Properties

Label 588.6.i.l.373.2
Level $588$
Weight $6$
Character 588.373
Analytic conductor $94.306$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [588,6,Mod(361,588)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(588, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("588.361");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 588.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(94.3056860500\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{5569})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 1393x^{2} + 1392x + 1937664 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 84)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 373.2
Root \(18.9064 - 32.7469i\) of defining polynomial
Character \(\chi\) \(=\) 588.373
Dual form 588.6.i.l.361.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(4.50000 + 7.79423i) q^{3} +(38.8129 - 67.2259i) q^{5} +(-40.5000 + 70.1481i) q^{9} +O(q^{10})\) \(q+(4.50000 + 7.79423i) q^{3} +(38.8129 - 67.2259i) q^{5} +(-40.5000 + 70.1481i) q^{9} +(-238.690 - 413.423i) q^{11} -63.7544 q^{13} +698.632 q^{15} +(-518.813 - 898.610i) q^{17} +(333.509 - 577.654i) q^{19} +(-1625.81 + 2815.99i) q^{23} +(-1450.38 - 2512.13i) q^{25} -729.000 q^{27} +2300.97 q^{29} +(-1858.53 - 3219.06i) q^{31} +(2148.21 - 3720.81i) q^{33} +(-6122.93 + 10605.2i) q^{37} +(-286.895 - 496.916i) q^{39} -1829.65 q^{41} -20794.2 q^{43} +(3143.84 + 5445.29i) q^{45} +(2141.68 - 3709.51i) q^{47} +(4669.32 - 8087.49i) q^{51} +(-12859.2 - 22272.8i) q^{53} -37057.0 q^{55} +6003.16 q^{57} +(1419.36 + 2458.40i) q^{59} +(-8401.60 + 14552.0i) q^{61} +(-2474.49 + 4285.94i) q^{65} +(31267.5 + 54157.0i) q^{67} -29264.6 q^{69} +72301.0 q^{71} +(27838.4 + 48217.6i) q^{73} +(13053.4 - 22609.1i) q^{75} +(1994.60 - 3454.74i) q^{79} +(-3280.50 - 5681.99i) q^{81} -46092.2 q^{83} -80546.5 q^{85} +(10354.4 + 17934.3i) q^{87} +(-67692.3 + 117247. i) q^{89} +(16726.7 - 28971.6i) q^{93} +(-25888.9 - 44840.8i) q^{95} +142878. q^{97} +38667.8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 18 q^{3} + 6 q^{5} - 162 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 18 q^{3} + 6 q^{5} - 162 q^{9} + 90 q^{11} + 1536 q^{13} + 108 q^{15} - 1926 q^{17} - 2248 q^{19} - 6354 q^{23} - 4906 q^{25} - 2916 q^{27} + 21144 q^{29} + 3312 q^{31} - 810 q^{33} - 2104 q^{37} + 6912 q^{39} + 2532 q^{41} - 11536 q^{43} + 486 q^{45} - 15612 q^{47} + 17334 q^{51} - 16512 q^{53} - 155392 q^{55} - 40464 q^{57} + 13140 q^{59} + 5796 q^{61} - 64524 q^{65} + 56116 q^{67} - 114372 q^{69} + 22044 q^{71} + 85384 q^{73} + 44154 q^{75} + 19620 q^{79} - 13122 q^{81} - 88848 q^{83} - 33832 q^{85} + 95148 q^{87} - 211218 q^{89} - 29808 q^{93} - 260568 q^{95} + 89728 q^{97} - 14580 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/588\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(295\) \(493\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 4.50000 + 7.79423i 0.288675 + 0.500000i
\(4\) 0 0
\(5\) 38.8129 67.2259i 0.694306 1.20257i −0.276109 0.961126i \(-0.589045\pi\)
0.970414 0.241446i \(-0.0776217\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −40.5000 + 70.1481i −0.166667 + 0.288675i
\(10\) 0 0
\(11\) −238.690 413.423i −0.594775 1.03018i −0.993579 0.113144i \(-0.963908\pi\)
0.398804 0.917036i \(-0.369425\pi\)
\(12\) 0 0
\(13\) −63.7544 −0.104629 −0.0523145 0.998631i \(-0.516660\pi\)
−0.0523145 + 0.998631i \(0.516660\pi\)
\(14\) 0 0
\(15\) 698.632 0.801715
\(16\) 0 0
\(17\) −518.813 898.610i −0.435400 0.754135i 0.561928 0.827186i \(-0.310060\pi\)
−0.997328 + 0.0730511i \(0.976726\pi\)
\(18\) 0 0
\(19\) 333.509 577.654i 0.211945 0.367100i −0.740378 0.672191i \(-0.765354\pi\)
0.952323 + 0.305091i \(0.0986869\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −1625.81 + 2815.99i −0.640842 + 1.10997i 0.344403 + 0.938822i \(0.388081\pi\)
−0.985245 + 0.171149i \(0.945252\pi\)
\(24\) 0 0
\(25\) −1450.38 2512.13i −0.464121 0.803881i
\(26\) 0 0
\(27\) −729.000 −0.192450
\(28\) 0 0
\(29\) 2300.97 0.508061 0.254031 0.967196i \(-0.418244\pi\)
0.254031 + 0.967196i \(0.418244\pi\)
\(30\) 0 0
