 + 6.43257e6i 0.264227 + 0.457655i
\(724\) 0 0
\(725\) 1.04085e7 1.80281e7i 0.735435 1.27381i
\(726\) 0 0
\(727\) −1.41466e7 −0.992693 −0.496347 0.868125i \(-0.665325\pi\)
−0.496347 + 0.868125i \(0.665325\pi\)
\(728\) 0 0
\(729\) 531441. 0.0370370
\(730\) 0 0
\(731\) 195868. 339254.i 0.0135572 0.0234818i
\(732\) 0 0
\(733\) −6.22241e6 1.07775e7i −0.427758 0.740899i 0.568915 0.822396i \(-0.307363\pi\)
−0.996674 + 0.0814969i \(0.974030\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 1.61634e6 + 2.79959e6i 0.109614 + 0.189857i
\(738\) 0 0
\(739\) 883322. 1.52996e6i 0.0594988 0.103055i −0.834742 0.550642i \(-0.814383\pi\)
0.894241 + 0.447587i \(0.147716\pi\)
\(740\) 0 0
\(741\) 1.71206e7 1.14544
\(742\) 0 0
\(743\) 5.73250e6 0.380953 0.190477 0.981692i \(-0.438997\pi\)
0.190477 + 0.981692i \(0.438997\pi\)
\(744\) 0 0
\(745\) 3.74453e6 6.48571e6i 0.247176 0.428122i
\(746\) 0 0
\(747\) 1.81679e6 + 3.14677e6i 0.119125 + 0.206330i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −1.31566e7 2.27879e7i −0.851224 1.47436i −0.880104 0.474780i \(-0.842528\pi\)
0.0288804 0.999583i \(-0.490806\pi\)
\(752\) 0 0
\(753\) −585844. + 1.01471e6i −0.0376526 + 0.0652162i
\(754\) 0 0
\(755\) 8.88179e6 0.567066
\(756\) 0 0
\(757\) 1.63104e7 1.03449 0.517245 0.855838i \(-0.326958\pi\)
0.517245 + 0.855838i \(0.326958\pi\)
\(758\) 0 0
\(759\) 2.08266e6 3.60728e6i 0.131224 0.227287i
\(760\) 0 0
\(761\) 8.42080e6 + 1.45853e7i 0.527098 + 0.912961i 0.999501 + 0.0315785i \(0.0100534\pi\)
−0.472403 + 0.881383i \(0.656613\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 206344. + 357398.i 0.0127479 + 0.0220800i
\(766\) 0 0
\(767\) −2.01201e7 + 3.48491e7i −1.23493 + 2.13896i
\(768\) 0 0
\(769\) −1.19890e7 −0.731084 −0.365542 0.930795i \(-0.619116\pi\)
−0.365542 + 0.930795i \(0.619116\pi\)
\(770\) 0 0
\(771\) −925112. −0.0560477
\(772\) 0 0
\(773\) 8.48868e6 1.47028e7i 0.510965 0.885018i −0.488954 0.872310i \(-0.662621\pi\)
0.999919 0.0127081i \(-0.00404522\pi\)
\(774\) 0 0
\(775\) −1.33097e7 2.30531e7i −0.796003 1.37872i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −8.88937e6 1.53968e7i −0.524841 0.909050i
\(780\) 0 0
\(781\) 1.85397e6 3.21117e6i 0.108761 0.188380i
\(782\) 0 0
\(783\) −2.76344e6 −0.161081
\(784\) 0 0
\(785\) 1.81590e7 1.05177