Properties

Label 588.6.i.m.373.2
Level $588$
Weight $6$
Character 588.373
Analytic conductor $94.306$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [588,6,Mod(361,588)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(588, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("588.361");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 588.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(94.3056860500\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{7081})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 1771x^{2} + 1770x + 3132900 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 84)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 373.2
Root \(-20.7872 + 36.0044i\) of defining polynomial
Character \(\chi\) \(=\) 588.373
Dual form 588.6.i.m.361.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(4.50000 + 7.79423i) q^{3} +(32.7872 - 56.7890i) q^{5} +(-40.5000 + 70.1481i) q^{9} +O(q^{10})\) \(q+(4.50000 + 7.79423i) q^{3} +(32.7872 - 56.7890i) q^{5} +(-40.5000 + 70.1481i) q^{9} +(122.787 + 212.674i) q^{11} -434.872 q^{13} +590.169 q^{15} +(-551.149 - 954.618i) q^{17} +(-1438.65 + 2491.81i) q^{19} +(2114.72 - 3662.80i) q^{23} +(-587.497 - 1017.57i) q^{25} -729.000 q^{27} +4969.60 q^{29} +(-4391.32 - 7606.00i) q^{31} +(-1105.08 + 1914.06i) q^{33} +(1220.03 - 2113.15i) q^{37} +(-1956.92 - 3389.49i) q^{39} +3668.55 q^{41} -7198.06 q^{43} +(2655.76 + 4599.91i) q^{45} +(1636.66 - 2834.78i) q^{47} +(4960.34 - 8591.56i) q^{51} +(1510.84 + 2616.84i) q^{53} +16103.4 q^{55} -25895.6 q^{57} +(-25743.7 - 44589.5i) q^{59} +(-6656.65 + 11529.6i) q^{61} +(-14258.2 + 24695.9i) q^{65} +(-15447.9 - 26756.5i) q^{67} +38064.9 q^{69} -41882.8 q^{71} +(17308.7 + 29979.5i) q^{73} +(5287.47 - 9158.17i) q^{75} +(-38771.7 + 67154.6i) q^{79} +(-3280.50 - 5681.99i) q^{81} -100908. q^{83} -72282.4 q^{85} +(22363.2 + 38734.2i) q^{87} +(20391.8 - 35319.7i) q^{89} +(39521.9 - 68454.0i) q^{93} +(94338.2 + 163399. i) q^{95} -140147. q^{97} -19891.5 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 18 q^{3} + 47 q^{5} - 162 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 18 q^{3} + 47 q^{5} - 162 q^{9} + 407 q^{11} - 898 q^{13} + 846 q^{15} - 1868 q^{17} - 1463 q^{19} + 44 q^{23} + 1605 q^{25} - 2916 q^{27} + 1534 q^{29} - 11170 q^{31} - 3663 q^{33} + 3113 q^{37} - 4041 q^{39} + 15684 q^{41} - 25258 q^{43} + 3807 q^{45} + 9576 q^{47} + 16812 q^{51} - 13395 q^{53} + 26210 q^{55} - 26334 q^{57} - 47521 q^{59} - 63652 q^{61} - 28254 q^{65} - 44541 q^{67} + 792 q^{69} - 251680 q^{71} + 6039 q^{73} - 14445 q^{75} - 17588 q^{79} - 13122 q^{81} - 78650 q^{83} - 116120 q^{85} + 6903 q^{87} + 83082 q^{89} + 100530 q^{93} + 214946 q^{95} - 369570 q^{97} - 65934 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/588\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(295\) \(493\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 4.50000 + 7.79423i 0.288675 + 0.500000i
\(4\) 0 0
\(5\) 32.7872 56.7890i 0.586515 1.01587i −0.408170 0.912906i \(-0.633833\pi\)
0.994685 0.102967i \(-0.0328337\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −40.5000 + 70.1481i −0.166667 + 0.288675i
\(10\) 0 0
\(11\) 122.787 + 212.674i 0.305965 + 0.529946i 0.977476 0.211048i \(-0.0676877\pi\)
−0.671511 + 0.740995i \(0.734354\pi\)
\(12\) 0 0
\(13\) −434.872 −0.713679 −0.356839 0.934166i \(-0.616146\pi\)
−0.356839 + 0.934166i \(0.616146\pi\)
\(14\) 0 0
\(15\) 590.169 0.677249
\(16\) 0 0
\(17\) −551.149 954.618i −0.462537 0.801138i 0.536550 0.843869i \(-0.319727\pi\)
−0.999087 + 0.0427312i \(0.986394\pi\)
\(18\) 0 0
\(19\) −1438.65 + 2491.81i −0.914260 + 1.58355i −0.106279 + 0.994336i \(0.533894\pi\)
−0.807981 + 0.589209i \(0.799440\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 2114.72 3662.80i 0.833552 1.44375i −0.0616521 0.998098i \(-0.519637\pi\)
0.895204 0.445657i \(-0.147030\pi\)
\(24\) 0 0
\(25\) −587.497 1017.57i −0.187999 0.325624i
\(26\) 0 0
\(27\) −729.000 −0.192450
\(28\) 0 0
\(29\) 4969.60 1.09730 0.548652 0.836051i \(-0.315141\pi\)
0.548652 + 0.836051i \(0.315141\pi\)
\(30\) 0 0
