Properties

Label 588.6.a.n.1.4
Level $588$
Weight $6$
Character 588.1
Self dual yes
Analytic conductor $94.306$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [588,6,Mod(1,588)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(588, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("588.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 588.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(94.3056860500\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 699x^{2} - 686x + 59664 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{3}\cdot 3^{2}\cdot 7 \)
Twist minimal: no (minimal twist has level 84)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(9.18135\) of defining polynomial
Character \(\chi\) \(=\) 588.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-9.00000 q^{3} +78.6718 q^{5} +81.0000 q^{9} +O(q^{10})\) \(q-9.00000 q^{3} +78.6718 q^{5} +81.0000 q^{9} +691.519 q^{11} +818.732 q^{13} -708.046 q^{15} +1109.28 q^{17} -573.046 q^{19} +2517.60 q^{23} +3064.25 q^{25} -729.000 q^{27} -3258.19 q^{29} +10119.1 q^{31} -6223.67 q^{33} +4869.62 q^{37} -7368.59 q^{39} -13094.3 q^{41} -9303.64 q^{43} +6372.41 q^{45} +12905.8 q^{47} -9983.48 q^{51} -19540.2 q^{53} +54403.0 q^{55} +5157.42 q^{57} -25120.5 q^{59} -31362.2 q^{61} +64411.1 q^{65} +55943.8 q^{67} -22658.4 q^{69} +20501.0 q^{71} -67649.9 q^{73} -27578.2 q^{75} +14079.9 q^{79} +6561.00 q^{81} -77129.1 q^{83} +87268.6 q^{85} +29323.7 q^{87} +320.793 q^{89} -91071.9 q^{93} -45082.6 q^{95} -112009. q^{97} +56013.0 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 36 q^{3} + 324 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 36 q^{3} + 324 q^{9} + 462 q^{11} - 602 q^{13} - 228 q^{17} - 358 q^{19} + 2148 q^{23} + 5454 q^{25} - 2916 q^{27} - 5532 q^{29} - 830 q^{31} - 4158 q^{33} + 3914 q^{37} + 5418 q^{39} - 8316 q^{41} - 14518 q^{43} - 41700 q^{47} + 2052 q^{51} - 22164 q^{53} + 3892 q^{55} + 3222 q^{57} - 32886 q^{59} - 83732 q^{61} + 93192 q^{65} + 80034 q^{67} - 19332 q^{69} + 44772 q^{71} + 22470 q^{73} - 49086 q^{75} + 75286 q^{79} + 26244 q^{81} - 17418 q^{83} + 139252 q^{85} + 49788 q^{87} - 28944 q^{89} + 7470 q^{93} + 144120 q^{95} - 216678 q^{97} + 37422 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −9.00000 −0.577350
\(4\) 0 0
\(5\) 78.6718 1.40732 0.703662 0.710535i \(-0.251547\pi\)
0.703662 + 0.710535i \(0.251547\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 81.0000 0.333333
\(10\) 0 0
\(11\) 691.519 1.72315 0.861574 0.507633i \(-0.169479\pi\)
0.861574 + 0.507633i \(0.169479\pi\)
\(12\) 0 0
\(13\) 818.732 1.34364 0.671821 0.740714i \(-0.265512\pi\)
0.671821 + 0.740714i \(0.265512\pi\)
\(14\) 0 0
\(15\) −708.046 −0.812518
\(16\) 0 0
\(17\) 1109.28 0.930930 0.465465 0.885066i \(-0.345887\pi\)
0.465465 + 0.885066i \(0.345887\pi\)
\(18\) 0 0
\(19\) −573.046 −0.364171 −0.182086 0.983283i \(-0.558285\pi\)
−0.182086 + 0.983283i \(0.558285\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 2517.60 0.992353 0.496177 0.868222i \(-0.334737\pi\)
0.496177 + 0.868222i \(0.334737\pi\)
\(24\) 0 0
\(25\) 3064.25 0.980559
\(26\) 0 0
\(27\) −729.000 −0.192450
\(28\) 0 0
\(29\) −3258.19 −0.719419 −0.359710 0.933064i \(-0.617124\pi\)
−0.359710 + 0.933064i \(0.617124\pi\)
