Properties

Label 588.6.i.m.361.1
Level $588$
Weight $6$
Character 588.361
Analytic conductor $94.306$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [588,6,Mod(361,588)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(588, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("588.361");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 588.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(94.3056860500\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{7081})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 1771x^{2} + 1770x + 3132900 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 84)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 361.1
Root \(21.2872 + 36.8705i\) of defining polynomial
Character \(\chi\) \(=\) 588.361
Dual form 588.6.i.m.373.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(4.50000 - 7.79423i) q^{3} +(-9.28717 - 16.0858i) q^{5} +(-40.5000 - 70.1481i) q^{9} +O(q^{10})\) \(q+(4.50000 - 7.79423i) q^{3} +(-9.28717 - 16.0858i) q^{5} +(-40.5000 - 70.1481i) q^{9} +(80.7128 - 139.799i) q^{11} -14.1283 q^{13} -167.169 q^{15} +(-382.851 + 663.118i) q^{17} +(707.146 + 1224.81i) q^{19} +(-2092.72 - 3624.69i) q^{23} +(1390.00 - 2407.55i) q^{25} -729.000 q^{27} -4202.60 q^{29} +(-1193.68 + 2067.51i) q^{31} +(-726.415 - 1258.19i) q^{33} +(336.469 + 582.782i) q^{37} +(-63.5774 + 110.119i) q^{39} +4173.45 q^{41} -5430.94 q^{43} +(-752.261 + 1302.95i) q^{45} +(3151.34 + 5458.28i) q^{47} +(3445.66 + 5968.06i) q^{51} +(-8208.34 + 14217.3i) q^{53} -2998.37 q^{55} +12728.6 q^{57} +(1983.24 - 3435.08i) q^{59} +(-25169.4 - 43594.6i) q^{61} +(131.212 + 227.266i) q^{65} +(-6822.63 + 11817.1i) q^{67} -37668.9 q^{69} -83957.2 q^{71} +(-14289.2 + 24749.6i) q^{73} +(-12510.0 - 21667.9i) q^{75} +(29977.7 + 51923.0i) q^{79} +(-3280.50 + 5681.99i) q^{81} +61583.0 q^{83} +14222.4 q^{85} +(-18911.7 + 32756.0i) q^{87} +(21149.2 + 36631.4i) q^{89} +(10743.1 + 18607.6i) q^{93} +(13134.8 - 22750.1i) q^{95} -44638.1 q^{97} -13075.5 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 18 q^{3} + 47 q^{5} - 162 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 18 q^{3} + 47 q^{5} - 162 q^{9} + 407 q^{11} - 898 q^{13} + 846 q^{15} - 1868 q^{17} - 1463 q^{19} + 44 q^{23} + 1605 q^{25} - 2916 q^{27} + 1534 q^{29} - 11170 q^{31} - 3663 q^{33} + 3113 q^{37} - 4041 q^{39} + 15684 q^{41} - 25258 q^{43} + 3807 q^{45} + 9576 q^{47} + 16812 q^{51} - 13395 q^{53} + 26210 q^{55} - 26334 q^{57} - 47521 q^{59} - 63652 q^{61} - 28254 q^{65} - 44541 q^{67} + 792 q^{69} - 251680 q^{71} + 6039 q^{73} - 14445 q^{75} - 17588 q^{79} - 13122 q^{81} - 78650 q^{83} - 116120 q^{85} + 6903 q^{87} + 83082 q^{89} + 100530 q^{93} + 214946 q^{95} - 369570 q^{97} - 65934 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/588\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(295\) \(493\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 4.50000 7.79423i 0.288675 0.500000i
\(4\) 0 0
\(5\) −9.28717 16.0858i −0.166134 0.287752i 0.770923 0.636928i \(-0.219795\pi\)
−0.937057 + 0.349175i \(0.886462\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −40.5000 70.1481i −0.166667 0.288675i
\(10\) 0 0
\(11\) 80.7128 139.799i 0.201123 0.348355i −0.747768 0.663960i \(-0.768874\pi\)
0.948890 + 0.315606i \(0.102208\pi\)
\(12\) 0 0
\(13\) −14.1283 −0.0231863 −0.0115932 0.999933i \(-0.503690\pi\)
−0.0115932 + 0.999933i \(0.503690\pi\)
\(14\) 0 0
\(15\) −167.169 −0.191835
\(16\) 0 0
\(17\) −382.851 + 663.118i −0.321298 + 0.556504i −0.980756 0.195237i \(-0.937452\pi\)
0.659458 + 0.751741i \(0.270786\pi\)
\(18\) 0 0
\(19\) 707.146 + 1224.81i 0.449392 + 0.778369i 0.998346 0.0574830i \(-0.0183075\pi\)
−0.548955 + 0.835852i \(0.684974\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −2092.72 3624.69i −0.824880 1.42873i −0.902011 0.431713i \(-0.857909\pi\)
0.0771305 0.997021i \(-0.475424\pi\)
\(24\) 0 0
\(25\) 1390.00 2407.55i 0.444799 0.770415i
\(26\) 0 0
\(27\) −729.000 −0.192450
\(28\) 0 0
\(29\) −4202.60 −0.927947 −0.463974 0.885849i \(-0.653577\pi\)
−0.463974 + 0.885849i \(0.653577\pi\)
\(30\) 0 0
