Properties

Label 588.6.i.e.373.1
Level $588$
Weight $6$
Character 588.373
Analytic conductor $94.306$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [588,6,Mod(361,588)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(588, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("588.361");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 588.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(94.3056860500\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 84)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 373.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 588.373
Dual form 588.6.i.e.361.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(4.50000 + 7.79423i) q^{3} +(-17.0000 + 29.4449i) q^{5} +(-40.5000 + 70.1481i) q^{9} +O(q^{10})\) \(q+(4.50000 + 7.79423i) q^{3} +(-17.0000 + 29.4449i) q^{5} +(-40.5000 + 70.1481i) q^{9} +(166.000 + 287.520i) q^{11} +1026.00 q^{13} -306.000 q^{15} +(461.000 + 798.475i) q^{17} +(226.000 - 391.443i) q^{19} +(1888.00 - 3270.11i) q^{23} +(984.500 + 1705.20i) q^{25} -729.000 q^{27} +1166.00 q^{29} +(-4896.00 - 8480.12i) q^{31} +(-1494.00 + 2587.68i) q^{33} +(-1195.00 + 2069.80i) q^{37} +(4617.00 + 7996.88i) q^{39} +7230.00 q^{41} +4652.00 q^{43} +(-1377.00 - 2385.03i) q^{45} +(12336.0 - 21366.6i) q^{47} +(-4149.00 + 7186.28i) q^{51} +(-555.000 - 961.288i) q^{53} -11288.0 q^{55} +4068.00 q^{57} +(23446.0 + 40609.7i) q^{59} +(-4881.00 + 8454.14i) q^{61} +(-17442.0 + 30210.4i) q^{65} +(13126.0 + 22734.9i) q^{67} +33984.0 q^{69} +65440.0 q^{71} +(-2803.00 - 4854.94i) q^{73} +(-8860.50 + 15346.8i) q^{75} +(4920.00 - 8521.69i) q^{79} +(-3280.50 - 5681.99i) q^{81} -61108.0 q^{83} -31348.0 q^{85} +(5247.00 + 9088.07i) q^{87} +(-31479.0 + 54523.2i) q^{89} +(44064.0 - 76321.1i) q^{93} +(7684.00 + 13309.1i) q^{95} +37838.0 q^{97} -26892.0 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 9 q^{3} - 34 q^{5} - 81 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 9 q^{3} - 34 q^{5} - 81 q^{9} + 332 q^{11} + 2052 q^{13} - 612 q^{15} + 922 q^{17} + 452 q^{19} + 3776 q^{23} + 1969 q^{25} - 1458 q^{27} + 2332 q^{29} - 9792 q^{31} - 2988 q^{33} - 2390 q^{37} + 9234 q^{39} + 14460 q^{41} + 9304 q^{43} - 2754 q^{45} + 24672 q^{47} - 8298 q^{51} - 1110 q^{53} - 22576 q^{55} + 8136 q^{57} + 46892 q^{59} - 9762 q^{61} - 34884 q^{65} + 26252 q^{67} + 67968 q^{69} + 130880 q^{71} - 5606 q^{73} - 17721 q^{75} + 9840 q^{79} - 6561 q^{81} - 122216 q^{83} - 62696 q^{85} + 10494 q^{87} - 62958 q^{89} + 88128 q^{93} + 15368 q^{95} + 75676 q^{97} - 53784 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/588\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(295\) \(493\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 4.50000 + 7.79423i 0.288675 + 0.500000i
\(4\) 0 0
\(5\) −17.0000 + 29.4449i −0.304105 + 0.526726i −0.977062 0.212956i \(-0.931691\pi\)
0.672956 + 0.739682i \(0.265024\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −40.5000 + 70.1481i −0.166667 + 0.288675i
\(10\) 0 0
\(11\) 166.000 + 287.520i 0.413644 + 0.716452i 0.995285 0.0969935i \(-0.0309226\pi\)
−0.581641 + 0.813445i \(0.697589\pi\)
\(12\) 0 0
\(13\) 1026.00 1.68379 0.841897 0.539638i \(-0.181439\pi\)
0.841897 + 0.539638i \(0.181439\pi\)
\(14\) 0 0
\(15\) −306.000 −0.351150
\(16\) 0 0
\(17\) 461.000 + 798.475i 0.386882 + 0.670099i 0.992028 0.126015i \(-0.0402187\pi\)
−0.605146 + 0.796114i \(0.706885\pi\)
\(18\) 0 0
\(19\) 226.000 391.443i 0.143623 0.248763i −0.785235 0.619198i \(-0.787458\pi\)
0.928858 + 0.370435i \(0.120791\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 1888.00 3270.11i 0.744188 1.28897i −0.206386 0.978471i \(-0.566170\pi\)
0.950573 0.310500i \(-0.100496\pi\)
\(24\) 0 0
\(25\) 984.500 + 1705.20i 0.315040 + 0.545665i
\(26\) 0 0
\(27\) −729.000 −0.192450
\(28\) 0 0
\(29\) 1166.00 0.257456 0.128728 0.991680i \(-0.458911\pi\)
0.128728 + 0.991680i \(0.458911\pi\)
\(30\) 0 0
\(31\) −4896.00 8480.12i −0.915034 1.58489i −0.806852 0.590754i \(-0.798830\pi\)
−0.108182 0.994131i \(-0.534503\pi\)
\(32\) 0 0