\(31\) −4391.32 7606.00i −0.820713 1.42152i −0.905152 0.425088i \(-0.860243\pi\)
0.0844390 0.996429i \(-0.473090\pi\)
\(32\) 0 0
\(33\) −1105.08 + 1914.06i −0.176649 + 0.305965i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 1220.03 2113.15i 0.146510 0.253762i −0.783425 0.621486i \(-0.786529\pi\)
0.929935 + 0.367723i \(0.119863\pi\)
\(38\) 0 0
\(39\) −1956.92 3389.49i −0.206021 0.356839i
\(40\) 0 0
\(41\) 3668.55 0.340828 0.170414 0.985373i \(-0.445489\pi\)
0.170414 + 0.985373i \(0.445489\pi\)
\(42\) 0 0
\(43\) −7198.06 −0.593669 −0.296835 0.954929i \(-0.595931\pi\)
−0.296835 + 0.954929i \(0.595931\pi\)
\(44\) 0 0
\(45\) 2655.76 + 4599.91i 0.195505 + 0.338624i
\(46\) 0 0
\(47\) 1636.66 2834.78i 0.108072 0.187187i −0.806917 0.590665i \(-0.798866\pi\)
0.914989 + 0.403478i \(0.132199\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 4960.34 8591.56i 0.267046 0.462537i
\(52\) 0 0
\(53\) 1510.84 + 2616.84i 0.0738801 + 0.127964i 0.900599 0.434651i \(-0.143128\pi\)
−0.826719 + 0.562616i \(0.809795\pi\)
\(54\) 0 0
\(55\) 16103.4 0.717811
\(56\) 0 0
\(57\) −25895.6 −1.05570
\(58\) 0 0
\(59\) −25743.7 44589.5i −0.962812 1.66764i −0.715381 0.698735i \(-0.753747\pi\)
−0.247432 0.968905i \(-0.579587\pi\)
\(60\) 0 0
\(61\) −6656.65 + 11529.6i −0.229050 + 0.396727i −0.957527 0.288344i \(-0.906895\pi\)
0.728477 + 0.685071i \(0.240229\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −14258.2 + 24695.9i −0.418583 + 0.725007i
\(66\) 0 0
\(67\) −15447.9 26756.5i −0.420418 0.728186i 0.575562 0.817758i \(-0.304783\pi\)
−0.995980 + 0.0895723i \(0.971450\pi\)
\(68\) 0 0
\(69\) 38064.9 0.962503
\(70\) 0 0
\(71\) −41882.8 −0.986030 −0.493015 0.870021i \(-0.664105\pi\)
−0.493015 + 0.870021i \(0.664105\pi\)
\(72\) 0 0
\(73\) 17308.7 + 29979.5i 0.380151 + 0.658441i 0.991084 0.133242i \(-0.0425386\pi\)
−0.610932 + 0.791683i \(0.709205\pi\)
\(74\) 0 0
\(75\) 5287.47 9158.17i 0.108541 0.187999i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −38771.7 + 67154.6i −0.698952 + 1.21062i 0.269878 + 0.962895i \(0.413017\pi\)
−0.968830 + 0.247726i \(0.920317\pi\)
\(80\) 0 0
\(81\) −3280.50 5681.99i −0.0555556 0.0962250i
\(82\) 0 0
\(83\) −100908. −1.60779 −0.803897 0.594768i \(-0.797244\pi\)
−0.803897 + 0.594768i \(0.797244\pi\)
\(84\) 0 0
\(85\) −72282.4 −1.08514
\(86\) 0 0
\(87\) 22363.2 + 38734.2i 0.316764 + 0.548652i
\(88\) 0 0
\(89\) 20391.8 35319.7i 0.272886 0.472652i −0.696714 0.717349i \(-0.745355\pi\)
0.969600 + 0.244697i \(0.0786885\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 39521.9 68454.0i 0.473839 0.820713i
\(94\) 0 0
\(95\) 94338.2 + 163399.i 1.07245 + 1.85755i
\(96\) 0 0
\(97\) −140147. −1.51236 −0.756178 0.654366i \(-0.772936\pi\)
−0.756178 + 0.654366i \(0.772936\pi\)
\(98\) 0 0
\(99\) −19891.5 −0.203976
\(100\) 0 0
\(101\) 4288.23 + 7427.43i 0.0418287 + 0.0724494i 0.886182 0.463338i \(-0.153348\pi\)
−0.844353 + 0.535787i \(0.820015\pi\)
\(102\) 0 0
\(103\) −17630.1 + 30536.2i −0.163742 + 0.283610i −0.936208 0.351447i \(-0.885690\pi\)
0.772466 + 0.635057i \(0.219023\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 96314.3 166821.i 0.813264 1.40861i −0.0973041 0.995255i \(-0.531022\pi\)
0.910568 0.413360i \(-0.135645\pi\)
\(108\) 0 0
\(109\) −61646.1 106774.i −0.496980 0.860795i 0.503014 0.864279i \(-0.332225\pi\)
−0.999994 + 0.00348322i \(0.998891\pi\)
\(110\) 0 0
\(111\) 21960.6 0.169175
\(112\) 0 0
\(113\) 28400.9 0.209236 0.104618 0.994512i \(-0.466638\pi\)
0.104618 + 0.994512i \(0.466638\pi\)
\(114\) 0 0
\(115\) −138671. 240186.i −0.977781 1.69357i
\(116\) 0 0
\(117\) 17612.3 30505.4i 0.118946 0.206021i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 50372.1 87247.1i 0.312771 0.541736i
\(122\) 0 0
\(123\) 16508.5 + 28593.5i 0.0983886 + 0.170414i
\(124\) 0 0
\(125\) 127870. 0.731973
\(126\) 0 0
\(127\) −47198.8 −0.259670 −0.129835 0.991536i \(-0.541445\pi\)
−0.129835 + 0.991536i \(0.541445\pi\)
\(128\) 0 0
\(129\) −32391.3 56103.3i −0.171377 0.296835i
\(130\) 0 0
\(131\) 39904.7 69116.9i 0.203163 0.351889i −0.746383 0.665517i \(-0.768211\pi\)