\(30\) 0 0
\(31\) 10119.1 1.89120 0.945601 0.325330i \(-0.105475\pi\)
0.945601 + 0.325330i \(0.105475\pi\)
\(32\) 0 0
\(33\) −6223.67 −0.994860
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 4869.62 0.584778 0.292389 0.956300i \(-0.405550\pi\)
0.292389 + 0.956300i \(0.405550\pi\)
\(38\) 0 0
\(39\) −7368.59 −0.775752
\(40\) 0 0
\(41\) −13094.3 −1.21653 −0.608265 0.793734i \(-0.708134\pi\)
−0.608265 + 0.793734i \(0.708134\pi\)
\(42\) 0 0
\(43\) −9303.64 −0.767329 −0.383664 0.923473i \(-0.625338\pi\)
−0.383664 + 0.923473i \(0.625338\pi\)
\(44\) 0 0
\(45\) 6372.41 0.469108
\(46\) 0 0
\(47\) 12905.8 0.852198 0.426099 0.904676i \(-0.359887\pi\)
0.426099 + 0.904676i \(0.359887\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −9983.48 −0.537473
\(52\) 0 0
\(53\) −19540.2 −0.955521 −0.477760 0.878490i \(-0.658551\pi\)
−0.477760 + 0.878490i \(0.658551\pi\)
\(54\) 0 0
\(55\) 54403.0 2.42503
\(56\) 0 0
\(57\) 5157.42 0.210254
\(58\) 0 0
\(59\) −25120.5 −0.939501 −0.469751 0.882799i \(-0.655656\pi\)
−0.469751 + 0.882799i \(0.655656\pi\)
\(60\) 0 0
\(61\) −31362.2 −1.07915 −0.539575 0.841938i \(-0.681415\pi\)
−0.539575 + 0.841938i \(0.681415\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 64411.1 1.89094
\(66\) 0 0
\(67\) 55943.8 1.52253 0.761264 0.648443i \(-0.224579\pi\)
0.761264 + 0.648443i \(0.224579\pi\)
\(68\) 0 0
\(69\) −22658.4 −0.572935
\(70\) 0 0
\(71\) 20501.0 0.482647 0.241323 0.970445i \(-0.422419\pi\)
0.241323 + 0.970445i \(0.422419\pi\)
\(72\) 0 0
\(73\) −67649.9 −1.48580 −0.742900 0.669402i \(-0.766550\pi\)
−0.742900 + 0.669402i \(0.766550\pi\)
\(74\) 0 0
\(75\) −27578.2 −0.566126
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 14079.9 0.253823 0.126912 0.991914i \(-0.459494\pi\)
0.126912 + 0.991914i \(0.459494\pi\)
\(80\) 0 0
\(81\) 6561.00 0.111111
\(82\) 0 0
\(83\) −77129.1 −1.22892 −0.614459 0.788949i \(-0.710626\pi\)
−0.614459 + 0.788949i \(0.710626\pi\)
\(84\) 0 0
\(85\) 87268.6 1.31012
\(86\) 0 0
\(87\) 29323.7 0.415357
\(88\) 0 0
\(89\) 320.793 0.00429289 0.00214644 0.999998i \(-0.499317\pi\)
0.00214644 + 0.999998i \(0.499317\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −91071.9 −1.09189
\(94\) 0 0
\(95\) −45082.6 −0.512507
\(96\) 0 0
\(97\) −112009. −1.20871 −0.604355 0.796715i \(-0.706569\pi\)
−0.604355 + 0.796715i \(0.706569\pi\)
\(98\) 0 0
\(99\) 56013.0 0.574382
\(100\) 0 0
\(101\) 67254.0 0.656016 0.328008 0.944675i \(-0.393623\pi\)
0.328008 + 0.944675i \(0.393623\pi\)
\(102\) 0 0
\(103\) −116635. −1.08327 −0.541635 0.840614i \(-0.682195\pi\)
−0.541635 + 0.840614i \(0.682195\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −160645. −1.35646 −0.678232 0.734848i \(-0.737254\pi\)
−0.678232 + 0.734848i \(0.737254\pi\)
\(108\) 0 0
\(109\) 119337. 0.962072 0.481036 0.876701i \(-0.340261\pi\)
0.481036 + 0.876701i \(0.340261\pi\)
\(110\) 0 0
\(111\) −43826.6 −0.337622
\(112\) 0 0
\(113\) −110893. −0.816972 −0.408486 0.912765i \(-0.633943\pi\)
−0.408486 + 0.912765i \(0.633943\pi\)
\(114\) 0 0
\(115\) 198064. 1.39656
\(116\) 0 0
\(117\) 66317.3 0.447881
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 317147. 1.96924
\(122\) 0 0
\(123\) 117849. 0.702364
\(124\) 0 0
\(125\) −4779.64 −0.0273603
\(126\) 0 0