\(33\) −1494.00 + 2587.68i −0.238817 + 0.413644i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −1195.00 + 2069.80i −0.143504 + 0.248556i −0.928814 0.370547i \(-0.879170\pi\)
0.785310 + 0.619103i \(0.212504\pi\)
\(38\) 0 0
\(39\) 4617.00 + 7996.88i 0.486069 + 0.841897i
\(40\) 0 0
\(41\) 7230.00 0.671705 0.335853 0.941915i \(-0.390976\pi\)
0.335853 + 0.941915i \(0.390976\pi\)
\(42\) 0 0
\(43\) 4652.00 0.383679 0.191840 0.981426i \(-0.438555\pi\)
0.191840 + 0.981426i \(0.438555\pi\)
\(44\) 0 0
\(45\) −1377.00 2385.03i −0.101368 0.175575i
\(46\) 0 0
\(47\) 12336.0 21366.6i 0.814572 1.41088i −0.0950621 0.995471i \(-0.530305\pi\)
0.909635 0.415410i \(-0.136362\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −4149.00 + 7186.28i −0.223366 + 0.386882i
\(52\) 0 0
\(53\) −555.000 961.288i −0.0271396 0.0470072i 0.852137 0.523319i \(-0.175307\pi\)
−0.879276 + 0.476312i \(0.841973\pi\)
\(54\) 0 0
\(55\) −11288.0 −0.503165
\(56\) 0 0
\(57\) 4068.00 0.165842
\(58\) 0 0
\(59\) 23446.0 + 40609.7i 0.876877 + 1.51880i 0.854750 + 0.519041i \(0.173711\pi\)
0.0221275 + 0.999755i \(0.492956\pi\)
\(60\) 0 0
\(61\) −4881.00 + 8454.14i −0.167952 + 0.290901i −0.937700 0.347447i \(-0.887049\pi\)
0.769748 + 0.638348i \(0.220382\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −17442.0 + 30210.4i −0.512051 + 0.886898i
\(66\) 0 0
\(67\) 13126.0 + 22734.9i 0.357228 + 0.618737i 0.987497 0.157640i \(-0.0503886\pi\)
−0.630269 + 0.776377i \(0.717055\pi\)
\(68\) 0 0
\(69\) 33984.0 0.859314
\(70\) 0 0
\(71\) 65440.0 1.54063 0.770313 0.637666i \(-0.220100\pi\)
0.770313 + 0.637666i \(0.220100\pi\)
\(72\) 0 0
\(73\) −2803.00 4854.94i −0.0615625 0.106629i 0.833602 0.552366i \(-0.186275\pi\)
−0.895164 + 0.445737i \(0.852942\pi\)
\(74\) 0 0
\(75\) −8860.50 + 15346.8i −0.181888 + 0.315040i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 4920.00 8521.69i 0.0886946 0.153624i −0.818265 0.574841i \(-0.805064\pi\)
0.906960 + 0.421218i \(0.138397\pi\)
\(80\) 0 0
\(81\) −3280.50 5681.99i −0.0555556 0.0962250i
\(82\) 0 0
\(83\) −61108.0 −0.973650 −0.486825 0.873500i \(-0.661845\pi\)
−0.486825 + 0.873500i \(0.661845\pi\)
\(84\) 0 0
\(85\) −31348.0 −0.470611
\(86\) 0 0
\(87\) 5247.00 + 9088.07i 0.0743212 + 0.128728i
\(88\) 0 0
\(89\) −31479.0 + 54523.2i −0.421256 + 0.729636i −0.996063 0.0886527i \(-0.971744\pi\)
0.574807 + 0.818289i \(0.305077\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 44064.0 76321.1i 0.528295 0.915034i
\(94\) 0 0
\(95\) 7684.00 + 13309.1i 0.0873531 + 0.151300i
\(96\) 0 0
\(97\) 37838.0 0.408318 0.204159 0.978938i \(-0.434554\pi\)
0.204159 + 0.978938i \(0.434554\pi\)
\(98\) 0 0
\(99\) −26892.0 −0.275762
\(100\) 0 0
\(101\) −28073.0 48623.9i −0.273833 0.474292i 0.696007 0.718035i \(-0.254958\pi\)
−0.969840 + 0.243743i \(0.921625\pi\)
\(102\) 0 0
\(103\) −13196.0 + 22856.1i −0.122560 + 0.212280i −0.920777 0.390090i \(-0.872444\pi\)
0.798216 + 0.602371i \(0.205777\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −23562.0 + 40810.6i −0.198954 + 0.344598i −0.948190 0.317705i \(-0.897088\pi\)
0.749236 + 0.662304i \(0.230421\pi\)
\(108\) 0 0
\(109\) 110737. + 191802.i 0.892743 + 1.54628i 0.836573 + 0.547855i \(0.184556\pi\)
0.0561699 + 0.998421i \(0.482111\pi\)
\(110\) 0 0
\(111\) −21510.0 −0.165704
\(112\) 0 0
\(113\) 54194.0 0.399259 0.199630 0.979871i \(-0.436026\pi\)
0.199630 + 0.979871i \(0.436026\pi\)
\(114\) 0 0
\(115\) 64192.0 + 111184.i 0.452623 + 0.783965i
\(116\) 0 0
\(117\) −41553.0 + 71971.9i −0.280632 + 0.486069i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 25413.5 44017.5i 0.157798 0.273314i
\(122\) 0 0
\(123\) 32535.0 + 56352.3i 0.193905 + 0.335853i
\(124\) 0 0
\(125\) −173196. −0.991432
\(126\) 0 0
\(127\) −245760. −1.35208 −0.676039 0.736866i \(-0.736305\pi\)
−0.676039 + 0.736866i \(0.736305\pi\)
\(128\) 0 0
\(129\) 20934.0 + 36258.8i 0.110759 + 0.191840i
\(130\) 0 0
\(131\) −75134.0 + 130136.i −0.382524 + 0.662550i −0.991422 0.130698i \(-0.958278\pi\)
0.608899 + 0.793248i \(0.291612\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 12393.0 21465.3i 0.0585251 0.101368i
\(136\) 0 0