\(31\) −1193.68 + 2067.51i −0.223091 + 0.386405i −0.955745 0.294196i \(-0.904948\pi\)
0.732654 + 0.680601i \(0.238281\pi\)
\(32\) 0 0
\(33\) −726.415 1258.19i −0.116118 0.201123i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 336.469 + 582.782i 0.0404056 + 0.0699845i 0.885521 0.464599i \(-0.153802\pi\)
−0.845115 + 0.534584i \(0.820468\pi\)
\(38\) 0 0
\(39\) −63.5774 + 110.119i −0.00669331 + 0.0115932i
\(40\) 0 0
\(41\) 4173.45 0.387735 0.193868 0.981028i \(-0.437897\pi\)
0.193868 + 0.981028i \(0.437897\pi\)
\(42\) 0 0
\(43\) −5430.94 −0.447923 −0.223962 0.974598i \(-0.571899\pi\)
−0.223962 + 0.974598i \(0.571899\pi\)
\(44\) 0 0
\(45\) −752.261 + 1302.95i −0.0553780 + 0.0959175i
\(46\) 0 0
\(47\) 3151.34 + 5458.28i 0.208090 + 0.360422i 0.951113 0.308844i \(-0.0999421\pi\)
−0.743023 + 0.669266i \(0.766609\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 3445.66 + 5968.06i 0.185501 + 0.321298i
\(52\) 0 0
\(53\) −8208.34 + 14217.3i −0.401389 + 0.695226i −0.993894 0.110341i \(-0.964806\pi\)
0.592505 + 0.805567i \(0.298139\pi\)
\(54\) 0 0
\(55\) −2998.37 −0.133653
\(56\) 0 0
\(57\) 12728.6 0.518913
\(58\) 0 0
\(59\) 1983.24 3435.08i 0.0741731 0.128472i −0.826553 0.562858i \(-0.809702\pi\)
0.900726 + 0.434387i \(0.143035\pi\)
\(60\) 0 0
\(61\) −25169.4 43594.6i −0.866059 1.50006i −0.865992 0.500058i \(-0.833312\pi\)
−6.72450e−5 1.00000i \(-0.500021\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 131.212 + 227.266i 0.00385203 + 0.00667192i
\(66\) 0 0
\(67\) −6822.63 + 11817.1i −0.185680 + 0.321607i −0.943805 0.330502i \(-0.892782\pi\)
0.758126 + 0.652109i \(0.226115\pi\)
\(68\) 0 0
\(69\) −37668.9 −0.952490
\(70\) 0 0
\(71\) −83957.2 −1.97657 −0.988284 0.152624i \(-0.951228\pi\)
−0.988284 + 0.152624i \(0.951228\pi\)
\(72\) 0 0
\(73\) −14289.2 + 24749.6i −0.313834 + 0.543576i −0.979189 0.202951i \(-0.934947\pi\)
0.665355 + 0.746527i \(0.268280\pi\)
\(74\) 0 0
\(75\) −12510.0 21667.9i −0.256805 0.444799i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 29977.7 + 51923.0i 0.540420 + 0.936034i 0.998880 + 0.0473193i \(0.0150678\pi\)
−0.458460 + 0.888715i \(0.651599\pi\)
\(80\) 0 0
\(81\) −3280.50 + 5681.99i −0.0555556 + 0.0962250i
\(82\) 0 0
\(83\) 61583.0 0.981219 0.490610 0.871380i \(-0.336774\pi\)
0.490610 + 0.871380i \(0.336774\pi\)
\(84\) 0 0
\(85\) 14222.4 0.213514
\(86\) 0 0
\(87\) −18911.7 + 32756.0i −0.267875 + 0.463974i
\(88\) 0 0
\(89\) 21149.2 + 36631.4i 0.283021 + 0.490206i 0.972127 0.234454i \(-0.0753301\pi\)
−0.689107 + 0.724660i \(0.741997\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 10743.1 + 18607.6i 0.128802 + 0.223091i
\(94\) 0 0
\(95\) 13134.8 22750.1i 0.149318 0.258627i
\(96\) 0 0
\(97\) −44638.1 −0.481700 −0.240850 0.970562i \(-0.577426\pi\)
−0.240850 + 0.970562i \(0.577426\pi\)
\(98\) 0 0
\(99\) −13075.5 −0.134082
\(100\) 0 0
\(101\) −55962.2 + 96929.4i −0.545873 + 0.945480i 0.452678 + 0.891674i \(0.350469\pi\)
−0.998551 + 0.0538058i \(0.982865\pi\)
\(102\) 0 0
\(103\) 83474.6 + 144582.i 0.775285 + 1.34283i 0.934634 + 0.355610i \(0.115727\pi\)
−0.159350 + 0.987222i \(0.550940\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −51492.8 89188.2i −0.434798 0.753092i 0.562481 0.826810i \(-0.309847\pi\)
−0.997279 + 0.0737182i \(0.976513\pi\)
\(108\) 0 0
\(109\) 68910.6 119357.i 0.555546 0.962233i −0.442315 0.896860i \(-0.645843\pi\)
0.997861 0.0653736i \(-0.0208239\pi\)
\(110\) 0 0
\(111\) 6056.45 0.0466563
\(112\) 0 0
\(113\) −129967. −0.957495 −0.478748 0.877953i \(-0.658909\pi\)
−0.478748 + 0.877953i \(0.658909\pi\)
\(114\) 0 0
\(115\) −38870.8 + 67326.3i −0.274081 + 0.474723i
\(116\) 0 0
\(117\) 572.196 + 991.073i 0.00386439 + 0.00669331i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 67496.4 + 116907.i 0.419099 + 0.725901i
\(122\) 0 0
\(123\) 18780.5 32528.8i 0.111929 0.193868i
\(124\) 0 0
\(125\) −109681. −0.627853
\(126\) 0 0
\(127\) −243265. −1.33835 −0.669177 0.743103i \(-0.733353\pi\)
−0.669177 + 0.743103i \(0.733353\pi\)
\(128\) 0 0
\(129\) −24439.2 + 42330.0i −0.129304 + 0.223962i
\(130\) 0 0
\(131\) 97167.8 + 168300.i 0.494703 + 0.856850i 0.999981 0.00610601i \(-0.00194361\pi\)