\(127\) 315184. 1.73402 0.867012 0.498287i \(-0.166038\pi\)
0.867012 + 0.498287i \(0.166038\pi\)
\(128\) 0 0
\(129\) 83732.7 0.443018
\(130\) 0 0
\(131\) 85664.5 0.436137 0.218068 0.975933i \(-0.430024\pi\)
0.218068 + 0.975933i \(0.430024\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −57351.7 −0.270839
\(136\) 0 0
\(137\) −32632.2 −0.148541 −0.0742703 0.997238i \(-0.523663\pi\)
−0.0742703 + 0.997238i \(0.523663\pi\)
\(138\) 0 0
\(139\) 206590. 0.906925 0.453462 0.891275i \(-0.350189\pi\)
0.453462 + 0.891275i \(0.350189\pi\)
\(140\) 0 0
\(141\) −116152. −0.492017
\(142\) 0 0
\(143\) 566169. 2.31529
\(144\) 0 0
\(145\) −256328. −1.01246
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 483711. 1.78493 0.892463 0.451121i \(-0.148976\pi\)
0.892463 + 0.451121i \(0.148976\pi\)
\(150\) 0 0
\(151\) −167221. −0.596826 −0.298413 0.954437i \(-0.596457\pi\)
−0.298413 + 0.954437i \(0.596457\pi\)
\(152\) 0 0
\(153\) 89851.3 0.310310
\(154\) 0 0
\(155\) 796087. 2.66153
\(156\) 0 0
\(157\) −14108.5 −0.0456806 −0.0228403 0.999739i \(-0.507271\pi\)
−0.0228403 + 0.999739i \(0.507271\pi\)
\(158\) 0 0
\(159\) 175862. 0.551670
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 654376. 1.92912 0.964558 0.263869i \(-0.0849988\pi\)
0.964558 + 0.263869i \(0.0849988\pi\)
\(164\) 0 0
\(165\) −489627. −1.40009
\(166\) 0 0
\(167\) 182945. 0.507610 0.253805 0.967255i \(-0.418318\pi\)
0.253805 + 0.967255i \(0.418318\pi\)
\(168\) 0 0
\(169\) 299030. 0.805374
\(170\) 0 0
\(171\) −46416.7 −0.121390
\(172\) 0 0
\(173\) −292008. −0.741788 −0.370894 0.928675i \(-0.620949\pi\)
−0.370894 + 0.928675i \(0.620949\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 226084. 0.542421
\(178\) 0 0
\(179\) 194768. 0.454343 0.227172 0.973855i \(-0.427052\pi\)
0.227172 + 0.973855i \(0.427052\pi\)
\(180\) 0 0
\(181\) −256634. −0.582261 −0.291130 0.956683i \(-0.594031\pi\)
−0.291130 + 0.956683i \(0.594031\pi\)
\(182\) 0 0
\(183\) 282260. 0.623047
\(184\) 0 0
\(185\) 383102. 0.822971
\(186\) 0 0
\(187\) 767085. 1.60413
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −293949. −0.583027 −0.291513 0.956567i \(-0.594159\pi\)
−0.291513 + 0.956567i \(0.594159\pi\)
\(192\) 0 0
\(193\) −69130.1 −0.133590 −0.0667950 0.997767i \(-0.521277\pi\)
−0.0667950 + 0.997767i \(0.521277\pi\)
\(194\) 0 0
\(195\) −579700. −1.09173
\(196\) 0 0
\(197\) 331748. 0.609037 0.304518 0.952506i \(-0.401505\pi\)
0.304518 + 0.952506i \(0.401505\pi\)
\(198\) 0 0
\(199\) 574428. 1.02826 0.514130 0.857712i \(-0.328115\pi\)
0.514130 + 0.857712i \(0.328115\pi\)
\(200\) 0 0
\(201\) −503494. −0.879031
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −1.03015e6 −1.71205
\(206\) 0 0
\(207\) 203925. 0.330784
\(208\) 0 0
\(209\) −396272. −0.627521
\(210\) 0 0
\(211\) −383999. −0.593777 −0.296889 0.954912i \(-0.595949\pi\)
−0.296889 + 0.954912i \(0.595949\pi\)
\(212\) 0 0
\(213\) −184509. −0.278656
\(214\) 0 0
\(215\) −731933. −1.07988
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 608850. 0.857827
\(220\) 0 0
\(221\) 908200. 1.25084
\(222\) 0 0
\(223\) −347165. −0.467492 −0.233746 0.972298i \(-0.575098\pi\)
−0.233746 + 0.972298i \(0.575098\pi\)
\(224\) 0 0
\(225\) 248204. 0.326853
\(226\) 0 0
\(227\) 361281. 0.465351 0.232676 0.972554i \(-0.425252\pi\)