\(137\) 200819. + 347829.i 0.914120 + 1.58330i 0.808184 + 0.588930i \(0.200451\pi\)
0.105936 + 0.994373i \(0.466216\pi\)
\(138\) 0 0
\(139\) −374092. −1.64226 −0.821129 0.570743i \(-0.806655\pi\)
−0.821129 + 0.570743i \(0.806655\pi\)
\(140\) 0 0
\(141\) 222048. 0.940587
\(142\) 0 0
\(143\) 170316. + 294996.i 0.696491 + 1.20636i
\(144\) 0 0
\(145\) −19822.0 + 34332.7i −0.0782938 + 0.135609i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 228021. 394944.i 0.841413 1.45737i −0.0472874 0.998881i \(-0.515058\pi\)
0.888700 0.458489i \(-0.151609\pi\)
\(150\) 0 0
\(151\) 4012.00 + 6948.99i 0.0143192 + 0.0248016i 0.873096 0.487548i \(-0.162109\pi\)
−0.858777 + 0.512350i \(0.828775\pi\)
\(152\) 0 0
\(153\) −74682.0 −0.257921
\(154\) 0 0
\(155\) 332928. 1.11307
\(156\) 0 0
\(157\) 55039.0 + 95330.3i 0.178206 + 0.308661i 0.941266 0.337666i \(-0.109637\pi\)
−0.763060 + 0.646327i \(0.776304\pi\)
\(158\) 0 0
\(159\) 4995.00 8651.59i 0.0156691 0.0271396i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 1814.00 3141.94i 0.00534772 0.00926251i −0.863339 0.504624i \(-0.831631\pi\)
0.868687 + 0.495362i \(0.164964\pi\)
\(164\) 0 0
\(165\) −50796.0 87981.3i −0.145251 0.251582i
\(166\) 0 0
\(167\) −192824. −0.535020 −0.267510 0.963555i \(-0.586201\pi\)
−0.267510 + 0.963555i \(0.586201\pi\)
\(168\) 0 0
\(169\) 681383. 1.83516
\(170\) 0 0
\(171\) 18306.0 + 31706.9i 0.0478744 + 0.0829209i
\(172\) 0 0
\(173\) 78571.0 136089.i 0.199594 0.345707i −0.748803 0.662793i \(-0.769371\pi\)
0.948397 + 0.317086i \(0.102704\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −211014. + 365487.i −0.506265 + 0.876877i
\(178\) 0 0
\(179\) 223434. + 386999.i 0.521215 + 0.902770i 0.999696 + 0.0246724i \(0.00785427\pi\)
−0.478481 + 0.878098i \(0.658812\pi\)
\(180\) 0 0
\(181\) −805638. −1.82786 −0.913931 0.405869i \(-0.866969\pi\)
−0.913931 + 0.405869i \(0.866969\pi\)
\(182\) 0 0
\(183\) −87858.0 −0.193934
\(184\) 0 0
\(185\) −40630.0 70373.2i −0.0872806 0.151174i
\(186\) 0 0
\(187\) −153052. + 265094.i −0.320063 + 0.554365i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 373956. 647711.i 0.741715 1.28469i −0.209999 0.977702i \(-0.567346\pi\)
0.951714 0.306987i \(-0.0993206\pi\)
\(192\) 0 0
\(193\) 288767. + 500159.i 0.558026 + 0.966529i 0.997661 + 0.0683527i \(0.0217743\pi\)
−0.439635 + 0.898176i \(0.644892\pi\)
\(194\) 0 0
\(195\) −313956. −0.591265
\(196\) 0 0
\(197\) −771098. −1.41561 −0.707806 0.706407i \(-0.750315\pi\)
−0.707806 + 0.706407i \(0.750315\pi\)
\(198\) 0 0
\(199\) 278620. + 482584.i 0.498746 + 0.863854i 0.999999 0.00144716i \(-0.000460646\pi\)
−0.501253 + 0.865301i \(0.667127\pi\)
\(200\) 0 0
\(201\) −118134. + 204614.i −0.206246 + 0.357228i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −122910. + 212886.i −0.204269 + 0.353804i
\(206\) 0 0
\(207\) 152928. + 264879.i 0.248063 + 0.429657i
\(208\) 0 0
\(209\) 150064. 0.237635
\(210\) 0 0
\(211\) −19660.0 −0.0304003 −0.0152001 0.999884i \(-0.504839\pi\)
−0.0152001 + 0.999884i \(0.504839\pi\)
\(212\) 0 0
\(213\) 294480. + 510054.i 0.444741 + 0.770313i
\(214\) 0 0
\(215\) −79084.0 + 136978.i −0.116679 + 0.202094i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 25227.0 43694.4i 0.0355431 0.0615625i
\(220\) 0 0
\(221\) 472986. + 819236.i 0.651430 + 1.12831i
\(222\) 0 0
\(223\) 896848. 1.20769 0.603847 0.797100i \(-0.293634\pi\)
0.603847 + 0.797100i \(0.293634\pi\)
\(224\) 0 0
\(225\) −159489. −0.210027
\(226\) 0 0
\(227\) 117114. + 202847.i 0.150850 + 0.261279i 0.931540 0.363639i \(-0.118466\pi\)
−0.780690 + 0.624918i \(0.785132\pi\)
\(228\) 0 0
\(229\) −517813. + 896878.i −0.652506 + 1.13017i 0.330007 + 0.943978i \(0.392949\pi\)
−0.982513 + 0.186194i \(0.940385\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −228557. + 395872.i −0.275807 + 0.477711i −0.970338 0.241751i \(-0.922278\pi\)
0.694532 + 0.719462i \(0.255612\pi\)
\(234\) 0 0
\(235\) 419424. + 726464.i 0.495432 + 0.858113i
\(236\) 0 0
\(237\) 88560.0 0.102416
\(238\) 0 0
\(239\) 676344. 0.765901 0.382951 0.923769i \(-0.374908\pi\)
0.382951 + 0.923769i \(0.374908\pi\)
\(240\) 0 0