\(31\) −1858.53 3219.06i −0.347348 0.601624i 0.638430 0.769680i \(-0.279584\pi\)
−0.985777 + 0.168056i \(0.946251\pi\)
\(32\) 0 0
\(33\) 2148.21 3720.81i 0.343393 0.594775i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −6122.93 + 10605.2i −0.735284 + 1.27355i 0.219315 + 0.975654i \(0.429618\pi\)
−0.954599 + 0.297895i \(0.903716\pi\)
\(38\) 0 0
\(39\) −286.895 496.916i −0.0302038 0.0523145i
\(40\) 0 0
\(41\) −1829.65 −0.169984 −0.0849920 0.996382i \(-0.527086\pi\)
−0.0849920 + 0.996382i \(0.527086\pi\)
\(42\) 0 0
\(43\) −20794.2 −1.71503 −0.857513 0.514463i \(-0.827991\pi\)
−0.857513 + 0.514463i \(0.827991\pi\)
\(44\) 0 0
\(45\) 3143.84 + 5445.29i 0.231435 + 0.400858i
\(46\) 0 0
\(47\) 2141.68 3709.51i 0.141420 0.244947i −0.786612 0.617448i \(-0.788167\pi\)
0.928032 + 0.372502i \(0.121500\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 4669.32 8087.49i 0.251378 0.435400i
\(52\) 0 0
\(53\) −12859.2 22272.8i −0.628818 1.08914i −0.987789 0.155796i \(-0.950206\pi\)
0.358972 0.933348i \(-0.383127\pi\)
\(54\) 0 0
\(55\) −37057.0 −1.65182
\(56\) 0 0
\(57\) 6003.16 0.244733
\(58\) 0 0
\(59\) 1419.36 + 2458.40i 0.0530837 + 0.0919437i 0.891346 0.453323i \(-0.149762\pi\)
−0.838262 + 0.545267i \(0.816428\pi\)
\(60\) 0 0
\(61\) −8401.60 + 14552.0i −0.289093 + 0.500723i −0.973593 0.228289i \(-0.926687\pi\)
0.684501 + 0.729012i \(0.260020\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −2474.49 + 4285.94i −0.0726445 + 0.125824i
\(66\) 0 0
\(67\) 31267.5 + 54157.0i 0.850955 + 1.47390i 0.880347 + 0.474330i \(0.157310\pi\)
−0.0293918 + 0.999568i \(0.509357\pi\)
\(68\) 0 0
\(69\) −29264.6 −0.739981
\(70\) 0 0
\(71\) 72301.0 1.70215 0.851077 0.525042i \(-0.175950\pi\)
0.851077 + 0.525042i \(0.175950\pi\)
\(72\) 0 0
\(73\) 27838.4 + 48217.6i 0.611417 + 1.05901i 0.991002 + 0.133849i \(0.0427336\pi\)
−0.379584 + 0.925157i \(0.623933\pi\)
\(74\) 0 0
\(75\) 13053.4 22609.1i 0.267960 0.464121i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 1994.60 3454.74i 0.0359573 0.0622799i −0.847487 0.530817i \(-0.821885\pi\)
0.883444 + 0.468537i \(0.155219\pi\)
\(80\) 0 0
\(81\) −3280.50 5681.99i −0.0555556 0.0962250i
\(82\) 0 0
\(83\) −46092.2 −0.734400 −0.367200 0.930142i \(-0.619684\pi\)
−0.367200 + 0.930142i \(0.619684\pi\)
\(84\) 0 0
\(85\) −80546.5 −1.20920
\(86\) 0 0
\(87\) 10354.4 + 17934.3i 0.146665 + 0.254031i
\(88\) 0 0
\(89\) −67692.3 + 117247.i −0.905867 + 1.56901i −0.0861180 + 0.996285i \(0.527446\pi\)
−0.819749 + 0.572723i \(0.805887\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 16726.7 28971.6i 0.200541 0.347348i
\(94\) 0 0
\(95\) −25888.9 44840.8i −0.294309 0.509759i
\(96\) 0 0
\(97\) 142878. 1.54183 0.770914 0.636939i \(-0.219800\pi\)
0.770914 + 0.636939i \(0.219800\pi\)
\(98\) 0 0
\(99\) 38667.8 0.396517
\(100\) 0 0
\(101\) −22233.5 38509.6i −0.216873 0.375635i 0.736977 0.675917i \(-0.236252\pi\)
−0.953850 + 0.300283i \(0.902919\pi\)
\(102\) 0 0
\(103\) −101310. + 175474.i −0.940931 + 1.62974i −0.177232 + 0.984169i \(0.556714\pi\)
−0.763700 + 0.645572i \(0.776619\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −49762.9 + 86192.0i −0.420191 + 0.727792i −0.995958 0.0898219i \(-0.971370\pi\)
0.575767 + 0.817614i \(0.304704\pi\)
\(108\) 0 0
\(109\) −110465. 191331.i −0.890551 1.54248i −0.839216 0.543798i \(-0.816986\pi\)
−0.0513352 0.998681i \(-0.516348\pi\)
\(110\) 0 0
\(111\) −110213. −0.849033
\(112\) 0 0
\(113\) 29623.1 0.218240 0.109120 0.994029i \(-0.465197\pi\)
0.109120 + 0.994029i \(0.465197\pi\)
\(114\) 0 0
\(115\) 126205. + 218593.i 0.889880 + 1.54132i
\(116\) 0 0
\(117\) 2582.05 4472.25i 0.0174382 0.0302038i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −33420.4 + 57885.8i −0.207514 + 0.359425i
\(122\) 0 0
\(123\) −8233.42 14260.7i −0.0490702 0.0849920i
\(124\) 0 0
\(125\) 17407.2 0.0996448
\(126\) 0 0
\(127\) −264132. −1.45315 −0.726577 0.687086i \(-0.758890\pi\)
−0.726577 + 0.687086i \(0.758890\pi\)
\(128\) 0 0
\(129\) −93573.8 162075.i −0.495085 0.857513i
\(130\) 0 0
\(131\) 38925.0 67420.2i 0.198176 0.343251i −0.749761 0.661709i \(-0.769832\pi\)