0.232676 + 0.972554i \(0.425252\pi\)
\(228\) 0 0
\(229\) −752983. −0.948848 −0.474424 0.880297i \(-0.657344\pi\)
−0.474424 + 0.880297i \(0.657344\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 714397. 0.862085 0.431042 0.902332i \(-0.358146\pi\)
0.431042 + 0.902332i \(0.358146\pi\)
\(234\) 0 0
\(235\) 1.01532e6 1.19932
\(236\) 0 0
\(237\) −126719. −0.146545
\(238\) 0 0
\(239\) 343587. 0.389083 0.194541 0.980894i \(-0.437678\pi\)
0.194541 + 0.980894i \(0.437678\pi\)
\(240\) 0 0
\(241\) −76305.0 −0.0846272 −0.0423136 0.999104i \(-0.513473\pi\)
−0.0423136 + 0.999104i \(0.513473\pi\)
\(242\) 0 0
\(243\) −59049.0 −0.0641500
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −469171. −0.489316
\(248\) 0 0
\(249\) 694162. 0.709516
\(250\) 0 0
\(251\) 196249. 0.196618 0.0983090 0.995156i \(-0.468657\pi\)
0.0983090 + 0.995156i \(0.468657\pi\)
\(252\) 0 0
\(253\) 1.74096e6 1.70997
\(254\) 0 0
\(255\) −785418. −0.756398
\(256\) 0 0
\(257\) −1.70911e6 −1.61412 −0.807062 0.590467i \(-0.798944\pi\)
−0.807062 + 0.590467i \(0.798944\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −263914. −0.239806
\(262\) 0 0
\(263\) −791525. −0.705627 −0.352814 0.935694i \(-0.614775\pi\)
−0.352814 + 0.935694i \(0.614775\pi\)
\(264\) 0 0
\(265\) −1.53726e6 −1.34473
\(266\) 0 0
\(267\) −2887.13 −0.00247850
\(268\) 0 0
\(269\) 1.15900e6 0.976572 0.488286 0.872684i \(-0.337622\pi\)
0.488286 + 0.872684i \(0.337622\pi\)
\(270\) 0 0
\(271\) 223134. 0.184562 0.0922811 0.995733i \(-0.470584\pi\)
0.0922811 + 0.995733i \(0.470584\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 2.11898e6 1.68965
\(276\) 0 0
\(277\) −469046. −0.367296 −0.183648 0.982992i \(-0.558791\pi\)
−0.183648 + 0.982992i \(0.558791\pi\)
\(278\) 0 0
\(279\) 819647. 0.630400
\(280\) 0 0
\(281\) −1.51447e6 −1.14418 −0.572090 0.820191i \(-0.693867\pi\)
−0.572090 + 0.820191i \(0.693867\pi\)
\(282\) 0 0
\(283\) −1.07061e6 −0.794627 −0.397314 0.917683i \(-0.630057\pi\)
−0.397314 + 0.917683i \(0.630057\pi\)
\(284\) 0 0
\(285\) 405743. 0.295896
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −189365. −0.133369
\(290\) 0 0
\(291\) 1.00808e6 0.697849
\(292\) 0 0
\(293\) 1.45450e6 0.989794 0.494897 0.868952i \(-0.335206\pi\)
0.494897 + 0.868952i \(0.335206\pi\)
\(294\) 0 0
\(295\) −1.97627e6 −1.32218
\(296\) 0 0
\(297\) −504117. −0.331620
\(298\) 0 0
\(299\) 2.06124e6 1.33337
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −605286. −0.378751
\(304\) 0 0
\(305\) −2.46732e6 −1.51871
\(306\) 0 0
\(307\) −2.23869e6 −1.35565 −0.677824 0.735224i \(-0.737077\pi\)
−0.677824 + 0.735224i \(0.737077\pi\)
\(308\) 0 0
\(309\) 1.04972e6 0.625426
\(310\) 0 0
\(311\) −1.50139e6 −0.880223 −0.440111 0.897943i \(-0.645061\pi\)
−0.440111 + 0.897943i \(0.645061\pi\)
\(312\) 0 0
\(313\) −1.78013e6 −1.02705 −0.513525 0.858074i \(-0.671661\pi\)
−0.513525 + 0.858074i \(0.671661\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 1.47100e6 0.822176 0.411088 0.911596i \(-0.365149\pi\)
0.411088 + 0.911596i \(0.365149\pi\)
\(318\) 0 0
\(319\) −2.25310e6 −1.23966
\(320\) 0 0
\(321\) 1.44581e6 0.783155
\(322\) 0 0
\(323\) −635666. −0.339018
\(324\) 0 0
\(325\) 2.50880e6 1.31752
\(326\) 0 0
\(327\) −1.07403e6 −0.555453