\(241\) −48335.0 83718.7i −0.0536067 0.0928495i 0.837977 0.545706i \(-0.183738\pi\)
−0.891584 + 0.452856i \(0.850405\pi\)
\(242\) 0 0
\(243\) 29524.5 51137.9i 0.0320750 0.0555556i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 231876. 401621.i 0.241832 0.418865i
\(248\) 0 0
\(249\) −274986. 476290.i −0.281069 0.486825i
\(250\) 0 0
\(251\) −288876. −0.289419 −0.144710 0.989474i \(-0.546225\pi\)
−0.144710 + 0.989474i \(0.546225\pi\)
\(252\) 0 0
\(253\) 1.25363e6 1.23131
\(254\) 0 0
\(255\) −141066. 244333.i −0.135854 0.235306i
\(256\) 0 0
\(257\) −355923. + 616477.i −0.336142 + 0.582216i −0.983704 0.179798i \(-0.942456\pi\)
0.647561 + 0.762013i \(0.275789\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −47223.0 + 81792.6i −0.0429094 + 0.0743212i
\(262\) 0 0
\(263\) 936840. + 1.62265e6i 0.835172 + 1.44656i 0.893890 + 0.448286i \(0.147965\pi\)
−0.0587179 + 0.998275i \(0.518701\pi\)
\(264\) 0 0
\(265\) 37740.0 0.0330132
\(266\) 0 0
\(267\) −566622. −0.486424
\(268\) 0 0
\(269\) −688301. 1.19217e6i −0.579960 1.00452i −0.995483 0.0949371i \(-0.969735\pi\)
0.415524 0.909582i \(-0.363598\pi\)
\(270\) 0 0
\(271\) −390888. + 677038.i −0.323317 + 0.560002i −0.981170 0.193144i \(-0.938131\pi\)
0.657853 + 0.753146i \(0.271465\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −326854. + 566128.i −0.260629 + 0.451422i
\(276\) 0 0
\(277\) −1.03466e6 1.79208e6i −0.810210 1.40333i −0.912717 0.408593i \(-0.866019\pi\)
0.102506 0.994732i \(-0.467314\pi\)
\(278\) 0 0
\(279\) 793152. 0.610023
\(280\) 0 0
\(281\) 1.87911e6 1.41967 0.709835 0.704368i \(-0.248770\pi\)
0.709835 + 0.704368i \(0.248770\pi\)
\(282\) 0 0
\(283\) 335078. + 580372.i 0.248702 + 0.430765i 0.963166 0.268907i \(-0.0866626\pi\)
−0.714464 + 0.699673i \(0.753329\pi\)
\(284\) 0 0
\(285\) −69156.0 + 119782.i −0.0504333 + 0.0873531i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 284886. 493438.i 0.200645 0.347526i
\(290\) 0 0
\(291\) 170271. + 294918.i 0.117871 + 0.204159i
\(292\) 0 0
\(293\) −1.69611e6 −1.15421 −0.577105 0.816670i \(-0.695818\pi\)
−0.577105 + 0.816670i \(0.695818\pi\)
\(294\) 0 0
\(295\) −1.59433e6 −1.06665
\(296\) 0 0
\(297\) −121014. 209602.i −0.0796058 0.137881i
\(298\) 0 0
\(299\) 1.93709e6 3.35513e6i 1.25306 2.17036i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 252657. 437615.i 0.158097 0.273833i
\(304\) 0 0
\(305\) −165954. 287441.i −0.102150 0.176929i
\(306\) 0 0
\(307\) 1.09459e6 0.662834 0.331417 0.943484i \(-0.392473\pi\)
0.331417 + 0.943484i \(0.392473\pi\)
\(308\) 0 0
\(309\) −237528. −0.141520
\(310\) 0 0
\(311\) 606244. + 1.05005e6i 0.355424 + 0.615612i 0.987190 0.159547i \(-0.0510032\pi\)
−0.631767 + 0.775159i \(0.717670\pi\)
\(312\) 0 0
\(313\) 847181. 1.46736e6i 0.488782 0.846596i −0.511135 0.859501i \(-0.670775\pi\)
0.999917 + 0.0129051i \(0.00410795\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −166671. + 288683.i −0.0931562 + 0.161351i −0.908838 0.417150i \(-0.863029\pi\)
0.815681 + 0.578501i \(0.196362\pi\)
\(318\) 0 0
\(319\) 193556. + 335249.i 0.106495 + 0.184455i
\(320\) 0 0
\(321\) −424116. −0.229732
\(322\) 0 0
\(323\) 416744. 0.222261
\(324\) 0 0
\(325\) 1.01010e6 + 1.74954e6i 0.530462 + 0.918788i
\(326\) 0 0
\(327\) −996633. + 1.72622e6i −0.515425 + 0.892743i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −918070. + 1.59014e6i −0.460581 + 0.797749i −0.998990 0.0449342i \(-0.985692\pi\)
0.538409 + 0.842684i \(0.319026\pi\)
\(332\) 0 0
\(333\) −96795.0 167654.i −0.0478346 0.0828520i
\(334\) 0 0
\(335\) −892568. −0.434540
\(336\) 0 0
\(337\) −973518. −0.466949 −0.233474 0.972363i \(-0.575009\pi\)
−0.233474 + 0.972363i \(0.575009\pi\)
\(338\) 0 0
\(339\) 243873. + 422400.i 0.115256 + 0.199630i
\(340\) 0 0
\(341\) 1.62547e6 2.81540e6i 0.756996 1.31116i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −577728. + 1.00065e6i −0.261322 + 0.452623i
\(346\) 0 0
\(347\) −1.69905e6 2.94284e6i −0.757500 1.31203i −0.944122 0.329596i \(-0.893087\pi\)
0.186622 0.982432i \(-0.440246\pi\)
\(348\) 0 0
\(349\) 34370.0 0.0151048 0.00755242 0.999971i \(-0.497596\pi\)