0.947937 + 0.318458i \(0.103165\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −28294.6 + 49007.6i −0.133619 + 0.231435i
\(136\) 0 0
\(137\) −186201. 322510.i −0.847581 1.46805i −0.883361 0.468694i \(-0.844725\pi\)
0.0357792 0.999360i \(-0.488609\pi\)
\(138\) 0 0
\(139\) −274550. −1.20527 −0.602636 0.798016i \(-0.705883\pi\)
−0.602636 + 0.798016i \(0.705883\pi\)
\(140\) 0 0
\(141\) 38550.3 0.163298
\(142\) 0 0
\(143\) 15217.5 + 26357.6i 0.0622307 + 0.107787i
\(144\) 0 0
\(145\) 89307.3 154685.i 0.352750 0.610981i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 156491. 271050.i 0.577462 1.00019i −0.418307 0.908306i \(-0.637376\pi\)
0.995769 0.0918883i \(-0.0292903\pi\)
\(150\) 0 0
\(151\) −216047. 374205.i −0.771093 1.33557i −0.936965 0.349424i \(-0.886377\pi\)
0.165872 0.986147i \(-0.446956\pi\)
\(152\) 0 0
\(153\) 84047.7 0.290267
\(154\) 0 0
\(155\) −288539. −0.964662
\(156\) 0 0
\(157\) 42301.8 + 73268.9i 0.136965 + 0.237231i 0.926346 0.376673i \(-0.122932\pi\)
−0.789381 + 0.613903i \(0.789598\pi\)
\(158\) 0 0
\(159\) 115733. 200455.i 0.363048 0.628818i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −153152. + 265266.i −0.451494 + 0.782011i −0.998479 0.0551313i \(-0.982442\pi\)
0.546985 + 0.837143i \(0.315776\pi\)
\(164\) 0 0
\(165\) −166756. 288831.i −0.476840 0.825911i
\(166\) 0 0
\(167\) −606514. −1.68287 −0.841433 0.540362i \(-0.818287\pi\)
−0.841433 + 0.540362i \(0.818287\pi\)
\(168\) 0 0
\(169\) −367228. −0.989053
\(170\) 0 0
\(171\) 27014.2 + 46790.0i 0.0706484 + 0.122367i
\(172\) 0 0
\(173\) 144240. 249832.i 0.366414 0.634648i −0.622588 0.782550i \(-0.713919\pi\)
0.989002 + 0.147902i \(0.0472521\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −12774.2 + 22125.6i −0.0306479 + 0.0530837i
\(178\) 0 0
\(179\) −74429.1 128915.i −0.173624 0.300726i 0.766060 0.642769i \(-0.222214\pi\)
−0.939684 + 0.342043i \(0.888881\pi\)
\(180\) 0 0
\(181\) 93377.8 0.211859 0.105930 0.994374i \(-0.466218\pi\)
0.105930 + 0.994374i \(0.466218\pi\)
\(182\) 0 0
\(183\) −151229. −0.333816
\(184\) 0 0
\(185\) 475297. + 823238.i 1.02102 + 1.76846i
\(186\) 0 0
\(187\) −247671. + 428979.i −0.517930 + 0.897081i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −123457. + 213835.i −0.244869 + 0.424126i −0.962095 0.272715i \(-0.912078\pi\)
0.717226 + 0.696841i \(0.245412\pi\)
\(192\) 0 0
\(193\) −240718. 416937.i −0.465175 0.805706i 0.534035 0.845463i \(-0.320675\pi\)
−0.999209 + 0.0397564i \(0.987342\pi\)
\(194\) 0 0
\(195\) −44540.8 −0.0838826
\(196\) 0 0
\(197\) −548236. −1.00647 −0.503237 0.864149i \(-0.667858\pi\)
−0.503237 + 0.864149i \(0.667858\pi\)
\(198\) 0 0
\(199\) −79089.6 136987.i −0.141575 0.245215i 0.786515 0.617571i \(-0.211883\pi\)
−0.928090 + 0.372356i \(0.878550\pi\)
\(200\) 0 0
\(201\) −281408. + 487413.i −0.491299 + 0.850955i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −71013.9 + 123000.i −0.118021 + 0.204418i
\(206\) 0 0
\(207\) −131691. 228095.i −0.213614 0.369990i
\(208\) 0 0
\(209\) −318421. −0.504238
\(210\) 0 0
\(211\) 283510. 0.438392 0.219196 0.975681i \(-0.429657\pi\)
0.219196 + 0.975681i \(0.429657\pi\)
\(212\) 0 0
\(213\) 325355. + 563531.i 0.491369 + 0.851077i
\(214\) 0 0
\(215\) −807082. + 1.39791e6i −1.19075 + 2.06244i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −250546. + 433958.i −0.353002 + 0.611417i
\(220\) 0 0
\(221\) 33076.6 + 57290.4i 0.0455554 + 0.0789043i
\(222\) 0 0
\(223\) −651135. −0.876817 −0.438409 0.898776i \(-0.644458\pi\)
−0.438409 + 0.898776i \(0.644458\pi\)
\(224\) 0 0
\(225\) 234961. 0.309414
\(226\) 0 0
\(227\) 189147. + 327612.i 0.243632 + 0.421983i 0.961746 0.273942i \(-0.0883277\pi\)
−0.718114 + 0.695925i \(0.754994\pi\)
\(228\) 0 0
\(229\) 11166.4 19340.8i 0.0140710 0.0243717i −0.858904 0.512136i \(-0.828854\pi\)
0.872975 + 0.487765i \(0.162188\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 454470. 787165.i 0.548423 0.949896i −0.449960 0.893049i \(-0.648562\pi\)
0.998383 0.0568472i \(-0.0181048\pi\)
\(234\) 0 0
\(235\) −166250. 287953.i −0.196377 0.340136i
\(236\) 0 0
\(237\) 35902.7 0.0415199
\(238\) 0 0