−0.505279 + 0.862956i \(0.668610\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 6770.35 + 11726.6i 0.0319725 + 0.0553780i
\(136\) 0 0
\(137\) 1546.85 2679.22i 0.00704121 0.0121957i −0.862483 0.506085i \(-0.831092\pi\)
0.869525 + 0.493890i \(0.164425\pi\)
\(138\) 0 0
\(139\) −22600.4 −0.0992155 −0.0496078 0.998769i \(-0.515797\pi\)
−0.0496078 + 0.998769i \(0.515797\pi\)
\(140\) 0 0
\(141\) 56724.1 0.240281
\(142\) 0 0
\(143\) −1140.34 + 1975.12i −0.00466329 + 0.00807706i
\(144\) 0 0
\(145\) 39030.3 + 67602.4i 0.154164 + 0.267019i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 176397. + 305529.i 0.650917 + 1.12742i 0.982901 + 0.184137i \(0.0589489\pi\)
−0.331983 + 0.943285i \(0.607718\pi\)
\(150\) 0 0
\(151\) −72548.2 + 125657.i −0.258931 + 0.448482i −0.965956 0.258707i \(-0.916704\pi\)
0.707025 + 0.707189i \(0.250037\pi\)
\(152\) 0 0
\(153\) 62021.9 0.214199
\(154\) 0 0
\(155\) 44343.5 0.148252
\(156\) 0 0
\(157\) −108948. + 188703.i −0.352751 + 0.610983i −0.986730 0.162367i \(-0.948087\pi\)
0.633979 + 0.773350i \(0.281421\pi\)
\(158\) 0 0
\(159\) 73875.0 + 127955.i 0.231742 + 0.401389i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 161055. + 278956.i 0.474795 + 0.822370i 0.999583 0.0288633i \(-0.00918874\pi\)
−0.524788 + 0.851233i \(0.675855\pi\)
\(164\) 0 0
\(165\) −13492.7 + 23370.0i −0.0385823 + 0.0668266i
\(166\) 0 0
\(167\) −707392. −1.96277 −0.981384 0.192056i \(-0.938485\pi\)
−0.981384 + 0.192056i \(0.938485\pi\)
\(168\) 0 0
\(169\) −371093. −0.999462
\(170\) 0 0
\(171\) 57278.8 99209.8i 0.149797 0.259456i
\(172\) 0 0
\(173\) −85253.7 147664.i −0.216570 0.375110i 0.737187 0.675689i \(-0.236154\pi\)
−0.953757 + 0.300579i \(0.902820\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −17849.2 30915.7i −0.0428238 0.0741731i
\(178\) 0 0
\(179\) 207703. 359752.i 0.484519 0.839211i −0.515323 0.856996i \(-0.672328\pi\)
0.999842 + 0.0177851i \(0.00566148\pi\)
\(180\) 0 0
\(181\) 1162.38 0.00263726 0.00131863 0.999999i \(-0.499580\pi\)
0.00131863 + 0.999999i \(0.499580\pi\)
\(182\) 0 0
\(183\) −453048. −1.00004
\(184\) 0 0
\(185\) 6249.70 10824.8i 0.0134255 0.0232536i
\(186\) 0 0
\(187\) 61802.0 + 107044.i 0.129241 + 0.223851i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 372807. + 645721.i 0.739436 + 1.28074i 0.952749 + 0.303757i \(0.0982412\pi\)
−0.213313 + 0.976984i \(0.568425\pi\)
\(192\) 0 0
\(193\) 99186.5 171796.i 0.191672 0.331986i −0.754132 0.656722i \(-0.771942\pi\)
0.945805 + 0.324737i \(0.105276\pi\)
\(194\) 0 0
\(195\) 2361.82 0.00444795
\(196\) 0 0
\(197\) −469368. −0.861684 −0.430842 0.902427i \(-0.641783\pi\)
−0.430842 + 0.902427i \(0.641783\pi\)
\(198\) 0 0
\(199\) −96796.7 + 167657.i −0.173272 + 0.300116i −0.939562 0.342379i \(-0.888767\pi\)
0.766290 + 0.642495i \(0.222101\pi\)
\(200\) 0 0
\(201\) 61403.7 + 106354.i 0.107202 + 0.185680i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −38759.5 67133.4i −0.0644160 0.111572i
\(206\) 0 0
\(207\) −169510. + 293600.i −0.274960 + 0.476245i
\(208\) 0 0
\(209\) 228303. 0.361531
\(210\) 0 0
\(211\) −298066. −0.460900 −0.230450 0.973084i \(-0.574020\pi\)
−0.230450 + 0.973084i \(0.574020\pi\)
\(212\) 0 0
\(213\) −377807. + 654381.i −0.570586 + 0.988284i
\(214\) 0 0
\(215\) 50438.0 + 87361.3i 0.0744153 + 0.128891i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 128602. + 222746.i 0.181192 + 0.313834i
\(220\) 0 0
\(221\) 5409.04 9368.73i 0.00744971 0.0129033i
\(222\) 0 0
\(223\) 187215. 0.252103 0.126051 0.992024i \(-0.459770\pi\)
0.126051 + 0.992024i \(0.459770\pi\)
\(224\) 0 0
\(225\) −225180. −0.296533
\(226\) 0 0
\(227\) −669482. + 1.15958e6i −0.862332 + 1.49360i 0.00734045 + 0.999973i \(0.497663\pi\)
−0.869672 + 0.493630i \(0.835670\pi\)
\(228\) 0 0
\(229\) 475828. + 824158.i 0.599600 + 1.03854i 0.992880 + 0.119119i \(0.0380069\pi\)
−0.393280 + 0.919419i \(0.628660\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −371709. 643820.i −0.448553 0.776917i 0.549739 0.835336i \(-0.314727\pi\)
−0.998292 + 0.0584197i \(0.981394\pi\)
\(234\) 0 0
\(235\) 58534.0 101384.i 0.0691415 0.119757i
\(236\) 0 0