0.949546 + 0.313628i \(0.101544\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −23901.8 + 41399.2i −0.112875 + 0.195505i
\(136\) 0 0
\(137\) 43032.1 + 74533.9i 0.195881 + 0.339275i 0.947189 0.320676i \(-0.103910\pi\)
−0.751308 + 0.659952i \(0.770577\pi\)
\(138\) 0 0
\(139\) −270587. −1.18787 −0.593935 0.804513i \(-0.702427\pi\)
−0.593935 + 0.804513i \(0.702427\pi\)
\(140\) 0 0
\(141\) 29459.9 0.124791
\(142\) 0 0
\(143\) −53396.7 92485.7i −0.218360 0.378211i
\(144\) 0 0
\(145\) 162939. 282219.i 0.643585 1.11472i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 86273.9 149431.i 0.318356 0.551410i −0.661789 0.749690i \(-0.730202\pi\)
0.980145 + 0.198281i \(0.0635358\pi\)
\(150\) 0 0
\(151\) 8949.75 + 15501.4i 0.0319425 + 0.0553260i 0.881555 0.472082i \(-0.156497\pi\)
−0.849612 + 0.527408i \(0.823164\pi\)
\(152\) 0 0
\(153\) 89286.1 0.308358
\(154\) 0 0
\(155\) −575916. −1.92544
\(156\) 0 0
\(157\) −89509.3 155035.i −0.289814 0.501972i 0.683951 0.729528i \(-0.260260\pi\)
−0.973765 + 0.227555i \(0.926927\pi\)
\(158\) 0 0
\(159\) −13597.5 + 23551.6i −0.0426547 + 0.0738801i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 118645. 205498.i 0.349767 0.605814i −0.636441 0.771325i \(-0.719594\pi\)
0.986208 + 0.165511i \(0.0529275\pi\)
\(164\) 0 0
\(165\) 72465.2 + 125513.i 0.207214 + 0.358906i
\(166\) 0 0
\(167\) 94040.0 0.260928 0.130464 0.991453i \(-0.458353\pi\)
0.130464 + 0.991453i \(0.458353\pi\)
\(168\) 0 0
\(169\) −182180. −0.490663
\(170\) 0 0
\(171\) −116530. 201836.i −0.304753 0.527848i
\(172\) 0 0
\(173\) 244357. 423238.i 0.620739 1.07515i −0.368609 0.929584i \(-0.620166\pi\)
0.989348 0.145567i \(-0.0465006\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 231694. 401305.i 0.555880 0.962812i
\(178\) 0 0
\(179\) −406498. 704075.i −0.948257 1.64243i −0.749095 0.662462i \(-0.769512\pi\)
−0.199161 0.979967i \(-0.563822\pi\)
\(180\) 0 0
\(181\) 332961. 0.755434 0.377717 0.925921i \(-0.376709\pi\)
0.377717 + 0.925921i \(0.376709\pi\)
\(182\) 0 0
\(183\) −119820. −0.264484
\(184\) 0 0
\(185\) −80002.7 138569.i −0.171860 0.297671i
\(186\) 0 0
\(187\) 135348. 234430.i 0.283040 0.490240i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 72143.9 124957.i 0.143092 0.247843i −0.785567 0.618776i \(-0.787629\pi\)
0.928660 + 0.370933i \(0.120962\pi\)
\(192\) 0 0
\(193\) 447310. + 774763.i 0.864400 + 1.49719i 0.867641 + 0.497190i \(0.165635\pi\)
−0.00324119 + 0.999995i \(0.501032\pi\)
\(194\) 0 0
\(195\) −256648. −0.483338
\(196\) 0 0
\(197\) −599462. −1.10052 −0.550258 0.834995i \(-0.685470\pi\)
−0.550258 + 0.834995i \(0.685470\pi\)
\(198\) 0 0
\(199\) −389129. 673992.i −0.696564 1.20648i −0.969651 0.244495i \(-0.921378\pi\)
0.273086 0.961990i \(-0.411956\pi\)
\(200\) 0 0
\(201\) 139031. 240808.i 0.242729 0.420418i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 120282. 208334.i 0.199901 0.346238i
\(206\) 0 0
\(207\) 171292. + 296687.i 0.277851 + 0.481251i
\(208\) 0 0
\(209\) −706589. −1.11893
\(210\) 0 0
\(211\) −810532. −1.25333 −0.626663 0.779291i \(-0.715580\pi\)
−0.626663 + 0.779291i \(0.715580\pi\)
\(212\) 0 0
\(213\) −188473. 326444.i −0.284642 0.493015i
\(214\) 0 0
\(215\) −236004. + 408771.i −0.348196 + 0.603093i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −155778. + 269815.i −0.219480 + 0.380151i
\(220\) 0 0
\(221\) 239679. + 415136.i 0.330103 + 0.571755i
\(222\) 0 0
\(223\) −220486. −0.296905 −0.148453 0.988920i \(-0.547429\pi\)
−0.148453 + 0.988920i \(0.547429\pi\)
\(224\) 0 0
\(225\) 95174.5 0.125333
\(226\) 0 0
\(227\) 671890. + 1.16375e6i 0.865433 + 1.49897i 0.866617 + 0.498974i \(0.166290\pi\)
−0.00118391 + 0.999999i \(0.500377\pi\)
\(228\) 0 0
\(229\) −521292. + 902904.i −0.656889 + 1.13777i 0.324528 + 0.945876i \(0.394795\pi\)
−0.981417 + 0.191889i \(0.938539\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −316256. + 547771.i −0.381635 + 0.661011i −0.991296 0.131651i \(-0.957972\pi\)
0.609661 + 0.792662i \(0.291306\pi\)
\(234\) 0 0
\(235\) −107323. 185889.i −0.126772 0.219575i
\(236\) 0 0
\(237\) −697891. −0.807081
\(238\) 0 0
\(239\) −684919. −0.775612 −0.387806 0.921741i \(-0.626767\pi\)