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −1.82975e6 −0.917953 −0.458977 0.888448i \(-0.651784\pi\)
−0.458977 + 0.888448i \(0.651784\pi\)
\(332\) 0 0
\(333\) 394439. 0.194926
\(334\) 0 0
\(335\) 4.40120e6 2.14269
\(336\) 0 0
\(337\) 3.18627e6 1.52830 0.764148 0.645041i \(-0.223160\pi\)
0.764148 + 0.645041i \(0.223160\pi\)
\(338\) 0 0
\(339\) 998035. 0.471679
\(340\) 0 0
\(341\) 6.99755e6 3.25882
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −1.78257e6 −0.806305
\(346\) 0 0
\(347\) 2.47790e6 1.10474 0.552370 0.833599i \(-0.313724\pi\)
0.552370 + 0.833599i \(0.313724\pi\)
\(348\) 0 0
\(349\) 1.81720e6 0.798618 0.399309 0.916816i \(-0.369250\pi\)
0.399309 + 0.916816i \(0.369250\pi\)
\(350\) 0 0
\(351\) −596856. −0.258584
\(352\) 0 0
\(353\) 3.15355e6 1.34699 0.673493 0.739193i \(-0.264793\pi\)
0.673493 + 0.739193i \(0.264793\pi\)
\(354\) 0 0
\(355\) 1.61285e6 0.679240
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 2.70209e6 1.10653 0.553266 0.833004i \(-0.313381\pi\)
0.553266 + 0.833004i \(0.313381\pi\)
\(360\) 0 0
\(361\) −2.14772e6 −0.867379
\(362\) 0 0
\(363\) −2.85433e6 −1.13694
\(364\) 0 0
\(365\) −5.32214e6 −2.09100
\(366\) 0 0
\(367\) −3.61147e6 −1.39965 −0.699824 0.714315i \(-0.746738\pi\)
−0.699824 + 0.714315i \(0.746738\pi\)
\(368\) 0 0
\(369\) −1.06064e6 −0.405510
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −433518. −0.161338 −0.0806688 0.996741i \(-0.525706\pi\)
−0.0806688 + 0.996741i \(0.525706\pi\)
\(374\) 0 0
\(375\) 43016.8 0.0157965
\(376\) 0 0
\(377\) −2.66759e6 −0.966642
\(378\) 0 0
\(379\) −2.12163e6 −0.758704 −0.379352 0.925252i \(-0.623853\pi\)
−0.379352 + 0.925252i \(0.623853\pi\)
\(380\) 0 0
\(381\) −2.83666e6 −1.00114
\(382\) 0 0
\(383\) −4.24679e6 −1.47932 −0.739662 0.672978i \(-0.765015\pi\)
−0.739662 + 0.672978i \(0.765015\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −753595. −0.255776
\(388\) 0 0
\(389\) −3.52177e6 −1.18001 −0.590006 0.807399i \(-0.700875\pi\)
−0.590006 + 0.807399i \(0.700875\pi\)
\(390\) 0 0
\(391\) 2.79271e6 0.923811
\(392\) 0 0
\(393\) −770981. −0.251804
\(394\) 0 0
\(395\) 1.10769e6 0.357212
\(396\) 0 0
\(397\) −734050. −0.233749 −0.116874 0.993147i \(-0.537288\pi\)
−0.116874 + 0.993147i \(0.537288\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −222270. −0.0690272 −0.0345136 0.999404i \(-0.510988\pi\)
−0.0345136 + 0.999404i \(0.510988\pi\)
\(402\) 0 0
\(403\) 8.28483e6 2.54110
\(404\) 0 0
\(405\) 516165. 0.156369
\(406\) 0 0
\(407\) 3.36743e6 1.00766
\(408\) 0 0
\(409\) −3.50758e6 −1.03681 −0.518405 0.855135i \(-0.673474\pi\)
−0.518405 + 0.855135i \(0.673474\pi\)
\(410\) 0 0
\(411\) 293690. 0.0857600
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −6.06788e6 −1.72948
\(416\) 0 0
\(417\) −1.85931e6 −0.523613
\(418\) 0 0
\(419\) −1.97040e6 −0.548302 −0.274151 0.961687i \(-0.588397\pi\)
−0.274151 + 0.961687i \(0.588397\pi\)
\(420\) 0 0
\(421\) −7.19318e6 −1.97795 −0.988976 0.148079i \(-0.952691\pi\)
−0.988976 + 0.148079i \(0.952691\pi\)
\(422\) 0 0
\(423\) 1.04537e6 0.284066
\(424\) 0 0
\(425\) 3.39909e6 0.912832
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −5.09552e6 −1.33673
\(430\) 0 0
\(431\) 524182. 0.135922 0.0679608 0.997688i \(-0.478351\pi\)
0.0679608 + 0.997688i \(0.478351\pi\)