\(237\) 539599. 0.624023
\(238\) 0 0
\(239\) −625847. −0.708718 −0.354359 0.935110i \(-0.615301\pi\)
−0.354359 + 0.935110i \(0.615301\pi\)
\(240\) 0 0
\(241\) −666411. + 1.15426e6i −0.739094 + 1.28015i 0.213810 + 0.976875i \(0.431413\pi\)
−0.952904 + 0.303273i \(0.901921\pi\)
\(242\) 0 0
\(243\) 29524.5 + 51137.9i 0.0320750 + 0.0555556i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −9990.77 17304.5i −0.0104197 0.0180475i
\(248\) 0 0
\(249\) 277124. 479992.i 0.283254 0.490610i
\(250\) 0 0
\(251\) −1.78809e6 −1.79145 −0.895726 0.444606i \(-0.853344\pi\)
−0.895726 + 0.444606i \(0.853344\pi\)
\(252\) 0 0
\(253\) −675636. −0.663608
\(254\) 0 0
\(255\) 64000.9 110853.i 0.0616362 0.106757i
\(256\) 0 0
\(257\) 254462. + 440741.i 0.240320 + 0.416247i 0.960805 0.277224i \(-0.0894142\pi\)
−0.720485 + 0.693470i \(0.756081\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 170205. + 294804.i 0.154658 + 0.267875i
\(262\) 0 0
\(263\) 168247. 291412.i 0.149988 0.259787i −0.781235 0.624237i \(-0.785410\pi\)
0.931223 + 0.364450i \(0.118743\pi\)
\(264\) 0 0
\(265\) 304929. 0.266737
\(266\) 0 0
\(267\) 380685. 0.326804
\(268\) 0 0
\(269\) 747765. 1.29517e6i 0.630064 1.09130i −0.357475 0.933923i \(-0.616362\pi\)
0.987538 0.157379i \(-0.0503045\pi\)
\(270\) 0 0
\(271\) −888484. 1.53890e6i −0.734897 1.27288i −0.954768 0.297350i \(-0.903897\pi\)
0.219871 0.975529i \(-0.429436\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −224381. 388640.i −0.178918 0.309896i
\(276\) 0 0
\(277\) −440632. + 763198.i −0.345046 + 0.597637i −0.985362 0.170474i \(-0.945470\pi\)
0.640316 + 0.768112i \(0.278803\pi\)
\(278\) 0 0
\(279\) 193375. 0.148727
\(280\) 0 0
\(281\) −1.13932e6 −0.860756 −0.430378 0.902649i \(-0.641620\pi\)
−0.430378 + 0.902649i \(0.641620\pi\)
\(282\) 0 0
\(283\) −448733. + 777228.i −0.333059 + 0.576876i −0.983110 0.183015i \(-0.941414\pi\)
0.650051 + 0.759891i \(0.274748\pi\)
\(284\) 0 0
\(285\) −118213. 204751.i −0.0862090 0.149318i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 416778. + 721881.i 0.293535 + 0.508418i
\(290\) 0 0
\(291\) −200872. + 347920.i −0.139055 + 0.240850i
\(292\) 0 0
\(293\) 1.84614e6 1.25631 0.628153 0.778090i \(-0.283811\pi\)
0.628153 + 0.778090i \(0.283811\pi\)
\(294\) 0 0
\(295\) −73674.9 −0.0492907
\(296\) 0 0
\(297\) −58839.7 + 101913.i −0.0387061 + 0.0670409i
\(298\) 0 0
\(299\) 29566.5 + 51210.8i 0.0191259 + 0.0331271i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 503660. + 872365.i 0.315160 + 0.545873i
\(304\) 0 0
\(305\) −467504. + 809741.i −0.287764 + 0.498421i
\(306\) 0 0
\(307\) −1.38565e6 −0.839089 −0.419544 0.907735i \(-0.637810\pi\)
−0.419544 + 0.907735i \(0.637810\pi\)
\(308\) 0 0
\(309\) 1.50254e6 0.895221
\(310\) 0 0
\(311\) 1.15624e6 2.00267e6i 0.677871 1.17411i −0.297750 0.954644i \(-0.596236\pi\)
0.975621 0.219463i \(-0.0704305\pi\)
\(312\) 0 0
\(313\) −584400. 1.01221e6i −0.337171 0.583996i 0.646729 0.762720i \(-0.276137\pi\)
−0.983899 + 0.178724i \(0.942803\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −717166. 1.24217e6i −0.400840 0.694276i 0.592987 0.805212i \(-0.297948\pi\)
−0.993828 + 0.110936i \(0.964615\pi\)
\(318\) 0 0
\(319\) −339204. + 587519.i −0.186631 + 0.323255i
\(320\) 0 0
\(321\) −926871. −0.502061
\(322\) 0 0
\(323\) −1.08293e6 −0.577554
\(324\) 0 0
\(325\) −19638.3 + 34014.5i −0.0103132 + 0.0178631i
\(326\) 0 0
\(327\) −620195. 1.07421e6i −0.320744 0.555546i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 1.11709e6 + 1.93486e6i 0.560426 + 0.970686i 0.997459 + 0.0712406i \(0.0226958\pi\)
−0.437033 + 0.899445i \(0.643971\pi\)
\(332\) 0 0
\(333\) 27254.0 47205.4i 0.0134685 0.0233282i
\(334\) 0 0
\(335\) 253452. 0.123391
\(336\) 0 0
\(337\) 3.08787e6 1.48110 0.740549 0.672002i \(-0.234565\pi\)
0.740549 + 0.672002i \(0.234565\pi\)
\(338\) 0 0
\(339\) −584851. + 1.01299e6i −0.276405 + 0.478748i
\(340\) 0 0
\(341\) 192690. + 333749.i 0.0897373 + 0.155429i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 349838. + 605936.i 0.158241 + 0.274081i
\(346\) 0 0
\(347\) 1.55877e6 2.69987e6i 0.694959 1.20370i −0.275236 0.961377i \(-0.588756\pi\)