−0.387806 + 0.921741i \(0.626767\pi\)
\(240\) 0 0
\(241\) −3866.44 6696.87i −0.00428814 0.00742728i 0.863873 0.503709i \(-0.168032\pi\)
−0.868162 + 0.496282i \(0.834698\pi\)
\(242\) 0 0
\(243\) 29524.5 51137.9i 0.0320750 0.0555556i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 625626. 1.08362e6i 0.652488 1.13014i
\(248\) 0 0
\(249\) −454086. 786500.i −0.464130 0.803897i
\(250\) 0 0
\(251\) −1.09614e6 −1.09820 −0.549098 0.835758i \(-0.685029\pi\)
−0.549098 + 0.835758i \(0.685029\pi\)
\(252\) 0 0
\(253\) 1.03864e6 1.02015
\(254\) 0 0
\(255\) −325271. 563386.i −0.313253 0.542570i
\(256\) 0 0
\(257\) 357460. 619139.i 0.337594 0.584730i −0.646386 0.763011i \(-0.723720\pi\)
0.983980 + 0.178281i \(0.0570536\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −201269. + 348608.i −0.182884 + 0.316764i
\(262\) 0 0
\(263\) 298256. + 516595.i 0.265889 + 0.460533i 0.967796 0.251735i \(-0.0810012\pi\)
−0.701907 + 0.712268i \(0.747668\pi\)
\(264\) 0 0
\(265\) 198144. 0.173327
\(266\) 0 0
\(267\) 367053. 0.315102
\(268\) 0 0
\(269\) −1.01654e6 1.76070e6i −0.856531 1.48356i −0.875217 0.483730i \(-0.839282\pi\)
0.0186864 0.999825i \(-0.494052\pi\)
\(270\) 0 0
\(271\) 897277. 1.55413e6i 0.742170 1.28548i −0.209336 0.977844i \(-0.567130\pi\)
0.951505 0.307632i \(-0.0995365\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 144274. 249890.i 0.115042 0.199259i
\(276\) 0 0
\(277\) −211790. 366831.i −0.165846 0.287254i 0.771109 0.636703i \(-0.219702\pi\)
−0.936956 + 0.349449i \(0.886369\pi\)
\(278\) 0 0
\(279\) 711395. 0.547142
\(280\) 0 0
\(281\) −1.63799e6 −1.23750 −0.618749 0.785589i \(-0.712360\pi\)
−0.618749 + 0.785589i \(0.712360\pi\)
\(282\) 0 0
\(283\) −147018. 254642.i −0.109120 0.189001i 0.806294 0.591515i \(-0.201470\pi\)
−0.915414 + 0.402514i \(0.868137\pi\)
\(284\) 0 0
\(285\) −849044. + 1.47059e6i −0.619182 + 1.07245i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 102399. 177360.i 0.0721191 0.124914i
\(290\) 0 0
\(291\) −630661. 1.09234e6i −0.436580 0.756178i
\(292\) 0 0
\(293\) 356961. 0.242913 0.121457 0.992597i \(-0.461243\pi\)
0.121457 + 0.992597i \(0.461243\pi\)
\(294\) 0 0
\(295\) −3.37626e6 −2.25881
\(296\) 0 0
\(297\) −89511.8 155039.i −0.0588829 0.101988i
\(298\) 0 0
\(299\) −919631. + 1.59285e6i −0.594888 + 1.03038i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −38594.0 + 66846.8i −0.0241498 + 0.0418287i
\(304\) 0 0
\(305\) 436505. + 756049.i 0.268683 + 0.465372i
\(306\) 0 0
\(307\) 2.04097e6 1.23592 0.617960 0.786210i \(-0.287959\pi\)
0.617960 + 0.786210i \(0.287959\pi\)
\(308\) 0 0
\(309\) −317341. −0.189073
\(310\) 0 0
\(311\) 1.02337e6 + 1.77253e6i 0.599972 + 1.03918i 0.992824 + 0.119581i \(0.0381552\pi\)
−0.392852 + 0.919602i \(0.628512\pi\)
\(312\) 0 0
\(313\) 319272. 552996.i 0.184205 0.319052i −0.759104 0.650970i \(-0.774362\pi\)
0.943308 + 0.331918i \(0.107696\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −1.74954e6 + 3.03030e6i −0.977860 + 1.69370i −0.307705 + 0.951482i \(0.599561\pi\)
−0.670155 + 0.742221i \(0.733772\pi\)
\(318\) 0 0
\(319\) 610203. + 1.05690e6i 0.335736 + 0.581512i
\(320\) 0 0
\(321\) 1.73366e6 0.939076
\(322\) 0 0
\(323\) 3.17163e6 1.69152
\(324\) 0 0
\(325\) 255486. + 442514.i 0.134171 + 0.232391i
\(326\) 0 0
\(327\) 554815. 960967.i 0.286932 0.496980i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 1.47089e6 2.54766e6i 0.737923 1.27812i −0.215506 0.976503i \(-0.569140\pi\)
0.953429 0.301618i \(-0.0975266\pi\)
\(332\) 0 0
\(333\) 98822.5 + 171166.i 0.0488366 + 0.0845874i
\(334\) 0 0
\(335\) −2.02597e6 −0.986326
\(336\) 0 0
\(337\) 2.77854e6 1.33273 0.666364 0.745627i \(-0.267850\pi\)
0.666364 + 0.745627i \(0.267850\pi\)
\(338\) 0 0
\(339\) 127804. + 221363.i 0.0604012 + 0.104618i
\(340\) 0 0
\(341\) 1.07840e6 1.86784e6i 0.502218 0.869868i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 1.24804e6 2.16167e6i 0.564522 0.977781i
\(346\) 0 0
\(347\) 86001.9 + 148960.i 0.0383429 + 0.0664118i 0.884560 0.466426i \(-0.154459\pi\)
−0.846217 + 0.532838i \(0.821125\pi\)
\(348\) 0 0