\(432\) 0 0
\(433\) 1.49326e6 0.382750 0.191375 0.981517i \(-0.438705\pi\)
0.191375 + 0.981517i \(0.438705\pi\)
\(434\) 0 0
\(435\) 2.30695e6 0.584541
\(436\) 0 0
\(437\) −1.44270e6 −0.361386
\(438\) 0 0
\(439\) 2.65670e6 0.657932 0.328966 0.944342i \(-0.393300\pi\)
0.328966 + 0.944342i \(0.393300\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −4.68798e6 −1.13495 −0.567474 0.823391i \(-0.692079\pi\)
−0.567474 + 0.823391i \(0.692079\pi\)
\(444\) 0 0
\(445\) 25237.3 0.00604148
\(446\) 0 0
\(447\) −4.35340e6 −1.03053
\(448\) 0 0
\(449\) −3.45899e6 −0.809716 −0.404858 0.914379i \(-0.632679\pi\)
−0.404858 + 0.914379i \(0.632679\pi\)
\(450\) 0 0
\(451\) −9.05496e6 −2.09626
\(452\) 0 0
\(453\) 1.50499e6 0.344578
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 718279. 0.160880 0.0804401 0.996759i \(-0.474367\pi\)
0.0804401 + 0.996759i \(0.474367\pi\)
\(458\) 0 0
\(459\) −808662. −0.179158
\(460\) 0 0
\(461\) 5.07998e6 1.11329 0.556647 0.830749i \(-0.312088\pi\)
0.556647 + 0.830749i \(0.312088\pi\)
\(462\) 0 0
\(463\) 3.40607e6 0.738416 0.369208 0.929347i \(-0.379629\pi\)
0.369208 + 0.929347i \(0.379629\pi\)
\(464\) 0 0
\(465\) −7.16479e6 −1.53664
\(466\) 0 0
\(467\) 1.84268e6 0.390984 0.195492 0.980705i \(-0.437370\pi\)
0.195492 + 0.980705i \(0.437370\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 126977. 0.0263737
\(472\) 0 0
\(473\) −6.43364e6 −1.32222
\(474\) 0 0
\(475\) −1.75595e6 −0.357091
\(476\) 0 0
\(477\) −1.58276e6 −0.318507
\(478\) 0 0
\(479\) 9.11427e6 1.81503 0.907514 0.420022i \(-0.137978\pi\)
0.907514 + 0.420022i \(0.137978\pi\)
\(480\) 0 0
\(481\) 3.98692e6 0.785732
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −8.81192e6 −1.70105
\(486\) 0 0
\(487\) 4.38440e6 0.837699 0.418850 0.908056i \(-0.362433\pi\)
0.418850 + 0.908056i \(0.362433\pi\)
\(488\) 0 0
\(489\) −5.88939e6 −1.11378
\(490\) 0 0
\(491\) −9.50592e6 −1.77947 −0.889735 0.456478i \(-0.849111\pi\)
−0.889735 + 0.456478i \(0.849111\pi\)
\(492\) 0 0
\(493\) −3.61423e6 −0.669729
\(494\) 0 0
\(495\) 4.40664e6 0.808342
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 3.37566e6 0.606887 0.303444 0.952849i \(-0.401864\pi\)
0.303444 + 0.952849i \(0.401864\pi\)
\(500\) 0 0
\(501\) −1.64651e6 −0.293069
\(502\) 0 0
\(503\) 7.82645e6 1.37926 0.689628 0.724164i \(-0.257774\pi\)
0.689628 + 0.724164i \(0.257774\pi\)
\(504\) 0 0
\(505\) 5.29099e6 0.923227
\(506\) 0 0
\(507\) −2.69127e6 −0.464983
\(508\) 0 0
\(509\) −7.42437e6 −1.27018 −0.635090 0.772438i \(-0.719037\pi\)
−0.635090 + 0.772438i \(0.719037\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 417751. 0.0700848
\(514\) 0 0
\(515\) −9.17590e6 −1.52451
\(516\) 0 0
\(517\) 8.92461e6 1.46846
\(518\) 0 0
\(519\) 2.62807e6 0.428272
\(520\) 0 0
\(521\) −1.06142e6 −0.171314 −0.0856570 0.996325i \(-0.527299\pi\)
−0.0856570 + 0.996325i \(0.527299\pi\)
\(522\) 0 0
\(523\) −1.91352e6 −0.305899 −0.152950 0.988234i \(-0.548877\pi\)
−0.152950 + 0.988234i \(0.548877\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1.12249e7 1.76058
\(528\) 0 0
\(529\) −98058.3 −0.0152351
\(530\) 0 0
\(531\) −2.03476e6 −0.313167
\(532\) 0 0
\(533\) −1.07207e7 −1.63458
\(534\) 0 0
\(535\) −1.26382e7 −1.90898
\(536\) 0 0
\(537\) −1.75291e6 −0.262315