\(239\) 1.05363e6 1.19315 0.596573 0.802559i \(-0.296529\pi\)
0.596573 + 0.802559i \(0.296529\pi\)
\(240\) 0 0
\(241\) −526164. 911342.i −0.583550 1.01074i −0.995054 0.0993307i \(-0.968330\pi\)
0.411504 0.911408i \(-0.365004\pi\)
\(242\) 0 0
\(243\) 29524.5 51137.9i 0.0320750 0.0555556i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −21262.7 + 36828.0i −0.0221756 + 0.0384092i
\(248\) 0 0
\(249\) −207415. 359253.i −0.212003 0.367200i
\(250\) 0 0
\(251\) 972876. 0.974705 0.487352 0.873205i \(-0.337963\pi\)
0.487352 + 0.873205i \(0.337963\pi\)
\(252\) 0 0
\(253\) 1.55226e6 1.52463
\(254\) 0 0
\(255\) −362459. 627798.i −0.349067 0.604601i
\(256\) 0 0
\(257\) −889738. + 1.54107e6i −0.840290 + 1.45542i 0.0493598 + 0.998781i \(0.484282\pi\)
−0.889650 + 0.456644i \(0.849051\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −93189.3 + 161409.i −0.0846769 + 0.146665i
\(262\) 0 0
\(263\) −10979.8 19017.6i −0.00978827 0.0169538i 0.861090 0.508453i \(-0.169782\pi\)
−0.870878 + 0.491499i \(0.836449\pi\)
\(264\) 0 0
\(265\) −1.99641e6 −1.74637
\(266\) 0 0
\(267\) −1.21846e6 −1.04601
\(268\) 0 0
\(269\) 845555. + 1.46454e6i 0.712461 + 1.23402i 0.963931 + 0.266153i \(0.0857527\pi\)
−0.251470 + 0.967865i \(0.580914\pi\)
\(270\) 0 0
\(271\) 233932. 405182.i 0.193493 0.335140i −0.752912 0.658121i \(-0.771352\pi\)
0.946406 + 0.322981i \(0.104685\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −692381. + 1.19924e6i −0.552095 + 0.956256i
\(276\) 0 0
\(277\) −453084. 784765.i −0.354797 0.614526i 0.632286 0.774735i \(-0.282117\pi\)
−0.987083 + 0.160209i \(0.948783\pi\)
\(278\) 0 0
\(279\) 301081. 0.231565
\(280\) 0 0
\(281\) −781388. −0.590338 −0.295169 0.955445i \(-0.595376\pi\)
−0.295169 + 0.955445i \(0.595376\pi\)
\(282\) 0 0
\(283\) 749216. + 1.29768e6i 0.556085 + 0.963167i 0.997818 + 0.0660209i \(0.0210304\pi\)
−0.441733 + 0.897146i \(0.645636\pi\)
\(284\) 0 0
\(285\) 233000. 403567.i 0.169920 0.294309i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 171595. 297211.i 0.120854 0.209325i
\(290\) 0 0
\(291\) 642951. + 1.11362e6i 0.445087 + 0.770914i
\(292\) 0 0
\(293\) −1.56070e6 −1.06206 −0.531031 0.847352i \(-0.678195\pi\)
−0.531031 + 0.847352i \(0.678195\pi\)
\(294\) 0 0
\(295\) 220357. 0.147425
\(296\) 0 0
\(297\) 174005. + 301386.i 0.114464 + 0.198258i
\(298\) 0 0
\(299\) 103653. 179532.i 0.0670506 0.116135i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 200102. 346587.i 0.125212 0.216873i
\(304\) 0 0
\(305\) 652180. + 1.12961e6i 0.401438 + 0.695310i
\(306\) 0 0
\(307\) −889308. −0.538525 −0.269263 0.963067i \(-0.586780\pi\)
−0.269263 + 0.963067i \(0.586780\pi\)
\(308\) 0 0
\(309\) −1.82357e6 −1.08649
\(310\) 0 0
\(311\) −1.22413e6 2.12026e6i −0.717674 1.24305i −0.961919 0.273334i \(-0.911874\pi\)
0.244246 0.969713i \(-0.421460\pi\)
\(312\) 0 0
\(313\) 1.36551e6 2.36514e6i 0.787834 1.36457i −0.139457 0.990228i \(-0.544536\pi\)
0.927291 0.374341i \(-0.122131\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 124802. 216163.i 0.0697545 0.120818i −0.829039 0.559191i \(-0.811112\pi\)
0.898793 + 0.438373i \(0.144445\pi\)
\(318\) 0 0
\(319\) −549219. 951275.i −0.302182 0.523395i
\(320\) 0 0
\(321\) −895733. −0.485195
\(322\) 0 0
\(323\) −692115. −0.369124
\(324\) 0 0
\(325\) 92467.9 + 160159.i 0.0485605 + 0.0841092i
\(326\) 0 0
\(327\) 994186. 1.72198e6i 0.514160 0.890551i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −323308. + 559986.i −0.162199 + 0.280936i −0.935657 0.352911i \(-0.885192\pi\)
0.773458 + 0.633847i \(0.218525\pi\)
\(332\) 0 0
\(333\) −495957. 859023.i −0.245095 0.424516i
\(334\) 0 0
\(335\) 4.85433e6 2.36329
\(336\) 0 0
\(337\) −1.02782e6 −0.492994 −0.246497 0.969144i \(-0.579280\pi\)
−0.246497 + 0.969144i \(0.579280\pi\)
\(338\) 0 0
\(339\) 133304. + 230890.i 0.0630006 + 0.109120i
\(340\) 0 0
\(341\) −887224. + 1.53672e6i −0.413187 + 0.715662i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −1.13584e6 + 1.96734e6i −0.513773 + 0.889880i
\(346\) 0 0
\(347\) 824579. + 1.42821e6i 0.367628 + 0.636750i 0.989194 0.146611i \(-0.0468367\pi\)
−0.621566 + 0.783362i \(0.713503\pi\)