\(349\) 3.88321e6 1.70658 0.853290 0.521436i \(-0.174603\pi\)
0.853290 + 0.521436i \(0.174603\pi\)
\(350\) 0 0
\(351\) 317021. 0.137348
\(352\) 0 0
\(353\) −385467. 667649.i −0.164646 0.285175i 0.771884 0.635764i \(-0.219315\pi\)
−0.936529 + 0.350589i \(0.885981\pi\)
\(354\) 0 0
\(355\) −1.37322e6 + 2.37849e6i −0.578321 + 1.00168i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −1.57017e6 + 2.71961e6i −0.642998 + 1.11370i 0.341763 + 0.939786i \(0.388976\pi\)
−0.984760 + 0.173918i \(0.944357\pi\)
\(360\) 0 0
\(361\) −2.90135e6 5.02529e6i −1.17174 2.02952i
\(362\) 0 0
\(363\) 906698. 0.361157
\(364\) 0 0
\(365\) 2.27001e6 0.891857
\(366\) 0 0
\(367\) −182842. 316691.i −0.0708615 0.122736i 0.828418 0.560111i \(-0.189242\pi\)
−0.899279 + 0.437375i \(0.855908\pi\)
\(368\) 0 0
\(369\) −148576. + 257342.i −0.0568047 + 0.0983886i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 77129.9 133593.i 0.0287045 0.0497177i −0.851316 0.524653i \(-0.824195\pi\)
0.880021 + 0.474935i \(0.157528\pi\)
\(374\) 0 0
\(375\) 575417. + 996651.i 0.211302 + 0.365986i
\(376\) 0 0
\(377\) −2.16114e6 −0.783122
\(378\) 0 0
\(379\) 4.06013e6 1.45192 0.725959 0.687738i \(-0.241396\pi\)
0.725959 + 0.687738i \(0.241396\pi\)
\(380\) 0 0
\(381\) −212395. 367878.i −0.0749602 0.129835i
\(382\) 0 0
\(383\) 1.02152e6 1.76932e6i 0.355834 0.616323i −0.631426 0.775436i \(-0.717530\pi\)
0.987260 + 0.159113i \(0.0508633\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 291521. 504930.i 0.0989448 0.171377i
\(388\) 0 0
\(389\) 1.06183e6 + 1.83915e6i 0.355780 + 0.616229i 0.987251 0.159170i \(-0.0508819\pi\)
−0.631471 + 0.775399i \(0.717549\pi\)
\(390\) 0 0
\(391\) −4.66209e6 −1.54219
\(392\) 0 0
\(393\) 718284. 0.234593
\(394\) 0 0
\(395\) 2.54243e6 + 4.40362e6i 0.819892 + 1.42009i
\(396\) 0 0
\(397\) −1.83182e6 + 3.17280e6i −0.583319 + 1.01034i 0.411764 + 0.911291i \(0.364913\pi\)
−0.995083 + 0.0990473i \(0.968420\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 32044.9 55503.3i 0.00995170 0.0172369i −0.861007 0.508594i \(-0.830166\pi\)
0.870958 + 0.491357i \(0.163499\pi\)
\(402\) 0 0
\(403\) 1.90966e6 + 3.30763e6i 0.585725 + 1.01451i
\(404\) 0 0
\(405\) −430233. −0.130337
\(406\) 0 0
\(407\) 599216. 0.179307
\(408\) 0 0
\(409\) 1.01287e6 + 1.75434e6i 0.299395 + 0.518568i 0.975998 0.217781i \(-0.0698818\pi\)
−0.676603 + 0.736348i \(0.736548\pi\)
\(410\) 0 0
\(411\) −387289. + 670805.i −0.113092 + 0.195881i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −3.30849e6 + 5.73047e6i −0.942995 + 1.63332i
\(416\) 0 0
\(417\) −1.21764e6 2.10901e6i −0.342909 0.593935i
\(418\) 0 0
\(419\) −2.38986e6 −0.665025 −0.332513 0.943099i \(-0.607896\pi\)
−0.332513 + 0.943099i \(0.607896\pi\)
\(420\) 0 0
\(421\) 3.46875e6 0.953822 0.476911 0.878952i \(-0.341756\pi\)
0.476911 + 0.878952i \(0.341756\pi\)
\(422\) 0 0
\(423\) 132570. + 229617.i 0.0360241 + 0.0623956i
\(424\) 0 0
\(425\) −647596. + 1.12167e6i −0.173913 + 0.301226i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 480570. 832372.i 0.126070 0.218360i
\(430\) 0 0
\(431\) 802201. + 1.38945e6i 0.208013 + 0.360289i 0.951088 0.308919i \(-0.0999671\pi\)
−0.743076 + 0.669207i \(0.766634\pi\)
\(432\) 0 0
\(433\) −741661. −0.190102 −0.0950508 0.995472i \(-0.530301\pi\)
−0.0950508 + 0.995472i \(0.530301\pi\)
\(434\) 0 0
\(435\) 2.93291e6 0.743147
\(436\) 0 0
\(437\) 6.08466e6 + 1.05389e7i 1.52417 + 2.63993i
\(438\) 0 0
\(439\) 1.43394e6 2.48365e6i 0.355115 0.615077i −0.632023 0.774950i \(-0.717775\pi\)
0.987138 + 0.159873i \(0.0511084\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 89148.9 154410.i 0.0215827 0.0373824i −0.855032 0.518575i \(-0.826463\pi\)
0.876615 + 0.481192i \(0.159796\pi\)
\(444\) 0 0
\(445\) −1.33718e6 2.31607e6i −0.320103 0.554435i
\(446\) 0 0
\(447\) 1.55293e6 0.367606
\(448\) 0 0
\(449\) −2.77890e6 −0.650515 −0.325258 0.945625i \(-0.605451\pi\)
−0.325258 + 0.945625i \(0.605451\pi\)
\(450\) 0 0
\(451\) 450451. + 780205.i 0.104281 + 0.180621i
\(452\) 0 0
\(453\) −80547.7 + 139513.i −0.0184420 + 0.0319425i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −3.20669e6 + 5.55416e6i −0.718236 + 1.24402i 0.243462 + 0.969910i \(0.421717\pi\)