0.00755242 + 0.999971i \(0.497596\pi\)
\(350\) 0 0
\(351\) −747954. −0.324046
\(352\) 0 0
\(353\) −1.25120e6 2.16713e6i −0.534427 0.925654i −0.999191 0.0402198i \(-0.987194\pi\)
0.464764 0.885435i \(-0.346139\pi\)
\(354\) 0 0
\(355\) −1.11248e6 + 1.92687e6i −0.468513 + 0.811488i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 1.51400e6 2.62232e6i 0.619997 1.07387i −0.369488 0.929235i \(-0.620467\pi\)
0.989486 0.144631i \(-0.0461996\pi\)
\(360\) 0 0
\(361\) 1.13590e6 + 1.96743e6i 0.458745 + 0.794569i
\(362\) 0 0
\(363\) 457443. 0.182209
\(364\) 0 0
\(365\) 190604. 0.0748859
\(366\) 0 0
\(367\) −1.60472e6 2.77946e6i −0.621919 1.07720i −0.989128 0.147057i \(-0.953020\pi\)
0.367209 0.930139i \(-0.380314\pi\)
\(368\) 0 0
\(369\) −292815. + 507170.i −0.111951 + 0.193905i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −757523. + 1.31207e6i −0.281919 + 0.488297i −0.971857 0.235570i \(-0.924304\pi\)
0.689939 + 0.723868i \(0.257637\pi\)
\(374\) 0 0
\(375\) −779382. 1.34993e6i −0.286202 0.495716i
\(376\) 0 0
\(377\) 1.19632e6 0.433503
\(378\) 0 0
\(379\) 643516. 0.230124 0.115062 0.993358i \(-0.463293\pi\)
0.115062 + 0.993358i \(0.463293\pi\)
\(380\) 0 0
\(381\) −1.10592e6 1.91551e6i −0.390311 0.676039i
\(382\) 0 0
\(383\) 2.37541e6 4.11433e6i 0.827449 1.43318i −0.0725840 0.997362i \(-0.523125\pi\)
0.900033 0.435822i \(-0.143542\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −188406. + 326329.i −0.0639466 + 0.110759i
\(388\) 0 0
\(389\) −189787. 328721.i −0.0635905 0.110142i 0.832477 0.554059i \(-0.186922\pi\)
−0.896068 + 0.443917i \(0.853588\pi\)
\(390\) 0 0
\(391\) 3.48147e6 1.15165
\(392\) 0 0
\(393\) −1.35241e6 −0.441700
\(394\) 0 0
\(395\) 167280. + 289737.i 0.0539450 + 0.0934355i
\(396\) 0 0
\(397\) −2.71066e6 + 4.69501e6i −0.863176 + 1.49507i 0.00567007 + 0.999984i \(0.498195\pi\)
−0.868847 + 0.495082i \(0.835138\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 3.10322e6 5.37493e6i 0.963720 1.66921i 0.250705 0.968064i \(-0.419338\pi\)
0.713015 0.701149i \(-0.247329\pi\)
\(402\) 0 0
\(403\) −5.02330e6 8.70060e6i −1.54073 2.66862i
\(404\) 0 0
\(405\) 223074. 0.0675789
\(406\) 0 0
\(407\) −793480. −0.237438
\(408\) 0 0
\(409\) −2.12699e6 3.68405e6i −0.628719 1.08897i −0.987809 0.155670i \(-0.950246\pi\)
0.359090 0.933303i \(-0.383087\pi\)
\(410\) 0 0
\(411\) −1.80737e6 + 3.13046e6i −0.527768 + 0.914120i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 1.03884e6 1.79932e6i 0.296092 0.512846i
\(416\) 0 0
\(417\) −1.68341e6 2.91576e6i −0.474079 0.821129i
\(418\) 0 0
\(419\) 725484. 0.201880 0.100940 0.994893i \(-0.467815\pi\)
0.100940 + 0.994893i \(0.467815\pi\)
\(420\) 0 0
\(421\) −6.49867e6 −1.78698 −0.893489 0.449086i \(-0.851750\pi\)
−0.893489 + 0.449086i \(0.851750\pi\)
\(422\) 0 0
\(423\) 999216. + 1.73069e6i 0.271524 + 0.470294i
\(424\) 0 0
\(425\) −907709. + 1.57220e6i −0.243767 + 0.422216i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −1.53284e6 + 2.65496e6i −0.402119 + 0.696491i
\(430\) 0 0
\(431\) 982620. + 1.70195e6i 0.254796 + 0.441319i 0.964840 0.262838i \(-0.0846584\pi\)
−0.710044 + 0.704157i \(0.751325\pi\)
\(432\) 0 0
\(433\) −4.33531e6 −1.11122 −0.555611 0.831442i \(-0.687516\pi\)
−0.555611 + 0.831442i \(0.687516\pi\)
\(434\) 0 0
\(435\) −356796. −0.0904059
\(436\) 0 0
\(437\) −853376. 1.47809e6i −0.213765 0.370252i
\(438\) 0 0
\(439\) 3.23874e6 5.60966e6i 0.802075 1.38923i −0.116174 0.993229i \(-0.537063\pi\)
0.918248 0.396005i \(-0.129604\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −2.16348e6 + 3.74726e6i −0.523774 + 0.907203i 0.475843 + 0.879530i \(0.342143\pi\)
−0.999617 + 0.0276730i \(0.991190\pi\)
\(444\) 0 0
\(445\) −1.07029e6 1.85379e6i −0.256212 0.443773i
\(446\) 0 0
\(447\) 4.10438e6 0.971580
\(448\) 0 0
\(449\) 482210. 0.112881 0.0564404 0.998406i \(-0.482025\pi\)
0.0564404 + 0.998406i \(0.482025\pi\)
\(450\) 0 0
\(451\) 1.20018e6 + 2.07877e6i 0.277847 + 0.481244i
\(452\) 0 0
\(453\) −36108.0 + 62540.9i −0.00826719 + 0.0143192i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −4.26082e6 + 7.37996e6i −0.954339 + 1.65296i −0.218466 + 0.975845i \(0.570105\pi\)