\(348\) 0 0
\(349\) 2.21201e6 0.972128 0.486064 0.873923i \(-0.338432\pi\)
0.486064 + 0.873923i \(0.338432\pi\)
\(350\) 0 0
\(351\) 46477.0 0.0201358
\(352\) 0 0
\(353\) −550789. 953995.i −0.235260 0.407483i 0.724088 0.689708i \(-0.242261\pi\)
−0.959348 + 0.282225i \(0.908928\pi\)
\(354\) 0 0
\(355\) 2.80621e6 4.86050e6i 1.18181 2.04696i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 649699. 1.12531e6i 0.266058 0.460826i −0.701782 0.712391i \(-0.747612\pi\)
0.967840 + 0.251566i \(0.0809455\pi\)
\(360\) 0 0
\(361\) 1.01559e6 + 1.75906e6i 0.410159 + 0.710416i
\(362\) 0 0
\(363\) −601567. −0.239617
\(364\) 0 0
\(365\) 4.32196e6 1.69804
\(366\) 0 0
\(367\) −778345. 1.34813e6i −0.301652 0.522477i 0.674858 0.737948i \(-0.264205\pi\)
−0.976510 + 0.215470i \(0.930872\pi\)
\(368\) 0 0
\(369\) 74100.8 128346.i 0.0283307 0.0490702i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 1.56330e6 2.70772e6i 0.581796 1.00770i −0.413471 0.910517i \(-0.635684\pi\)
0.995267 0.0971823i \(-0.0309830\pi\)
\(374\) 0 0
\(375\) 78332.5 + 135676.i 0.0287650 + 0.0498224i
\(376\) 0 0
\(377\) −146697. −0.0531579
\(378\) 0 0
\(379\) −2.96497e6 −1.06029 −0.530143 0.847908i \(-0.677862\pi\)
−0.530143 + 0.847908i \(0.677862\pi\)
\(380\) 0 0
\(381\) −1.18859e6 2.05870e6i −0.419489 0.726577i
\(382\) 0 0
\(383\) −1.37387e6 + 2.37962e6i −0.478574 + 0.828915i −0.999698 0.0245659i \(-0.992180\pi\)
0.521124 + 0.853481i \(0.325513\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 842164. 1.45867e6i 0.285838 0.495085i
\(388\) 0 0
\(389\) 305671. + 529438.i 0.102419 + 0.177395i 0.912681 0.408673i \(-0.134008\pi\)
−0.810262 + 0.586068i \(0.800675\pi\)
\(390\) 0 0
\(391\) 3.37397e6 1.11609
\(392\) 0 0
\(393\) 700651. 0.228834
\(394\) 0 0
\(395\) −154832. 268177.i −0.0499307 0.0864826i
\(396\) 0 0
\(397\) −1.08397e6 + 1.87749e6i −0.345176 + 0.597862i −0.985386 0.170338i \(-0.945514\pi\)
0.640210 + 0.768200i \(0.278847\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 1.57322e6 2.72489e6i 0.488572 0.846231i −0.511342 0.859377i \(-0.670851\pi\)
0.999914 + 0.0131465i \(0.00418480\pi\)
\(402\) 0 0
\(403\) 118489. + 205229.i 0.0363426 + 0.0629473i
\(404\) 0 0
\(405\) −509302. −0.154290
\(406\) 0 0
\(407\) 5.84593e6 1.74931
\(408\) 0 0
\(409\) −2.79082e6 4.83385e6i −0.824943 1.42884i −0.901963 0.431814i \(-0.857874\pi\)
0.0770193 0.997030i \(-0.475460\pi\)
\(410\) 0 0
\(411\) 1.67581e6 2.90259e6i 0.489351 0.847581i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −1.78897e6 + 3.09859e6i −0.509898 + 0.883169i
\(416\) 0 0
\(417\) −1.23548e6 2.13991e6i −0.347932 0.602636i
\(418\) 0 0
\(419\) 2.25054e6 0.626257 0.313128 0.949711i \(-0.398623\pi\)
0.313128 + 0.949711i \(0.398623\pi\)
\(420\) 0 0
\(421\) 3.45914e6 0.951180 0.475590 0.879667i \(-0.342235\pi\)
0.475590 + 0.879667i \(0.342235\pi\)
\(422\) 0 0
\(423\) 173476. + 300470.i 0.0471400 + 0.0816489i
\(424\) 0 0
\(425\) −1.50495e6 + 2.60665e6i −0.404156 + 0.700019i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −136958. + 237218.i −0.0359289 + 0.0622307i
\(430\) 0 0
\(431\) 3.27963e6 + 5.68049e6i 0.850417 + 1.47297i 0.880833 + 0.473428i \(0.156984\pi\)
−0.0304157 + 0.999537i \(0.509683\pi\)
\(432\) 0 0
\(433\) 5.05669e6 1.29612 0.648062 0.761587i \(-0.275580\pi\)
0.648062 + 0.761587i \(0.275580\pi\)
\(434\) 0 0
\(435\) 1.60753e6 0.407320
\(436\) 0 0
\(437\) 1.08445e6 + 1.87832e6i 0.271647 + 0.470506i
\(438\) 0 0
\(439\) −2.11613e6 + 3.66524e6i −0.524059 + 0.907697i 0.475549 + 0.879689i \(0.342250\pi\)
−0.999608 + 0.0280074i \(0.991084\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 3.02763e6 5.24400e6i 0.732981 1.26956i −0.222622 0.974905i \(-0.571462\pi\)
0.955603 0.294656i \(-0.0952050\pi\)
\(444\) 0 0
\(445\) 5.25467e6 + 9.10135e6i 1.25790 + 2.17874i
\(446\) 0 0
\(447\) 2.81684e6 0.666796
\(448\) 0 0
\(449\) −299186. −0.0700368 −0.0350184 0.999387i \(-0.511149\pi\)
−0.0350184 + 0.999387i \(0.511149\pi\)
\(450\) 0 0
\(451\) 436719. + 756420.i 0.101102 + 0.175114i
\(452\) 0 0