−0.961698 + 0.274111i \(0.911617\pi\)
\(458\) 0 0
\(459\) 401787. + 695916.i 0.0890153 + 0.154179i
\(460\) 0 0
\(461\) 6.88393e6 1.50864 0.754318 0.656510i \(-0.227968\pi\)
0.754318 + 0.656510i \(0.227968\pi\)
\(462\) 0 0
\(463\) 6.70530e6 1.45367 0.726835 0.686812i \(-0.240991\pi\)
0.726835 + 0.686812i \(0.240991\pi\)
\(464\) 0 0
\(465\) −2.59162e6 4.48882e6i −0.555827 0.962721i
\(466\) 0 0
\(467\) −1.62836e6 + 2.82041e6i −0.345509 + 0.598439i −0.985446 0.169988i \(-0.945627\pi\)
0.639937 + 0.768427i \(0.278960\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 805584. 1.39531e6i 0.167324 0.289814i
\(472\) 0 0
\(473\) −883830. 1.53084e6i −0.181642 0.314613i
\(474\) 0 0
\(475\) 3.38080e6 0.687520
\(476\) 0 0
\(477\) −244755. −0.0492534
\(478\) 0 0
\(479\) 4.67916e6 + 8.10454e6i 0.931814 + 1.61395i 0.780219 + 0.625506i \(0.215108\pi\)
0.151595 + 0.988443i \(0.451559\pi\)
\(480\) 0 0
\(481\) −530557. + 918951.i −0.104561 + 0.181105i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −4.59502e6 + 7.95881e6i −0.887019 + 1.53636i
\(486\) 0 0
\(487\) 1.31470e6 + 2.27712e6i 0.251191 + 0.435075i 0.963854 0.266431i \(-0.0858445\pi\)
−0.712663 + 0.701506i \(0.752511\pi\)
\(488\) 0 0
\(489\) 2.13560e6 0.403876
\(490\) 0 0
\(491\) −4.81856e6 −0.902015 −0.451008 0.892520i \(-0.648935\pi\)
−0.451008 + 0.892520i \(0.648935\pi\)
\(492\) 0 0
\(493\) −2.73899e6 4.74407e6i −0.507543 0.879091i
\(494\) 0 0
\(495\) −652187. + 1.12962e6i −0.119635 + 0.207214i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 2.09549e6 3.62949e6i 0.376733 0.652521i −0.613851 0.789422i \(-0.710381\pi\)
0.990585 + 0.136900i \(0.0437139\pi\)
\(500\) 0 0
\(501\) 423180. + 732969.i 0.0753236 + 0.130464i
\(502\) 0 0
\(503\) 1.75338e6 0.308999 0.154500 0.987993i \(-0.450623\pi\)
0.154500 + 0.987993i \(0.450623\pi\)
\(504\) 0 0
\(505\) 562395. 0.0981326
\(506\) 0 0
\(507\) −819808. 1.41995e6i −0.141642 0.245331i
\(508\) 0 0
\(509\) 2.80923e6 4.86573e6i 0.480610 0.832441i −0.519142 0.854688i \(-0.673749\pi\)
0.999753 + 0.0222464i \(0.00708185\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 1.04877e6 1.81653e6i 0.175949 0.304753i
\(514\) 0 0
\(515\) 1.15608e6 + 2.00239e6i 0.192075 + 0.332683i
\(516\) 0 0
\(517\) 803844. 0.132265
\(518\) 0 0
\(519\) 4.39842e6 0.716768
\(520\) 0 0
\(521\) 5.53589e6 + 9.58845e6i 0.893498 + 1.54758i 0.835653 + 0.549258i \(0.185089\pi\)
0.0578446 + 0.998326i \(0.481577\pi\)
\(522\) 0 0
\(523\) −3.79894e6 + 6.57996e6i −0.607307 + 1.05189i 0.384375 + 0.923177i \(0.374417\pi\)
−0.991682 + 0.128710i \(0.958916\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −4.84055e6 + 8.38407e6i −0.759220 + 1.31501i
\(528\) 0 0
\(529\) −5.72588e6 9.91752e6i −0.889618 1.54086i
\(530\) 0 0
\(531\) 4.17049e6 0.641875
\(532\) 0 0
\(533\) −1.59535e6 −0.243242
\(534\) 0 0
\(535\) −6.31575e6 1.09392e7i −0.953982 1.65235i
\(536\) 0 0
\(537\) 3.65848e6 6.33668e6i 0.547476 0.948257i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 1.67539e6 2.90187e6i 0.246107 0.426270i −0.716335 0.697756i \(-0.754182\pi\)
0.962442 + 0.271486i \(0.0875152\pi\)
\(542\) 0 0
\(543\) 1.49832e6 + 2.59517e6i 0.218075 + 0.377717i
\(544\) 0 0
\(545\) −8.08480e6 −1.16595
\(546\) 0 0
\(547\) −1.00856e7 −1.44123 −0.720615 0.693335i \(-0.756140\pi\)
−0.720615 + 0.693335i \(0.756140\pi\)
\(548\) 0 0
\(549\) −539188. 933901.i −0.0763501 0.132242i
\(550\) 0 0
\(551\) −7.14950e6 + 1.23833e7i −1.00322 + 1.73763i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 720024. 1.24712e6i 0.0992235 0.171860i
\(556\) 0 0
\(557\) −6.78337e6 1.17491e7i −0.926419 1.60460i −0.789263 0.614055i \(-0.789537\pi\)
−0.137155 0.990550i \(-0.543796\pi\)
\(558\) 0 0
\(559\) 3.13023e6 0.423689
\(560\) 0 0
\(561\) 2.43626e6 0.326826
\(562\) 0 0
\(563\) −1.98494e6 3.43802e6i −0.263922 0.457127i 0.703358 0.710835i \(-0.251683\pi\)
−0.967281 + 0.253708i \(0.918350\pi\)
\(564\) 0 0
\(565\) 931185. 1.61286e6i 0.122720 0.212557i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 2.08724e6 3.61521e6i 0.270267 0.468116i −0.698663 0.715451i \(-0.746221\pi\)