−0.735873 + 0.677120i \(0.763228\pi\)
\(458\) 0 0
\(459\) −336069. 582089.i −0.0744555 0.128961i
\(460\) 0 0
\(461\) 5.99857e6 1.31461 0.657303 0.753627i \(-0.271697\pi\)
0.657303 + 0.753627i \(0.271697\pi\)
\(462\) 0 0
\(463\) −4.59483e6 −0.996133 −0.498066 0.867139i \(-0.665956\pi\)
−0.498066 + 0.867139i \(0.665956\pi\)
\(464\) 0 0
\(465\) 1.49818e6 + 2.59492e6i 0.321315 + 0.556533i
\(466\) 0 0
\(467\) 4.42165e6 7.65852e6i 0.938193 1.62500i 0.169354 0.985555i \(-0.445832\pi\)
0.768839 0.639443i \(-0.220835\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −495351. + 857973.i −0.102887 + 0.178206i
\(472\) 0 0
\(473\) 772232. + 1.33755e6i 0.158707 + 0.274888i
\(474\) 0 0
\(475\) 889988. 0.180988
\(476\) 0 0
\(477\) 89910.0 0.0180931
\(478\) 0 0
\(479\) −3.28031e6 5.68167e6i −0.653245 1.13145i −0.982331 0.187154i \(-0.940074\pi\)
0.329085 0.944300i \(-0.393260\pi\)
\(480\) 0 0
\(481\) −1.22607e6 + 2.12362e6i −0.241631 + 0.418517i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −643246. + 1.11413e6i −0.124172 + 0.215072i
\(486\) 0 0
\(487\) −3.93886e6 6.82231e6i −0.752572 1.30349i −0.946572 0.322492i \(-0.895480\pi\)
0.194000 0.981002i \(-0.437854\pi\)
\(488\) 0 0
\(489\) 32652.0 0.00617501
\(490\) 0 0
\(491\) 637860. 0.119405 0.0597024 0.998216i \(-0.480985\pi\)
0.0597024 + 0.998216i \(0.480985\pi\)
\(492\) 0 0
\(493\) 537526. + 931022.i 0.0996052 + 0.172521i
\(494\) 0 0
\(495\) 457164. 791831.i 0.0838608 0.145251i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 2.46823e6 4.27510e6i 0.443746 0.768590i −0.554218 0.832371i \(-0.686983\pi\)
0.997964 + 0.0637812i \(0.0203160\pi\)
\(500\) 0 0
\(501\) −867708. 1.50291e6i −0.154447 0.267510i
\(502\) 0 0
\(503\) −226872. −0.0399817 −0.0199908 0.999800i \(-0.506364\pi\)
−0.0199908 + 0.999800i \(0.506364\pi\)
\(504\) 0 0
\(505\) 1.90896e6 0.333096
\(506\) 0 0
\(507\) 3.06622e6 + 5.31085e6i 0.529766 + 0.917581i
\(508\) 0 0
\(509\) 2.68702e6 4.65405e6i 0.459702 0.796227i −0.539243 0.842150i \(-0.681290\pi\)
0.998945 + 0.0459231i \(0.0146229\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −164754. + 285362.i −0.0276403 + 0.0478744i
\(514\) 0 0
\(515\) −448664. 777109.i −0.0745424 0.129111i
\(516\) 0 0
\(517\) 8.19110e6 1.34777
\(518\) 0 0
\(519\) 1.41428e6 0.230471
\(520\) 0 0
\(521\) −4.80710e6 8.32613e6i −0.775869 1.34384i −0.934305 0.356475i \(-0.883978\pi\)
0.158436 0.987369i \(-0.449355\pi\)
\(522\) 0 0
\(523\) 2.48215e6 4.29921e6i 0.396802 0.687281i −0.596527 0.802593i \(-0.703453\pi\)
0.993329 + 0.115312i \(0.0367866\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 4.51411e6 7.81867e6i 0.708020 1.22633i
\(528\) 0 0
\(529\) −3.91092e6 6.77391e6i −0.607630 1.05245i
\(530\) 0 0
\(531\) −3.79825e6 −0.584585
\(532\) 0 0
\(533\) 7.41798e6 1.13101
\(534\) 0 0
\(535\) −801108. 1.38756e6i −0.121006 0.209588i
\(536\) 0 0
\(537\) −2.01091e6 + 3.48299e6i −0.300923 + 0.521215i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −6.02246e6 + 1.04312e7i −0.884668 + 1.53229i −0.0385747 + 0.999256i \(0.512282\pi\)
−0.846094 + 0.533034i \(0.821052\pi\)
\(542\) 0 0
\(543\) −3.62537e6 6.27933e6i −0.527658 0.913931i
\(544\) 0 0
\(545\) −7.53012e6 −1.08595
\(546\) 0 0
\(547\) 4.23695e6 0.605459 0.302730 0.953077i \(-0.402102\pi\)
0.302730 + 0.953077i \(0.402102\pi\)
\(548\) 0 0
\(549\) −395361. 684785.i −0.0559839 0.0969669i
\(550\) 0 0
\(551\) 263516. 456423.i 0.0369767 0.0640455i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 365670. 633359.i 0.0503915 0.0872806i
\(556\) 0 0
\(557\) 5.12874e6 + 8.88325e6i 0.700444 + 1.21320i 0.968311 + 0.249748i \(0.0803478\pi\)
−0.267867 + 0.963456i \(0.586319\pi\)
\(558\) 0 0
\(559\) 4.77295e6 0.646037
\(560\) 0 0
\(561\) −2.75494e6 −0.369577
\(562\) 0 0
\(563\) −2.70389e6 4.68327e6i −0.359515 0.622699i 0.628365 0.777919i \(-0.283725\pi\)
−0.987880 + 0.155220i \(0.950391\pi\)
\(564\) 0 0
\(565\) −921298. + 1.59573e6i −0.121417 + 0.210300i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −2.69484e6 + 4.66759e6i −0.348941 + 0.604383i −0.986062 0.166381i \(-0.946792\pi\)