\(453\) 1.94443e6 3.36785e6i 0.445191 0.771093i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −1.87589e6 + 3.24913e6i −0.420161 + 0.727740i −0.995955 0.0898545i \(-0.971360\pi\)
0.575794 + 0.817595i \(0.304693\pi\)
\(458\) 0 0
\(459\) 378215. + 655087.i 0.0837928 + 0.145133i
\(460\) 0 0
\(461\) 6.94525e6 1.52207 0.761036 0.648709i \(-0.224691\pi\)
0.761036 + 0.648709i \(0.224691\pi\)
\(462\) 0 0
\(463\) −9.13226e6 −1.97982 −0.989910 0.141697i \(-0.954744\pi\)
−0.989910 + 0.141697i \(0.954744\pi\)
\(464\) 0 0
\(465\) −1.29843e6 2.24894e6i −0.278474 0.482331i
\(466\) 0 0
\(467\) 212068. 367313.i 0.0449970 0.0779371i −0.842650 0.538462i \(-0.819006\pi\)
0.887647 + 0.460525i \(0.152339\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −380717. + 659420.i −0.0790769 + 0.136965i
\(472\) 0 0
\(473\) 4.96336e6 + 8.59680e6i 1.02005 + 1.76679i
\(474\) 0 0
\(475\) −1.93485e6 −0.393472
\(476\) 0 0
\(477\) 2.08319e6 0.419212
\(478\) 0 0
\(479\) 3.89303e6 + 6.74292e6i 0.775262 + 1.34279i 0.934647 + 0.355577i \(0.115715\pi\)
−0.159385 + 0.987216i \(0.550951\pi\)
\(480\) 0 0
\(481\) 390364. 676130.i 0.0769320 0.133250i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 5.54550e6 9.60509e6i 1.07050 1.85416i
\(486\) 0 0
\(487\) −1.16130e6 2.01143e6i −0.221881 0.384310i 0.733498 0.679692i \(-0.237886\pi\)
−0.955379 + 0.295382i \(0.904553\pi\)
\(488\) 0 0
\(489\) −2.75673e6 −0.521341
\(490\) 0 0
\(491\) 6.01036e6 1.12512 0.562558 0.826758i \(-0.309817\pi\)
0.562558 + 0.826758i \(0.309817\pi\)
\(492\) 0 0
\(493\) −1.19377e6 2.06768e6i −0.221210 0.383147i
\(494\) 0 0
\(495\) 1.50081e6 2.59948e6i 0.275304 0.476840i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −1.68693e6 + 2.92184e6i −0.303281 + 0.525298i −0.976877 0.213802i \(-0.931415\pi\)
0.673596 + 0.739100i \(0.264749\pi\)
\(500\) 0 0
\(501\) −2.72931e6 4.72731e6i −0.485801 0.841433i
\(502\) 0 0
\(503\) −1.22068e6 −0.215120 −0.107560 0.994199i \(-0.534304\pi\)
−0.107560 + 0.994199i \(0.534304\pi\)
\(504\) 0 0
\(505\) −3.45179e6 −0.602304
\(506\) 0 0
\(507\) −1.65253e6 2.86226e6i −0.285515 0.494526i
\(508\) 0 0
\(509\) −784485. + 1.35877e6i −0.134212 + 0.232461i −0.925296 0.379246i \(-0.876184\pi\)
0.791084 + 0.611707i \(0.209517\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −243128. + 421110.i −0.0407888 + 0.0706484i
\(514\) 0 0
\(515\) 7.86424e6 + 1.36213e7i 1.30659 + 2.26308i
\(516\) 0 0
\(517\) −2.04480e6 −0.336452
\(518\) 0 0
\(519\) 2.59633e6 0.423098
\(520\) 0 0
\(521\) −5.33893e6 9.24730e6i −0.861708 1.49252i −0.870279 0.492559i \(-0.836062\pi\)
0.00857106 0.999963i \(-0.497272\pi\)
\(522\) 0 0
\(523\) 6.05033e6 1.04795e7i 0.967219 1.67527i 0.263689 0.964608i \(-0.415061\pi\)
0.703531 0.710665i \(-0.251606\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −1.92845e6 + 3.34018e6i −0.302470 + 0.523894i
\(528\) 0 0
\(529\) −2.06836e6 3.58251e6i −0.321357 0.556607i
\(530\) 0 0
\(531\) −229936. −0.0353892
\(532\) 0 0
\(533\) 116648. 0.0177852
\(534\) 0 0
\(535\) 3.86289e6 + 6.69071e6i 0.583482 + 1.01062i
\(536\) 0 0
\(537\) 669861. 1.16023e6i 0.100242 0.173624i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 1.59903e6 2.76959e6i 0.234889 0.406839i −0.724352 0.689431i \(-0.757861\pi\)
0.959240 + 0.282591i \(0.0911941\pi\)
\(542\) 0 0
\(543\) 420200. + 727808.i 0.0611585 + 0.105930i
\(544\) 0 0
\(545\) −1.71499e7 −2.47326
\(546\) 0 0
\(547\) 3.97811e6 0.568471 0.284235 0.958755i \(-0.408260\pi\)
0.284235 + 0.958755i \(0.408260\pi\)
\(548\) 0 0
\(549\) −680529. 1.17871e6i −0.0963643 0.166908i
\(550\) 0 0
\(551\) 767394. 1.32917e6i 0.107681 0.186509i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −4.27767e6 + 7.40915e6i −0.589488 + 1.02102i
\(556\) 0 0
\(557\) −5.70567e6 9.88251e6i −0.779236 1.34968i −0.932383 0.361472i \(-0.882274\pi\)
0.153147 0.988203i \(-0.451059\pi\)
\(558\) 0 0
\(559\) 1.32572e6 0.179441
\(560\) 0 0
\(561\) −4.45808e6 −0.598054
\(562\) 0 0
\(563\) 3.23486e6 + 5.60295e6i 0.430115 + 0.744982i 0.996883 0.0788962i \(-0.0251396\pi\)
−0.566768 + 0.823878i \(0.691806\pi\)
\(564\) 0 0
\(565\) 1.14976e6 1.99144e6i 0.151526 0.262450i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −358514. + 620965.i −0.0464222 + 0.0804056i −0.888303 0.459258i \(-0.848115\pi\)