0.968930 + 0.247335i \(0.0795548\pi\)
\(570\) 0 0
\(571\) −1.92833e6 3.33996e6i −0.247509 0.428698i 0.715325 0.698792i \(-0.246279\pi\)
−0.962834 + 0.270094i \(0.912945\pi\)
\(572\) 0 0
\(573\) 1.29859e6 0.165229
\(574\) 0 0
\(575\) −4.96956e6 −0.626828
\(576\) 0 0
\(577\) −1.12288e6 1.94488e6i −0.140408 0.243194i 0.787242 0.616644i \(-0.211508\pi\)
−0.927650 + 0.373450i \(0.878175\pi\)
\(578\) 0 0
\(579\) −4.02579e6 + 6.97287e6i −0.499062 + 0.864400i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −371023. + 642630.i −0.0452094 + 0.0783050i
\(584\) 0 0
\(585\) −1.15492e6 2.00037e6i −0.139528 0.241669i
\(586\) 0 0
\(587\) −6.40082e6 −0.766726 −0.383363 0.923598i \(-0.625234\pi\)
−0.383363 + 0.923598i \(0.625234\pi\)
\(588\) 0 0
\(589\) 2.52702e7 3.00138
\(590\) 0 0
\(591\) −2.69758e6 4.67234e6i −0.317691 0.550258i
\(592\) 0 0
\(593\) 5.56031e6 9.63074e6i 0.649325 1.12466i −0.333959 0.942588i \(-0.608385\pi\)
0.983284 0.182077i \(-0.0582820\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 3.50216e6 6.06592e6i 0.402162 0.696564i
\(598\) 0 0
\(599\) 6.56707e6 + 1.13745e7i 0.747833 + 1.29528i 0.948860 + 0.315698i \(0.102239\pi\)
−0.201027 + 0.979586i \(0.564428\pi\)
\(600\) 0 0
\(601\) 7.88546e6 0.890514 0.445257 0.895403i \(-0.353112\pi\)
0.445257 + 0.895403i \(0.353112\pi\)
\(602\) 0 0
\(603\) 2.50255e6 0.280279
\(604\) 0 0
\(605\) −3.30312e6 5.72117e6i −0.366890 0.635472i
\(606\) 0 0
\(607\) −3.82967e6 + 6.63319e6i −0.421881 + 0.730719i −0.996123 0.0879660i \(-0.971963\pi\)
0.574243 + 0.818685i \(0.305297\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −711738. + 1.23277e6i −0.0771289 + 0.133591i
\(612\) 0 0
\(613\) 7.62066e6 + 1.31994e7i 0.819108 + 1.41874i 0.906340 + 0.422549i \(0.138864\pi\)
−0.0872322 + 0.996188i \(0.527802\pi\)
\(614\) 0 0
\(615\) 2.16507e6 0.230825
\(616\) 0 0
\(617\) 1.35844e7 1.43657 0.718285 0.695749i \(-0.244927\pi\)
0.718285 + 0.695749i \(0.244927\pi\)
\(618\) 0 0
\(619\) 3.18709e6 + 5.52019e6i 0.334324 + 0.579066i 0.983355 0.181696i \(-0.0581588\pi\)
−0.649031 + 0.760762i \(0.724825\pi\)
\(620\) 0 0
\(621\) −1.54163e6 + 2.67018e6i −0.160417 + 0.277851i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 6.02844e6 1.04416e7i 0.617312 1.06922i
\(626\) 0 0
\(627\) −3.17965e6 5.50732e6i −0.323006 0.559463i
\(628\) 0 0
\(629\) −2.68967e6 −0.271065
\(630\) 0 0
\(631\) −1.42736e7 −1.42712 −0.713561 0.700593i \(-0.752919\pi\)
−0.713561 + 0.700593i \(0.752919\pi\)
\(632\) 0 0
\(633\) −3.64739e6 6.31747e6i −0.361804 0.626663i
\(634\) 0 0
\(635\) −1.54751e6 + 2.68037e6i −0.152300 + 0.263792i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 1.69625e6 2.93800e6i 0.164338 0.284642i
\(640\) 0 0
\(641\) 4.63480e6 + 8.02771e6i 0.445539 + 0.771697i 0.998090 0.0617828i \(-0.0196786\pi\)
−0.552550 + 0.833480i \(0.686345\pi\)
\(642\) 0 0
\(643\) −1.17375e7 −1.11956 −0.559780 0.828641i \(-0.689115\pi\)
−0.559780 + 0.828641i \(0.689115\pi\)
\(644\) 0 0
\(645\) −4.24807e6 −0.402062
\(646\) 0 0
\(647\) 5.12724e6 + 8.88063e6i 0.481529 + 0.834033i 0.999775 0.0211984i \(-0.00674818\pi\)
−0.518246 + 0.855232i \(0.673415\pi\)
\(648\) 0 0
\(649\) 6.32200e6 1.09500e7i 0.589173 1.02048i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −4.14489e6 + 7.17915e6i −0.380391 + 0.658856i −0.991118 0.132985i \(-0.957544\pi\)
0.610727 + 0.791841i \(0.290877\pi\)
\(654\) 0 0
\(655\) −2.61672e6 4.53230e6i −0.238317 0.412776i
\(656\) 0 0
\(657\) −2.80400e6 −0.253434
\(658\) 0 0
\(659\) −2.06731e7 −1.85435 −0.927174 0.374631i \(-0.877770\pi\)
−0.927174 + 0.374631i \(0.877770\pi\)
\(660\) 0 0
\(661\) 97171.2 + 168305.i 0.00865035 + 0.0149829i 0.870318 0.492490i \(-0.163913\pi\)
−0.861668 + 0.507473i \(0.830580\pi\)
\(662\) 0 0
\(663\) −2.15711e6 + 3.73623e6i −0.190585 + 0.330103i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 1.05093e7 1.82026e7i 0.914659 1.58424i
\(668\) 0 0
\(669\) −992186. 1.71852e6i −0.0857092 0.148453i
\(670\) 0 0
\(671\) −3.26940e6 −0.280325
\(672\) 0 0
\(673\) −1.14437e7 −0.973929 −0.486965 0.873422i \(-0.661896\pi\)