0.637121 + 0.770764i \(0.280125\pi\)
\(570\) 0 0
\(571\) 4.12276e6 + 7.14083e6i 0.529173 + 0.916555i 0.999421 + 0.0340207i \(0.0108312\pi\)
−0.470248 + 0.882534i \(0.655835\pi\)
\(572\) 0 0
\(573\) 6.73121e6 0.856459
\(574\) 0 0
\(575\) 7.43494e6 0.937795
\(576\) 0 0
\(577\) −577039. 999461.i −0.0721549 0.124976i 0.827691 0.561185i \(-0.189654\pi\)
−0.899845 + 0.436209i \(0.856321\pi\)
\(578\) 0 0
\(579\) −2.59890e6 + 4.50143e6i −0.322176 + 0.558026i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 184260. 319148.i 0.0224522 0.0388884i
\(584\) 0 0
\(585\) −1.41280e6 2.44704e6i −0.170684 0.295633i
\(586\) 0 0
\(587\) 7.16464e6 0.858221 0.429111 0.903252i \(-0.358827\pi\)
0.429111 + 0.903252i \(0.358827\pi\)
\(588\) 0 0
\(589\) −4.42598e6 −0.525680
\(590\) 0 0
\(591\) −3.46994e6 6.01011e6i −0.408652 0.707806i
\(592\) 0 0
\(593\) 7.27670e6 1.26036e7i 0.849763 1.47183i −0.0316568 0.999499i \(-0.510078\pi\)
0.881420 0.472334i \(-0.156588\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −2.50758e6 + 4.34326e6i −0.287951 + 0.498746i
\(598\) 0 0
\(599\) 5.21599e6 + 9.03436e6i 0.593977 + 1.02880i 0.993690 + 0.112159i \(0.0357765\pi\)
−0.399713 + 0.916640i \(0.630890\pi\)
\(600\) 0 0
\(601\) −416858. −0.0470763 −0.0235381 0.999723i \(-0.507493\pi\)
−0.0235381 + 0.999723i \(0.507493\pi\)
\(602\) 0 0
\(603\) −2.12641e6 −0.238152
\(604\) 0 0
\(605\) 864059. + 1.49659e6i 0.0959743 + 0.166232i
\(606\) 0 0
\(607\) −3.95417e6 + 6.84882e6i −0.435596 + 0.754474i −0.997344 0.0728345i \(-0.976796\pi\)
0.561749 + 0.827308i \(0.310129\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 1.26567e7 2.19221e7i 1.37157 2.37563i
\(612\) 0 0
\(613\) 5.68807e6 + 9.85202e6i 0.611383 + 1.05895i 0.991007 + 0.133806i \(0.0427200\pi\)
−0.379624 + 0.925141i \(0.623947\pi\)
\(614\) 0 0
\(615\) −2.21238e6 −0.235870
\(616\) 0 0
\(617\) −8.77271e6 −0.927728 −0.463864 0.885906i \(-0.653537\pi\)
−0.463864 + 0.885906i \(0.653537\pi\)
\(618\) 0 0
\(619\) 7.20551e6 + 1.24803e7i 0.755854 + 1.30918i 0.944948 + 0.327219i \(0.106112\pi\)
−0.189094 + 0.981959i \(0.560555\pi\)
\(620\) 0 0
\(621\) −1.37635e6 + 2.38391e6i −0.143219 + 0.248063i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −132230. + 229030.i −0.0135404 + 0.0234527i
\(626\) 0 0
\(627\) 675288. + 1.16963e6i 0.0685994 + 0.118818i
\(628\) 0 0
\(629\) −2.20358e6 −0.222076
\(630\) 0 0
\(631\) −1.29466e7 −1.29444 −0.647221 0.762303i \(-0.724069\pi\)
−0.647221 + 0.762303i \(0.724069\pi\)
\(632\) 0 0
\(633\) −88470.0 153235.i −0.00877580 0.0152001i
\(634\) 0 0
\(635\) 4.17792e6 7.23637e6i 0.411174 0.712175i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −2.65032e6 + 4.59049e6i −0.256771 + 0.444741i
\(640\) 0 0
\(641\) 2.44517e6 + 4.23517e6i 0.235052 + 0.407123i 0.959288 0.282430i \(-0.0911405\pi\)
−0.724235 + 0.689553i \(0.757807\pi\)
\(642\) 0 0
\(643\) −1.22604e6 −0.116943 −0.0584717 0.998289i \(-0.518623\pi\)
−0.0584717 + 0.998289i \(0.518623\pi\)
\(644\) 0 0
\(645\) −1.42351e6 −0.134729
\(646\) 0 0
\(647\) 6.05492e6 + 1.04874e7i 0.568654 + 0.984937i 0.996699 + 0.0811802i \(0.0258689\pi\)
−0.428046 + 0.903757i \(0.640798\pi\)
\(648\) 0 0
\(649\) −7.78407e6 + 1.34824e7i −0.725429 + 1.25648i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −4.64349e6 + 8.04276e6i −0.426149 + 0.738111i −0.996527 0.0832708i \(-0.973463\pi\)
0.570378 + 0.821382i \(0.306797\pi\)
\(654\) 0 0
\(655\) −2.55456e6 4.42462e6i −0.232655 0.402970i
\(656\) 0 0
\(657\) 454086. 0.0410416
\(658\) 0 0
\(659\) 451612. 0.0405090 0.0202545 0.999795i \(-0.493552\pi\)
0.0202545 + 0.999795i \(0.493552\pi\)
\(660\) 0 0
\(661\) −927541. 1.60655e6i −0.0825714 0.143018i 0.821782 0.569801i \(-0.192980\pi\)
−0.904354 + 0.426784i \(0.859647\pi\)
\(662\) 0 0
\(663\) −4.25687e6 + 7.37312e6i −0.376103 + 0.651430i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 2.20141e6 3.81295e6i 0.191596 0.331854i
\(668\) 0 0
\(669\) 4.03582e6 + 6.99024e6i 0.348631 + 0.603847i
\(670\) 0 0
\(671\) −3.24098e6 −0.277889
\(672\) 0 0
\(673\) 2.14534e7 1.82582 0.912911 0.408158i \(-0.133829\pi\)