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 1.16628e7 1.71321 0.856603 0.515976i \(-0.172571\pi\)
0.856603 + 0.515976i \(0.172571\pi\)
\(542\) 0 0
\(543\) 2.30971e6 0.336168
\(544\) 0 0
\(545\) 9.38842e6 1.35395
\(546\) 0 0
\(547\) −6.36659e6 −0.909785 −0.454893 0.890546i \(-0.650322\pi\)
−0.454893 + 0.890546i \(0.650322\pi\)
\(548\) 0 0
\(549\) −2.54034e6 −0.359717
\(550\) 0 0
\(551\) 1.86710e6 0.261992
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −3.44791e6 −0.475143
\(556\) 0 0
\(557\) 9.72442e6 1.32808 0.664042 0.747695i \(-0.268840\pi\)
0.664042 + 0.747695i \(0.268840\pi\)
\(558\) 0 0
\(559\) −7.61719e6 −1.03102
\(560\) 0 0
\(561\) −6.90376e6 −0.926145
\(562\) 0 0
\(563\) 6.30266e6 0.838017 0.419008 0.907982i \(-0.362378\pi\)
0.419008 + 0.907982i \(0.362378\pi\)
\(564\) 0 0
\(565\) −8.72413e6 −1.14974
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 8.16487e6 1.05723 0.528614 0.848862i \(-0.322712\pi\)
0.528614 + 0.848862i \(0.322712\pi\)
\(570\) 0 0
\(571\) −1.28771e7 −1.65283 −0.826416 0.563060i \(-0.809624\pi\)
−0.826416 + 0.563060i \(0.809624\pi\)
\(572\) 0 0
\(573\) 2.64554e6 0.336611
\(574\) 0 0
\(575\) 7.71453e6 0.973061
\(576\) 0 0
\(577\) 1.14177e7 1.42771 0.713856 0.700293i \(-0.246947\pi\)
0.713856 + 0.700293i \(0.246947\pi\)
\(578\) 0 0
\(579\) 622171. 0.0771282
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −1.35124e7 −1.64650
\(584\) 0 0
\(585\) 5.21730e6 0.630313
\(586\) 0 0
\(587\) 2.12781e6 0.254882 0.127441 0.991846i \(-0.459324\pi\)
0.127441 + 0.991846i \(0.459324\pi\)
\(588\) 0 0
\(589\) −5.79871e6 −0.688721
\(590\) 0 0
\(591\) −2.98574e6 −0.351627
\(592\) 0 0
\(593\) −8.57378e6 −1.00123 −0.500617 0.865669i \(-0.666894\pi\)
−0.500617 + 0.865669i \(0.666894\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −5.16986e6 −0.593667
\(598\) 0 0
\(599\) 1.12874e7 1.28537 0.642686 0.766130i \(-0.277820\pi\)
0.642686 + 0.766130i \(0.277820\pi\)
\(600\) 0 0
\(601\) −1.58260e7 −1.78725 −0.893625 0.448814i \(-0.851847\pi\)
−0.893625 + 0.448814i \(0.851847\pi\)
\(602\) 0 0
\(603\) 4.53145e6 0.507509
\(604\) 0 0
\(605\) 2.49506e7 2.77135
\(606\) 0 0
\(607\) 9.74366e6 1.07337 0.536686 0.843782i \(-0.319676\pi\)
0.536686 + 0.843782i \(0.319676\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 1.05664e7 1.14505
\(612\) 0 0
\(613\) 6.15048e6 0.661086 0.330543 0.943791i \(-0.392768\pi\)
0.330543 + 0.943791i \(0.392768\pi\)
\(614\) 0 0
\(615\) 9.27137e6 0.988453
\(616\) 0 0
\(617\) −3.36084e6 −0.355414 −0.177707 0.984083i \(-0.556868\pi\)
−0.177707 + 0.984083i \(0.556868\pi\)
\(618\) 0 0
\(619\) 6.88659e6 0.722399 0.361200 0.932488i \(-0.382367\pi\)
0.361200 + 0.932488i \(0.382367\pi\)
\(620\) 0 0
\(621\) −1.83533e6 −0.190978
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −9.95179e6 −1.01906
\(626\) 0 0
\(627\) 3.56645e6 0.362299
\(628\) 0 0
\(629\) 5.40175e6 0.544387
\(630\) 0 0
\(631\) 3.59545e6 0.359484 0.179742 0.983714i \(-0.442474\pi\)
0.179742 + 0.983714i \(0.442474\pi\)
\(632\) 0 0
\(633\) 3.45599e6 0.342818
\(634\) 0 0
\(635\) 2.47961e7 2.44033
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 1.66058e6 0.160882
\(640\) 0 0
\(641\) −1.98287e7 −1.90611 −0.953056 0.302795i \(-0.902080\pi\)