−0.486965 + 0.873422i \(0.661896\pi\)
\(674\) 0 0
\(675\) 428285. + 741812.i 0.0361804 + 0.0626663i
\(676\) 0 0
\(677\) 4.51869e6 7.82660e6i 0.378914 0.656299i −0.611990 0.790865i \(-0.709631\pi\)
0.990905 + 0.134567i \(0.0429642\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −6.04701e6 + 1.04737e7i −0.499658 + 0.865433i
\(682\) 0 0
\(683\) 5.59212e6 + 9.68584e6i 0.458696 + 0.794485i 0.998892 0.0470541i \(-0.0149833\pi\)
−0.540196 + 0.841539i \(0.681650\pi\)
\(684\) 0 0
\(685\) 5.64361e6 0.459548
\(686\) 0 0
\(687\) −9.38325e6 −0.758510
\(688\) 0 0
\(689\) −657020. 1.13799e6i −0.0527267 0.0913253i
\(690\) 0 0
\(691\) 2.83465e6 4.90976e6i 0.225842 0.391170i −0.730730 0.682667i \(-0.760820\pi\)
0.956572 + 0.291497i \(0.0941534\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −8.87177e6 + 1.53664e7i −0.696704 + 1.20673i
\(696\) 0 0
\(697\) −2.02192e6 3.50207e6i −0.157646 0.273050i
\(698\) 0 0
\(699\) −5.69260e6 −0.440674
\(700\) 0 0
\(701\) −1.31822e6 −0.101320 −0.0506599 0.998716i \(-0.516132\pi\)
−0.0506599 + 0.998716i \(0.516132\pi\)
\(702\) 0 0
\(703\) 3.51038e6 + 6.08016e6i 0.267896 + 0.464009i
\(704\) 0 0
\(705\) 965907. 1.67300e6i 0.0731918 0.126772i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −4.13018e6 + 7.15368e6i −0.308570 + 0.534458i −0.978050 0.208372i \(-0.933184\pi\)
0.669480 + 0.742830i \(0.266517\pi\)
\(710\) 0 0
\(711\) −3.14051e6 5.43952e6i −0.232984 0.403540i
\(712\) 0 0
\(713\) −3.71456e7 −2.73643
\(714\) 0 0
\(715\) −7.00290e6 −0.512287
\(716\) 0 0
\(717\) −3.08214e6 5.33842e6i −0.223900 0.387806i
\(718\) 0 0
\(719\) 1.13372e7 1.96365e7i 0.817865 1.41658i −0.0893870 0.995997i \(-0.528491\pi\)
0.907252 0.420587i \(-0.138176\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 34798.0 60271.9i 0.00247576 0.00428814i
\(724\) 0 0
\(725\) −2.91963e6 5.05694e6i −0.206292 0.357308i
\(726\) 0 0
\(727\) 1.93477e7 1.35767 0.678833 0.734293i \(-0.262486\pi\)
0.678833 + 0.734293i \(0.262486\pi\)
\(728\) 0 0
\(729\) 531441. 0.0370370
\(730\) 0 0
\(731\) 3.96720e6 + 6.87140e6i 0.274594 + 0.475611i
\(732\) 0 0
\(733\) 7.42922e6 1.28678e7i 0.510720 0.884593i −0.489203 0.872170i \(-0.662712\pi\)
0.999923 0.0124232i \(-0.00395452\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 3.79360e6 6.57071e6i 0.257266 0.445598i
\(738\) 0 0
\(739\) 8.84089e6 + 1.53129e7i 0.595504 + 1.03144i 0.993476 + 0.114045i \(0.0363810\pi\)
−0.397971 + 0.917398i \(0.630286\pi\)
\(740\) 0 0
\(741\) 1.12613e7 0.753428
\(742\) 0 0
\(743\) −8.28756e6 −0.550750 −0.275375 0.961337i \(-0.588802\pi\)
−0.275375 + 0.961337i \(0.588802\pi\)
\(744\) 0 0
\(745\) −5.65735e6 9.79882e6i −0.373442 0.646820i
\(746\) 0 0
\(747\) 4.08678e6 7.07850e6i 0.267966 0.464130i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 1.15682e7 2.00368e7i 0.748457 1.29637i −0.200104 0.979775i \(-0.564128\pi\)
0.948562 0.316592i \(-0.102539\pi\)
\(752\) 0 0
\(753\) −4.93261e6 8.54354e6i −0.317022 0.549098i
\(754\) 0 0
\(755\) 1.17375e6 0.0749389
\(756\) 0 0
\(757\) −1.95475e7 −1.23980 −0.619900 0.784681i \(-0.712827\pi\)
−0.619900 + 0.784681i \(0.712827\pi\)
\(758\) 0 0
\(759\) 4.67388e6 + 8.09540e6i 0.294492 + 0.510075i
\(760\) 0 0
\(761\) 3.91233e6 6.77635e6i 0.244891 0.424164i −0.717210 0.696857i \(-0.754581\pi\)
0.962101 + 0.272693i \(0.0879144\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 2.92744e6 5.07047e6i 0.180857 0.313253i
\(766\) 0 0
\(767\) 1.11952e7 + 1.93907e7i 0.687139 + 1.19016i
\(768\) 0 0
\(769\) 8.27325e6 0.504499 0.252250 0.967662i \(-0.418830\pi\)
0.252250 + 0.967662i \(0.418830\pi\)
\(770\) 0 0
\(771\) 6.43428e6 0.389820
\(772\) 0 0
\(773\) −9.41844e6 1.63132e7i −0.566931 0.981953i −0.996867 0.0790941i \(-0.974797\pi\)
0.429936 0.902859i \(-0.358536\pi\)
\(774\) 0 0
\(775\) −5.15978e6 + 8.93700e6i −0.308587 + 0.534488i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −5.27775e6 + 9.14133e6i −0.311605 + 0.539717i
\(780\) 0 0
\(781\) −5.14267e6 8.90737e6i −0.301690 0.522543i
\(782\) 0 0
\(783\) −3.62284e6 −0.211176
\(784\) 0 0
\(785\) −1.17390e7 −0.679920
\(786\) 0 0