0.912911 + 0.408158i \(0.133829\pi\)
\(674\) 0 0
\(675\) −717700. 1.24309e6i −0.0606295 0.105013i
\(676\) 0 0
\(677\) 7.84934e6 1.35954e7i 0.658205 1.14004i −0.322875 0.946442i \(-0.604649\pi\)
0.981080 0.193603i \(-0.0620173\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −1.05403e6 + 1.82563e6i −0.0870931 + 0.150850i
\(682\) 0 0
\(683\) −7.01248e6 1.21460e7i −0.575201 0.996278i −0.996020 0.0891332i \(-0.971590\pi\)
0.420818 0.907145i \(-0.361743\pi\)
\(684\) 0 0
\(685\) −1.36557e7 −1.11196
\(686\) 0 0
\(687\) −9.32063e6 −0.753449
\(688\) 0 0
\(689\) −569430. 986282.i −0.0456975 0.0791504i
\(690\) 0 0
\(691\) −9.49093e6 + 1.64388e7i −0.756160 + 1.30971i 0.188635 + 0.982047i \(0.439594\pi\)
−0.944795 + 0.327661i \(0.893740\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 6.35956e6 1.10151e7i 0.499419 0.865020i
\(696\) 0 0
\(697\) 3.33303e6 + 5.77298e6i 0.259871 + 0.450109i
\(698\) 0 0
\(699\) −4.11403e6 −0.318474
\(700\) 0 0
\(701\) 2.22806e7 1.71250 0.856251 0.516560i \(-0.172788\pi\)
0.856251 + 0.516560i \(0.172788\pi\)
\(702\) 0 0
\(703\) 540140. + 935550.i 0.0412210 + 0.0713968i
\(704\) 0 0
\(705\) −3.77482e6 + 6.53817e6i −0.286038 + 0.495432i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 238133. 412458.i 0.0177911 0.0308152i −0.856993 0.515328i \(-0.827670\pi\)
0.874784 + 0.484513i \(0.161003\pi\)
\(710\) 0 0
\(711\) 398520. + 690257.i 0.0295649 + 0.0512079i
\(712\) 0 0
\(713\) −3.69746e7 −2.72383
\(714\) 0 0
\(715\) −1.15815e7 −0.847226
\(716\) 0 0
\(717\) 3.04355e6 + 5.27158e6i 0.221097 + 0.382951i
\(718\) 0 0
\(719\) −131784. + 228257.i −0.00950693 + 0.0164665i −0.870740 0.491744i \(-0.836360\pi\)
0.861233 + 0.508211i \(0.169693\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 435015. 753468.i 0.0309498 0.0536067i
\(724\) 0 0
\(725\) 1.14793e6 + 1.98827e6i 0.0811090 + 0.140485i
\(726\) 0 0
\(727\) −9.28319e6 −0.651420 −0.325710 0.945470i \(-0.605603\pi\)
−0.325710 + 0.945470i \(0.605603\pi\)
\(728\) 0 0
\(729\) 531441. 0.0370370
\(730\) 0 0
\(731\) 2.14457e6 + 3.71451e6i 0.148439 + 0.257103i
\(732\) 0 0
\(733\) −9.47737e6 + 1.64153e7i −0.651520 + 1.12847i 0.331234 + 0.943549i \(0.392535\pi\)
−0.982754 + 0.184917i \(0.940798\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −4.35783e6 + 7.54799e6i −0.295530 + 0.511873i
\(738\) 0 0
\(739\) −9.77270e6 1.69268e7i −0.658269 1.14016i −0.981064 0.193686i \(-0.937956\pi\)
0.322795 0.946469i \(-0.395378\pi\)
\(740\) 0 0
\(741\) 4.17377e6 0.279243
\(742\) 0 0
\(743\) 1.54683e7 1.02795 0.513973 0.857806i \(-0.328173\pi\)
0.513973 + 0.857806i \(0.328173\pi\)
\(744\) 0 0
\(745\) 7.75271e6 + 1.34281e7i 0.511756 + 0.886388i
\(746\) 0 0
\(747\) 2.47487e6 4.28661e6i 0.162275 0.281069i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 7.25938e6 1.25736e7i 0.469677 0.813505i −0.529722 0.848171i \(-0.677704\pi\)
0.999399 + 0.0346668i \(0.0110370\pi\)
\(752\) 0 0
\(753\) −1.29994e6 2.25157e6i −0.0835481 0.144710i
\(754\) 0 0
\(755\) −272816. −0.0174182
\(756\) 0 0
\(757\) 8.54477e6 0.541952 0.270976 0.962586i \(-0.412654\pi\)
0.270976 + 0.962586i \(0.412654\pi\)
\(758\) 0 0
\(759\) 5.64134e6 + 9.77109e6i 0.355450 + 0.615657i
\(760\) 0 0
\(761\) −4.25199e6 + 7.36466e6i −0.266153 + 0.460990i −0.967865 0.251471i \(-0.919086\pi\)
0.701712 + 0.712460i \(0.252419\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 1.26959e6 2.19900e6i 0.0784352 0.135854i
\(766\) 0 0
\(767\) 2.40556e7 + 4.16655e7i 1.47648 + 2.55734i
\(768\) 0 0
\(769\) 1.66581e7 1.01580 0.507901 0.861415i \(-0.330422\pi\)
0.507901 + 0.861415i \(0.330422\pi\)
\(770\) 0 0
\(771\) −6.40661e6 −0.388144
\(772\) 0 0
\(773\) 1.08663e7 + 1.88210e7i 0.654083 + 1.13290i 0.982123 + 0.188241i \(0.0602786\pi\)
−0.328040 + 0.944664i \(0.606388\pi\)
\(774\) 0 0
\(775\) 9.64022e6 1.66974e7i 0.576545 0.998604i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 1.63398e6 2.83014e6i 0.0964724 0.167095i
\(780\) 0 0
\(781\) 1.08630e7 + 1.88153e7i 0.637270 + 1.10378i
\(782\) 0 0
\(783\) −850014. −0.0495475
\(784\) 0 0
\(785\) −3.74265e6 −0.216773
\(786\) 0 0