0.970195 0.242327i \(-0.0779107\pi\)
\(348\) 0 0
\(349\) −613026. −0.269411 −0.134706 0.990886i \(-0.543009\pi\)
−0.134706 + 0.990886i \(0.543009\pi\)
\(350\) 0 0
\(351\) 10299.5 0.00446221
\(352\) 0 0
\(353\) 1.89185e6 3.27678e6i 0.808071 1.39962i −0.106127 0.994353i \(-0.533845\pi\)
0.914198 0.405268i \(-0.132822\pi\)
\(354\) 0 0
\(355\) 779724. + 1.35052e6i 0.328375 + 0.568762i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −1.86107e6 3.22346e6i −0.762125 1.32004i −0.941753 0.336304i \(-0.890823\pi\)
0.179629 0.983734i \(-0.442510\pi\)
\(360\) 0 0
\(361\) 237940. 412123.i 0.0960945 0.166441i
\(362\) 0 0
\(363\) 1.21493e6 0.483934
\(364\) 0 0
\(365\) 530824. 0.208554
\(366\) 0 0
\(367\) 2.06898e6 3.58357e6i 0.801845 1.38884i −0.116555 0.993184i \(-0.537185\pi\)
0.918400 0.395652i \(-0.129481\pi\)
\(368\) 0 0
\(369\) −169025. 292759.i −0.0646225 0.111929i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −1.47209e6 2.54973e6i −0.547851 0.948905i −0.998422 0.0561644i \(-0.982113\pi\)
0.450571 0.892741i \(-0.351220\pi\)
\(374\) 0 0
\(375\) −493566. + 854882.i −0.181245 + 0.313926i
\(376\) 0 0
\(377\) 59375.7 0.0215157
\(378\) 0 0
\(379\) 2.97504e6 1.06388 0.531942 0.846781i \(-0.321462\pi\)
0.531942 + 0.846781i \(0.321462\pi\)
\(380\) 0 0
\(381\) −1.09469e6 + 1.89606e6i −0.386349 + 0.669177i
\(382\) 0 0
\(383\) 1.03052e6 + 1.78491e6i 0.358971 + 0.621756i 0.987789 0.155796i \(-0.0497944\pi\)
−0.628818 + 0.777552i \(0.716461\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 219953. + 380970.i 0.0746539 + 0.129304i
\(388\) 0 0
\(389\) −1.04542e6 + 1.81072e6i −0.350281 + 0.606705i −0.986299 0.164970i \(-0.947247\pi\)
0.636018 + 0.771675i \(0.280581\pi\)
\(390\) 0 0
\(391\) 3.20480e6 1.06013
\(392\) 0 0
\(393\) 1.74902e6 0.571233
\(394\) 0 0
\(395\) 556817. 964435.i 0.179564 0.311014i
\(396\) 0 0
\(397\) 585647. + 1.01437e6i 0.186492 + 0.323013i 0.944078 0.329722i \(-0.106955\pi\)
−0.757586 + 0.652735i \(0.773622\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −1.54574e6 2.67731e6i −0.480039 0.831452i 0.519699 0.854349i \(-0.326044\pi\)
−0.999738 + 0.0228979i \(0.992711\pi\)
\(402\) 0 0
\(403\) 16864.6 29210.4i 0.00517266 0.00895930i
\(404\) 0 0
\(405\) 121866. 0.0369187
\(406\) 0 0
\(407\) 108630. 0.0325059
\(408\) 0 0
\(409\) −2.17426e6 + 3.76593e6i −0.642693 + 1.11318i 0.342136 + 0.939650i \(0.388850\pi\)
−0.984829 + 0.173527i \(0.944484\pi\)
\(410\) 0 0
\(411\) −13921.7 24113.0i −0.00406524 0.00704121i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −571932. 990616.i −0.163014 0.282348i
\(416\) 0 0
\(417\) −101702. + 176153.i −0.0286411 + 0.0496078i
\(418\) 0 0
\(419\) −3.13660e6 −0.872818 −0.436409 0.899748i \(-0.643750\pi\)
−0.436409 + 0.899748i \(0.643750\pi\)
\(420\) 0 0
\(421\) 6.02560e6 1.65690 0.828448 0.560066i \(-0.189224\pi\)
0.828448 + 0.560066i \(0.189224\pi\)
\(422\) 0 0
\(423\) 255258. 442120.i 0.0693632 0.120141i
\(424\) 0 0
\(425\) 1.06432e6 + 1.84346e6i 0.285826 + 0.495065i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 10263.0 + 17776.1i 0.00269235 + 0.00466329i
\(430\) 0 0
\(431\) 1.14931e6 1.99067e6i 0.298020 0.516186i −0.677663 0.735373i \(-0.737007\pi\)
0.975683 + 0.219187i \(0.0703404\pi\)
\(432\) 0 0
\(433\) 5.62982e6 1.44303 0.721515 0.692399i \(-0.243446\pi\)
0.721515 + 0.692399i \(0.243446\pi\)
\(434\) 0 0
\(435\) 702545. 0.178013
\(436\) 0 0
\(437\) 2.95971e6 5.12637e6i 0.741388 1.28412i
\(438\) 0 0
\(439\) −2.72482e6 4.71952e6i −0.674801 1.16879i −0.976527 0.215396i \(-0.930896\pi\)
0.301725 0.953395i \(-0.402437\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −2.85467e6 4.94443e6i −0.691108 1.19703i −0.971475 0.237142i \(-0.923789\pi\)
0.280367 0.959893i \(-0.409544\pi\)
\(444\) 0 0
\(445\) 392832. 680405.i 0.0940387 0.162880i
\(446\) 0 0
\(447\) 3.17515e6 0.751615
\(448\) 0 0
\(449\) 5.38234e6 1.25996 0.629978 0.776613i \(-0.283064\pi\)
0.629978 + 0.776613i \(0.283064\pi\)
\(450\) 0 0
\(451\) 336851. 583442.i 0.0779823 0.135069i
\(452\) 0 0