0.841881 + 0.539664i \(0.181449\pi\)
\(570\) 0 0
\(571\) −3.00143e6 5.19863e6i −0.385246 0.667265i 0.606558 0.795040i \(-0.292550\pi\)
−0.991803 + 0.127774i \(0.959217\pi\)
\(572\) 0 0
\(573\) −2.22223e6 −0.282750
\(574\) 0 0
\(575\) 9.43217e6 1.18971
\(576\) 0 0
\(577\) −7.78560e6 1.34850e7i −0.973537 1.68621i −0.684682 0.728842i \(-0.740059\pi\)
−0.288855 0.957373i \(-0.593274\pi\)
\(578\) 0 0
\(579\) 2.16647e6 3.75243e6i 0.268569 0.465175i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −6.13873e6 + 1.06326e7i −0.748010 + 1.29559i
\(584\) 0 0
\(585\) −200434. 347161.i −0.0242148 0.0419413i
\(586\) 0 0
\(587\) 7.84621e6 0.939863 0.469931 0.882703i \(-0.344279\pi\)
0.469931 + 0.882703i \(0.344279\pi\)
\(588\) 0 0
\(589\) −2.47934e6 −0.294475
\(590\) 0 0
\(591\) −2.46706e6 4.27308e6i −0.290544 0.503237i
\(592\) 0 0
\(593\) −6.66240e6 + 1.15396e7i −0.778026 + 1.34758i 0.155052 + 0.987906i \(0.450445\pi\)
−0.933078 + 0.359674i \(0.882888\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 711807. 1.23289e6i 0.0817384 0.141575i
\(598\) 0 0
\(599\) 3.88958e6 + 6.73695e6i 0.442930 + 0.767178i 0.997905 0.0646890i \(-0.0206055\pi\)
−0.554975 + 0.831867i \(0.687272\pi\)
\(600\) 0 0
\(601\) 8.62898e6 0.974480 0.487240 0.873268i \(-0.338004\pi\)
0.487240 + 0.873268i \(0.338004\pi\)
\(602\) 0 0
\(603\) −5.06534e6 −0.567304
\(604\) 0 0
\(605\) 2.59428e6 + 4.49343e6i 0.288157 + 0.499102i
\(606\) 0 0
\(607\) 3.54676e6 6.14317e6i 0.390715 0.676739i −0.601829 0.798625i \(-0.705561\pi\)
0.992544 + 0.121886i \(0.0388943\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −136542. + 236497.i −0.0147966 + 0.0256285i
\(612\) 0 0
\(613\) −2.26320e6 3.91998e6i −0.243261 0.421340i 0.718381 0.695650i \(-0.244884\pi\)
−0.961641 + 0.274311i \(0.911550\pi\)
\(614\) 0 0
\(615\) −1.27825e6 −0.136279
\(616\) 0 0
\(617\) −8.38009e6 −0.886208 −0.443104 0.896470i \(-0.646123\pi\)
−0.443104 + 0.896470i \(0.646123\pi\)
\(618\) 0 0
\(619\) 84171.0 + 145788.i 0.00882949 + 0.0152931i 0.870406 0.492334i \(-0.163856\pi\)
−0.861577 + 0.507627i \(0.830523\pi\)
\(620\) 0 0
\(621\) 1.18522e6 2.05286e6i 0.123330 0.213614i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 5.20805e6 9.02061e6i 0.533305 0.923711i
\(626\) 0 0
\(627\) −1.43289e6 2.48185e6i −0.145561 0.252119i
\(628\) 0 0
\(629\) 1.27066e7 1.28057
\(630\) 0 0
\(631\) 1.66208e7 1.66180 0.830899 0.556423i \(-0.187826\pi\)
0.830899 + 0.556423i \(0.187826\pi\)
\(632\) 0 0
\(633\) 1.27580e6 + 2.20974e6i 0.126553 + 0.219196i
\(634\) 0 0
\(635\) −1.02517e7 + 1.77565e7i −1.00893 + 1.74752i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −2.92819e6 + 5.07178e6i −0.283692 + 0.491369i
\(640\) 0 0
\(641\) −512367. 887446.i −0.0492534 0.0853094i 0.840348 0.542048i \(-0.182351\pi\)
−0.889601 + 0.456738i \(0.849018\pi\)
\(642\) 0 0
\(643\) −1.22962e7 −1.17286 −0.586428 0.810001i \(-0.699466\pi\)
−0.586428 + 0.810001i \(0.699466\pi\)
\(644\) 0 0
\(645\) −1.45275e7 −1.37496
\(646\) 0 0
\(647\) 1.08269e6 + 1.87527e6i 0.101682 + 0.176118i 0.912378 0.409350i \(-0.134244\pi\)
−0.810696 + 0.585467i \(0.800911\pi\)
\(648\) 0 0
\(649\) 677573. 1.17359e6i 0.0631458 0.109372i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 6.12507e6 1.06089e7i 0.562119 0.973619i −0.435192 0.900338i \(-0.643320\pi\)
0.997311 0.0732814i \(-0.0233471\pi\)
\(654\) 0 0
\(655\) −3.02158e6 5.23354e6i −0.275189 0.476642i
\(656\) 0 0
\(657\) −4.50983e6 −0.407612
\(658\) 0 0
\(659\) 1.18607e6 0.106389 0.0531944 0.998584i \(-0.483060\pi\)
0.0531944 + 0.998584i \(0.483060\pi\)
\(660\) 0 0
\(661\) 7.26909e6 + 1.25904e7i 0.647107 + 1.12082i 0.983811 + 0.179212i \(0.0573547\pi\)
−0.336703 + 0.941611i \(0.609312\pi\)
\(662\) 0 0
\(663\) −297689. + 515613.i −0.0263014 + 0.0455554i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −3.74095e6 + 6.47951e6i −0.325587 + 0.563933i
\(668\) 0 0
\(669\) −2.93011e6 5.07510e6i −0.253115 0.438409i
\(670\) 0 0
\(671\) 8.02151e6 0.687781
\(672\) 0 0
\(673\) −5.99405e6 −0.510132 −0.255066 0.966924i \(-0.582097\pi\)