\(453\) 652934. + 1.13092e6i 0.149494 + 0.258931i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 3.19525e6 + 5.53434e6i 0.715673 + 1.23958i 0.962699 + 0.270573i \(0.0872133\pi\)
−0.247026 + 0.969009i \(0.579453\pi\)
\(458\) 0 0
\(459\) 279099. 483413.i 0.0618338 0.107099i
\(460\) 0 0
\(461\) −7.34511e6 −1.60970 −0.804851 0.593476i \(-0.797755\pi\)
−0.804851 + 0.593476i \(0.797755\pi\)
\(462\) 0 0
\(463\) −4.63416e6 −1.00466 −0.502329 0.864677i \(-0.667523\pi\)
−0.502329 + 0.864677i \(0.667523\pi\)
\(464\) 0 0
\(465\) 199546. 345623.i 0.0427966 0.0741259i
\(466\) 0 0
\(467\) −3.81598e6 6.60946e6i −0.809680 1.40241i −0.913086 0.407768i \(-0.866307\pi\)
0.103406 0.994639i \(-0.467026\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 980529. + 1.69833e6i 0.203661 + 0.352751i
\(472\) 0 0
\(473\) −438346. + 759238.i −0.0900875 + 0.156036i
\(474\) 0 0
\(475\) 3.93172e6 0.799556
\(476\) 0 0
\(477\) 1.32975e6 0.267593
\(478\) 0 0
\(479\) 4.80631e6 8.32477e6i 0.957135 1.65781i 0.227728 0.973725i \(-0.426870\pi\)
0.729406 0.684081i \(-0.239796\pi\)
\(480\) 0 0
\(481\) −4753.74 8233.72i −0.000936856 0.00162268i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 414562. + 718042.i 0.0800267 + 0.138610i
\(486\) 0 0
\(487\) −1.40112e6 + 2.42680e6i −0.267702 + 0.463673i −0.968268 0.249914i \(-0.919598\pi\)
0.700566 + 0.713588i \(0.252931\pi\)
\(488\) 0 0
\(489\) 2.89900e6 0.548246
\(490\) 0 0
\(491\) 4.82008e6 0.902299 0.451149 0.892448i \(-0.351014\pi\)
0.451149 + 0.892448i \(0.351014\pi\)
\(492\) 0 0
\(493\) 1.60897e6 2.78682e6i 0.298148 0.516407i
\(494\) 0 0
\(495\) 121434. + 210330.i 0.0222755 + 0.0385823i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −2.29829e6 3.98076e6i −0.413194 0.715673i 0.582043 0.813158i \(-0.302253\pi\)
−0.995237 + 0.0974853i \(0.968920\pi\)
\(500\) 0 0
\(501\) −3.18326e6 + 5.51358e6i −0.566602 + 0.981384i
\(502\) 0 0
\(503\) −1.80055e6 −0.317311 −0.158656 0.987334i \(-0.550716\pi\)
−0.158656 + 0.987334i \(0.550716\pi\)
\(504\) 0 0
\(505\) 2.07892e6 0.362752
\(506\) 0 0
\(507\) −1.66992e6 + 2.89239e6i −0.288520 + 0.499731i
\(508\) 0 0
\(509\) −2.41602e6 4.18467e6i −0.413339 0.715924i 0.581913 0.813251i \(-0.302304\pi\)
−0.995253 + 0.0973263i \(0.968971\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −515509. 892888.i −0.0864854 0.149797i
\(514\) 0 0
\(515\) 1.55048e6 2.68552e6i 0.257602 0.446180i
\(516\) 0 0
\(517\) 1.01741e6 0.167406
\(518\) 0 0
\(519\) −1.53457e6 −0.250073
\(520\) 0 0
\(521\) 1.40562e6 2.43461e6i 0.226869 0.392948i −0.730010 0.683437i \(-0.760484\pi\)
0.956878 + 0.290489i \(0.0938178\pi\)
\(522\) 0 0
\(523\) −1.22715e6 2.12548e6i −0.196174 0.339784i 0.751110 0.660177i \(-0.229519\pi\)
−0.947285 + 0.320392i \(0.896185\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −914000. 1.58309e6i −0.143357 0.248302i
\(528\) 0 0
\(529\) −5.54076e6 + 9.59687e6i −0.860855 + 1.49104i
\(530\) 0 0
\(531\) −321286. −0.0494487
\(532\) 0 0
\(533\) −58963.7 −0.00899015
\(534\) 0 0
\(535\) −956445. + 1.65661e6i −0.144469 + 0.250228i
\(536\) 0 0
\(537\) −1.86933e6 3.23777e6i −0.279737 0.484519i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 579232. + 1.00326e6i 0.0850862 + 0.147374i 0.905428 0.424500i \(-0.139550\pi\)
−0.820342 + 0.571874i \(0.806217\pi\)
\(542\) 0 0
\(543\) 5230.72 9059.87i 0.000761310 0.00131863i
\(544\) 0 0
\(545\) −2.55994e6 −0.369180
\(546\) 0 0
\(547\) 4.63638e6 0.662538 0.331269 0.943536i \(-0.392523\pi\)
0.331269 + 0.943536i \(0.392523\pi\)
\(548\) 0 0
\(549\) −2.03872e6 + 3.53116e6i −0.288686 + 0.500019i
\(550\) 0 0
\(551\) −2.97185e6 5.14740e6i −0.417012 0.722285i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −56247.3 97423.1i −0.00775120 0.0134255i
\(556\) 0 0
\(557\) −135916. + 235414.i −0.0185624 + 0.0321510i −0.875157 0.483838i \(-0.839242\pi\)
0.856595 + 0.515989i \(0.172576\pi\)
\(558\) 0 0
\(559\) 76730.0 0.0103857
\(560\) 0 0
\(561\) 1.11244e6 0.149234
\(562\) 0 0
\(563\) 1.69122e6 2.92928e6i 0.224869 0.389485i −0.731411 0.681937i \(-0.761138\pi\)
0.956280 + 0.292452i \(0.0944712\pi\)
\(564\) 0 0
\(565\) 1.20702e6 + 2.09063e6i 0.159072 + 0.275522i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −6.56130e6 1.13645e7i −0.849590 1.47153i −0.881574 0.472045i \(-0.843516\pi\)
0.0319843 0.999488i \(-0.489817\pi\)
\(570\) 0 0
\(571\) 7.35811e6 1.27446e7i 0.944443 1.63582i 0.187581 0.982249i \(-0.439935\pi\)
0.756862 0.653575i \(-0.226731\pi\)
\(572\) 0 0
\(573\) 6.71053e6 0.853828
\(574\) 0 0
\(575\) −1.16355e7 −1.46762
\(576\) 0 0
\(577\) −1.94148e6 + 3.36273e6i −0.242769 + 0.420487i −0.961502 0.274798i \(-0.911389\pi\)
0.718733 + 0.695286i \(0.244722\pi\)
\(578\) 0 0
\(579\) −892678. 1.54616e6i −0.110662 0.191672i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 1.32504e6 + 2.29503e6i 0.161457 + 0.279651i
\(584\) 0 0
\(585\) 10628.2 18408.5i 0.00128401 0.00222397i
\(586\) 0 0
\(587\) −4.97913e6 −0.596428 −0.298214 0.954499i \(-0.596391\pi\)
−0.298214 + 0.954499i \(0.596391\pi\)
\(588\) 0 0
\(589\) −3.37641e6 −0.401021
\(590\) 0 0
\(591\) −2.11216e6 + 3.65836e6i −0.248747 + 0.430842i
\(592\) 0 0
\(593\) 7.66344e6 + 1.32735e7i 0.894926 + 1.55006i 0.833896 + 0.551921i \(0.186105\pi\)
0.0610292 + 0.998136i \(0.480562\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 871171. + 1.50891e6i 0.100039 + 0.173272i
\(598\) 0 0
\(599\) 3.31480e6 5.74141e6i 0.377477 0.653810i −0.613217 0.789914i \(-0.710125\pi\)
0.990694 + 0.136104i \(0.0434583\pi\)
\(600\) 0 0
\(601\) 1.45010e6 0.163762 0.0818808 0.996642i \(-0.473907\pi\)
0.0818808 + 0.996642i \(0.473907\pi\)
\(602\) 0 0
\(603\) 1.10527e6 0.123787
\(604\) 0 0
\(605\) 1.25370e6 2.17147e6i 0.139253 0.241194i
\(606\) 0 0
\(607\) 1.95555e6 + 3.38711e6i 0.215425 + 0.373128i 0.953404 0.301696i \(-0.0975528\pi\)
−0.737979 + 0.674824i \(0.764220\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −44523.1 77116.2i −0.00482483 0.00835685i
\(612\) 0 0
\(613\) −5.88765e6 + 1.01977e7i −0.632835 + 1.09610i 0.354134 + 0.935195i \(0.384776\pi\)
−0.986969 + 0.160908i \(0.948558\pi\)
\(614\) 0 0
\(615\) −697671. −0.0743812
\(616\) 0 0
\(617\) −4.61462e6 −0.488004 −0.244002 0.969775i \(-0.578460\pi\)
−0.244002 + 0.969775i \(0.578460\pi\)
\(618\) 0 0
\(619\) −2.83733e6 + 4.91440e6i −0.297634 + 0.515518i −0.975594 0.219581i \(-0.929531\pi\)
0.677960 + 0.735099i \(0.262864\pi\)
\(620\) 0 0
\(621\) 1.52559e6 + 2.64240e6i 0.158748 + 0.274960i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −3.32511e6 5.75926e6i −0.340491 0.589748i
\(626\) 0 0
\(627\) 1.02736e6 1.77945e6i 0.104365 0.180766i
\(628\) 0 0
\(629\) −515271. −0.0519289
\(630\) 0 0
\(631\) 5.67894e6 0.567798 0.283899 0.958854i \(-0.408372\pi\)
0.283899 + 0.958854i \(0.408372\pi\)
\(632\) 0 0
\(633\) −1.34130e6 + 2.32320e6i −0.133050 + 0.230450i
\(634\) 0 0
\(635\) 2.25925e6 + 3.91313e6i 0.222346 + 0.385114i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 3.40027e6 + 5.88943e6i 0.329428 + 0.570586i
\(640\) 0 0
\(641\) 1.05369e6 1.82504e6i 0.101290 0.175439i −0.810926 0.585148i \(-0.801036\pi\)
0.912216 + 0.409709i \(0.134370\pi\)
\(642\) 0 0
\(643\) 2.30987e6 0.220323 0.110162 0.993914i \(-0.464863\pi\)
0.110162 + 0.993914i \(0.464863\pi\)
\(644\) 0 0
\(645\) 907885. 0.0859274
\(646\) 0 0
\(647\) 4.93033e6 8.53958e6i 0.463036 0.802003i −0.536074 0.844171i \(-0.680093\pi\)
0.999111 + 0.0421683i \(0.0134266\pi\)
\(648\) 0 0
\(649\) −320147. 554510.i −0.0298358 0.0516771i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −5.01545e6 8.68701e6i −0.460285 0.797237i 0.538690 0.842504i \(-0.318919\pi\)
−0.998975 + 0.0452673i \(0.985586\pi\)
\(654\) 0 0
\(655\) 1.80483e6 3.12605e6i 0.164374 0.284704i
\(656\) 0 0
\(657\) 2.31484e6 0.209223
\(658\) 0 0
\(659\) −1.42828e7 −1.28115 −0.640575 0.767895i \(-0.721304\pi\)
−0.640575 + 0.767895i \(0.721304\pi\)
\(660\) 0 0
\(661\) −9.82097e6 + 1.70104e7i −0.874280 + 1.51430i −0.0167532 + 0.999860i \(0.505333\pi\)
−0.857527 + 0.514438i \(0.828000\pi\)
\(662\) 0 0
\(663\) −48681.4 84318.6i −0.00430109 0.00744971i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 8.79486e6 + 1.52331e7i 0.765445 + 1.32579i
\(668\) 0 0
\(669\) 842466. 1.45919e6i 0.0727758 0.126051i
\(670\) 0 0
\(671\) −8.12596e6 −0.696736
\(672\) 0 0
\(673\) −9.00150e6 −0.766086 −0.383043 0.923731i \(-0.625124\pi\)