−0.255066 + 0.966924i \(0.582097\pi\)
\(674\) 0 0
\(675\) 1.05732e6 + 1.83134e6i 0.0893201 + 0.154707i
\(676\) 0 0
\(677\) −1.04194e7 + 1.80470e7i −0.873721 + 1.51333i −0.0156016 + 0.999878i \(0.504966\pi\)
−0.858119 + 0.513451i \(0.828367\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −1.70232e6 + 2.94851e6i −0.140661 + 0.243632i
\(682\) 0 0
\(683\) −2.27783e6 3.94531e6i −0.186840 0.323616i 0.757355 0.653003i \(-0.226491\pi\)
−0.944195 + 0.329387i \(0.893158\pi\)
\(684\) 0 0
\(685\) −2.89080e7 −2.35392
\(686\) 0 0
\(687\) 200995. 0.0162478
\(688\) 0 0
\(689\) 819831. + 1.41999e6i 0.0657925 + 0.113956i
\(690\) 0 0
\(691\) −842712. + 1.45962e6i −0.0671404 + 0.116291i −0.897641 0.440726i \(-0.854721\pi\)
0.830501 + 0.557017i \(0.188054\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −1.06561e7 + 1.84569e7i −0.836827 + 1.44943i
\(696\) 0 0
\(697\) 949246. + 1.64414e6i 0.0740111 + 0.128191i
\(698\) 0 0
\(699\) 8.18046e6 0.633264
\(700\) 0 0
\(701\) 2.45349e6 0.188577 0.0942887 0.995545i \(-0.469942\pi\)
0.0942887 + 0.995545i \(0.469942\pi\)
\(702\) 0 0
\(703\) 4.08410e6 + 7.07387e6i 0.311680 + 0.539845i
\(704\) 0 0
\(705\) 1.49625e6 2.59158e6i 0.113379 0.196377i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 6.61569e6 1.14587e7i 0.494265 0.856092i −0.505713 0.862702i \(-0.668771\pi\)
0.999978 + 0.00660968i \(0.00210394\pi\)
\(710\) 0 0
\(711\) 161562. + 279834.i 0.0119858 + 0.0207600i
\(712\) 0 0
\(713\) 1.20865e7 0.890380
\(714\) 0 0
\(715\) 2.36255e6 0.172828
\(716\) 0 0
\(717\) 4.74134e6 + 8.21224e6i 0.344432 + 0.596573i
\(718\) 0 0
\(719\) −6.76685e6 + 1.17205e7i −0.488162 + 0.845522i −0.999907 0.0136156i \(-0.995666\pi\)
0.511745 + 0.859137i \(0.328999\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 4.73547e6 8.20208e6i 0.336913 0.583550i
\(724\) 0 0
\(725\) −3.33728e6 5.78033e6i −0.235802 0.408421i
\(726\) 0 0
\(727\) 5.29416e6 0.371502 0.185751 0.982597i \(-0.440528\pi\)
0.185751 + 0.982597i \(0.440528\pi\)
\(728\) 0 0
\(729\) 531441. 0.0370370
\(730\) 0 0
\(731\) 1.07883e7 + 1.86859e7i 0.746722 + 1.29336i
\(732\) 0 0
\(733\) 1.12507e7 1.94868e7i 0.773426 1.33961i −0.162249 0.986750i \(-0.551875\pi\)
0.935675 0.352863i \(-0.114792\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 1.49265e7 2.58535e7i 1.01225 1.75327i
\(738\) 0 0
\(739\) −8.03696e6 1.39204e7i −0.541353 0.937652i −0.998827 0.0484282i \(-0.984579\pi\)
0.457473 0.889223i \(-0.348755\pi\)
\(740\) 0 0
\(741\) −382728. −0.0256062
\(742\) 0 0
\(743\) −2.31604e6 −0.153913 −0.0769563 0.997034i \(-0.524520\pi\)
−0.0769563 + 0.997034i \(0.524520\pi\)
\(744\) 0 0
\(745\) −1.21477e7 2.10405e7i −0.801871 1.38888i
\(746\) 0 0
\(747\) 1.86674e6 3.23328e6i 0.122400 0.212003i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 3.88632e6 6.73130e6i 0.251442 0.435511i −0.712481 0.701692i \(-0.752428\pi\)
0.963923 + 0.266181i \(0.0857618\pi\)
\(752\) 0 0
\(753\) 4.37794e6 + 7.58282e6i 0.281373 + 0.487352i
\(754\) 0 0
\(755\) −3.35417e7 −2.14150
\(756\) 0 0
\(757\) −1.59716e7 −1.01300 −0.506498 0.862241i \(-0.669060\pi\)
−0.506498 + 0.862241i \(0.669060\pi\)
\(758\) 0 0
\(759\) 6.98518e6 + 1.20987e7i 0.440122 + 0.762313i
\(760\) 0 0
\(761\) −9.24701e6 + 1.60163e7i −0.578815 + 1.00254i 0.416801 + 0.908998i \(0.363151\pi\)
−0.995616 + 0.0935391i \(0.970182\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 3.26213e6 5.65018e6i 0.201534 0.349067i
\(766\) 0 0
\(767\) −90490.2 156734.i −0.00555409 0.00961997i
\(768\) 0 0
\(769\) −2.33524e7 −1.42402 −0.712009 0.702170i \(-0.752214\pi\)
−0.712009 + 0.702170i \(0.752214\pi\)
\(770\) 0 0
\(771\) −1.60153e7 −0.970283
\(772\) 0 0
\(773\) −3.62631e6 6.28095e6i −0.218281 0.378074i 0.736001 0.676980i \(-0.236712\pi\)
−0.954283 + 0.298906i \(0.903378\pi\)
\(774\) 0 0
\(775\) −5.39113e6 + 9.33771e6i −0.322423 + 0.558452i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −610204. + 1.05690e6i −0.0360273 + 0.0624011i
\(780\) 0 0
\(781\) −1.72575e7 2.98909e7i −1.01240 1.75352i
\(782\) 0 0
\(783\) −1.67741e6 −0.0977764
\(784\) 0 0
\(785\) 6.56742e6 0.380383
\(786\) 0 0