−0.383043 + 0.923731i \(0.625124\pi\)
\(674\) 0 0
\(675\) −1.01331e6 + 1.75510e6i −0.0856016 + 0.148266i
\(676\) 0 0
\(677\) 6.71181e6 + 1.16252e7i 0.562818 + 0.974830i 0.997249 + 0.0741247i \(0.0236163\pi\)
−0.434431 + 0.900705i \(0.643050\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 6.02534e6 + 1.04362e7i 0.497868 + 0.862332i
\(682\) 0 0
\(683\) 4.00840e6 6.94276e6i 0.328791 0.569483i −0.653481 0.756943i \(-0.726692\pi\)
0.982272 + 0.187460i \(0.0600255\pi\)
\(684\) 0 0
\(685\) −57463.5 −0.00467913
\(686\) 0 0
\(687\) 8.56491e6 0.692358
\(688\) 0 0
\(689\) 115970. 200866.i 0.00930673 0.0161197i
\(690\) 0 0
\(691\) −1.20987e7 2.09555e7i −0.963923 1.66956i −0.712481 0.701691i \(-0.752428\pi\)
−0.251442 0.967872i \(-0.580905\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 209894. + 363547.i 0.0164831 + 0.0285495i
\(696\) 0 0
\(697\) −1.59781e6 + 2.76749e6i −0.124578 + 0.215776i
\(698\) 0 0
\(699\) −6.69077e6 −0.517944
\(700\) 0 0
\(701\) −1.56268e6 −0.120109 −0.0600543 0.998195i \(-0.519127\pi\)
−0.0600543 + 0.998195i \(0.519127\pi\)
\(702\) 0 0
\(703\) −475866. + 824224.i −0.0363158 + 0.0629009i
\(704\) 0 0
\(705\) −526806. 912455.i −0.0399189 0.0691415i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 9.76950e6 + 1.69213e7i 0.729889 + 1.26420i 0.956930 + 0.290320i \(0.0937616\pi\)
−0.227041 + 0.973885i \(0.572905\pi\)
\(710\) 0 0
\(711\) 2.42820e6 4.20576e6i 0.180140 0.312011i
\(712\) 0 0
\(713\) 9.99210e6 0.736093
\(714\) 0 0
\(715\) 42362.0 0.00309892
\(716\) 0 0
\(717\) −2.81631e6 + 4.87799e6i −0.204589 + 0.354359i
\(718\) 0 0
\(719\) −4.05095e6 7.01645e6i −0.292237 0.506169i 0.682102 0.731257i \(-0.261066\pi\)
−0.974338 + 0.225089i \(0.927733\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 5.99770e6 + 1.03883e7i 0.426716 + 0.739094i
\(724\) 0 0
\(725\) −5.84161e6 + 1.01180e7i −0.412750 + 0.714904i
\(726\) 0 0
\(727\) −2.52759e7 −1.77366 −0.886829 0.462098i \(-0.847097\pi\)
−0.886829 + 0.462098i \(0.847097\pi\)
\(728\) 0 0
\(729\) 531441. 0.0370370
\(730\) 0 0
\(731\) 2.07924e6 3.60135e6i 0.143917 0.249271i
\(732\) 0 0
\(733\) 1.37207e7 + 2.37650e7i 0.943228 + 1.63372i 0.759260 + 0.650787i \(0.225561\pi\)
0.183969 + 0.982932i \(0.441106\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 1.10135e6 + 1.90759e6i 0.0746888 + 0.129365i
\(738\) 0 0
\(739\) 3.26785e6 5.66008e6i 0.220115 0.381251i −0.734727 0.678362i \(-0.762690\pi\)
0.954843 + 0.297111i \(0.0960233\pi\)
\(740\) 0 0
\(741\) −179834. −0.0120317
\(742\) 0 0
\(743\) −2.46784e7 −1.64000 −0.820001 0.572362i \(-0.806027\pi\)
−0.820001 + 0.572362i \(0.806027\pi\)
\(744\) 0 0
\(745\) 3.27646e6 5.67499e6i 0.216279 0.374606i
\(746\) 0 0
\(747\) −2.49411e6 4.31993e6i −0.163537 0.283254i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 1.63911e6 + 2.83902e6i 0.106049 + 0.183683i 0.914166 0.405339i \(-0.132847\pi\)
−0.808117 + 0.589022i \(0.799513\pi\)
\(752\) 0 0
\(753\) −8.04641e6 + 1.39368e7i −0.517148 + 0.895726i
\(754\) 0 0
\(755\) 2.69507e6 0.172069
\(756\) 0 0
\(757\) 3.68090e6 0.233461 0.116731 0.993164i \(-0.462759\pi\)
0.116731 + 0.993164i \(0.462759\pi\)
\(758\) 0 0
\(759\) −3.04036e6 + 5.26606e6i −0.191567 + 0.331804i
\(760\) 0 0
\(761\) 1.05099e7 + 1.82037e7i 0.657866 + 1.13946i 0.981167 + 0.193162i \(0.0618742\pi\)
−0.323301 + 0.946296i \(0.604792\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −576008. 997675.i −0.0355857 0.0616362i
\(766\) 0 0
\(767\) −28019.9 + 48531.9i −0.00171980 + 0.00297878i
\(768\) 0 0
\(769\) 4.15418e6 0.253320 0.126660 0.991946i \(-0.459574\pi\)
0.126660 + 0.991946i \(0.459574\pi\)
\(770\) 0 0
\(771\) 4.58032e6 0.277498
\(772\) 0 0
\(773\) 731741. 1.26741e6i 0.0440462 0.0762903i −0.843162 0.537660i \(-0.819308\pi\)
0.887208 + 0.461370i \(0.152642\pi\)
\(774\) 0 0
\(775\) 3.31841e6 + 5.74765e6i 0.198461 + 0.343745i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 2.95123e6 + 5.11169e6i 0.174245 + 0.301801i
\(780\) 0 0
\(781\) −6.77642e6 + 1.17371e7i −0.397533 + 0.688547i
\(782\) 0 0
\(783\) 3.06370e6 0.178584
\(784\) 0 0
\(785\) 4.04726e6 0.234416
\(786\) 0 0
\(787\) −1.00855e7