−0.953056 + 0.302795i \(0.902080\pi\)
\(642\) 0 0
\(643\) −8.10851e6 −0.773417 −0.386708 0.922202i \(-0.626388\pi\)
−0.386708 + 0.922202i \(0.626388\pi\)
\(644\) 0 0
\(645\) 6.58740e6 0.623469
\(646\) 0 0
\(647\) 2.02746e6 0.190411 0.0952053 0.995458i \(-0.469649\pi\)
0.0952053 + 0.995458i \(0.469649\pi\)
\(648\) 0 0
\(649\) −1.73713e7 −1.61890
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 1.51427e6 0.138969 0.0694847 0.997583i \(-0.477864\pi\)
0.0694847 + 0.997583i \(0.477864\pi\)
\(654\) 0 0
\(655\) 6.73938e6 0.613785
\(656\) 0 0
\(657\) −5.47965e6 −0.495267
\(658\) 0 0
\(659\) −3.22358e6 −0.289151 −0.144576 0.989494i \(-0.546182\pi\)
−0.144576 + 0.989494i \(0.546182\pi\)
\(660\) 0 0
\(661\) −1.43908e7 −1.28109 −0.640546 0.767920i \(-0.721292\pi\)
−0.640546 + 0.767920i \(0.721292\pi\)
\(662\) 0 0
\(663\) −8.17380e6 −0.722171
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −8.20281e6 −0.713918
\(668\) 0 0
\(669\) 3.12449e6 0.269907
\(670\) 0 0
\(671\) −2.16875e7 −1.85953
\(672\) 0 0
\(673\) 7.33478e6 0.624237 0.312118 0.950043i \(-0.398961\pi\)
0.312118 + 0.950043i \(0.398961\pi\)
\(674\) 0 0
\(675\) −2.23384e6 −0.188709
\(676\) 0 0
\(677\) −3.05285e6 −0.255996 −0.127998 0.991774i \(-0.540855\pi\)
−0.127998 + 0.991774i \(0.540855\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −3.25153e6 −0.268671
\(682\) 0 0
\(683\) 1.59759e7 1.31043 0.655213 0.755444i \(-0.272579\pi\)
0.655213 + 0.755444i \(0.272579\pi\)
\(684\) 0 0
\(685\) −2.56724e6 −0.209045
\(686\) 0 0
\(687\) 6.77685e6 0.547817
\(688\) 0 0
\(689\) −1.59982e7 −1.28388
\(690\) 0 0
\(691\) −2.46533e6 −0.196417 −0.0982087 0.995166i \(-0.531311\pi\)
−0.0982087 + 0.995166i \(0.531311\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 1.62528e7 1.27634
\(696\) 0 0
\(697\) −1.45252e7 −1.13250
\(698\) 0 0
\(699\) −6.42958e6 −0.497725
\(700\) 0 0
\(701\) 1.74893e7 1.34424 0.672122 0.740440i \(-0.265383\pi\)
0.672122 + 0.740440i \(0.265383\pi\)
\(702\) 0 0
\(703\) −2.79052e6 −0.212959
\(704\) 0 0
\(705\) −9.13790e6 −0.692427
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −2.18431e7 −1.63192 −0.815961 0.578107i \(-0.803792\pi\)
−0.815961 + 0.578107i \(0.803792\pi\)
\(710\) 0 0
\(711\) 1.14047e6 0.0846078
\(712\) 0 0
\(713\) 2.54758e7 1.87674
\(714\) 0 0
\(715\) 4.45415e7 3.25837
\(716\) 0 0
\(717\) −3.09228e6 −0.224637
\(718\) 0 0
\(719\) 1.91174e7 1.37913 0.689566 0.724223i \(-0.257801\pi\)
0.689566 + 0.724223i \(0.257801\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 686745. 0.0488596
\(724\) 0 0
\(725\) −9.98391e6 −0.705433
\(726\) 0 0
\(727\) −4.08900e6 −0.286933 −0.143467 0.989655i \(-0.545825\pi\)
−0.143467 + 0.989655i \(0.545825\pi\)
\(728\) 0 0
\(729\) 531441. 0.0370370
\(730\) 0 0
\(731\) −1.03203e7 −0.714330
\(732\) 0 0
\(733\) −3.63268e6 −0.249728 −0.124864 0.992174i \(-0.539849\pi\)
−0.124864 + 0.992174i \(0.539849\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 3.86862e7 2.62354
\(738\) 0 0
\(739\) 2.17957e6 0.146811 0.0734056 0.997302i \(-0.476613\pi\)
0.0734056 + 0.997302i \(0.476613\pi\)
\(740\) 0 0
\(741\) 4.22254e6 0.282507
\(742\) 0 0
\(743\) 1.21595e7 0.808060 0.404030 0.914746i \(-0.367609\pi\)
0.404030 + 0.914746i \(0.367609\pi\)
\(744\) 0 0
\(745\) 3.80544e7 2.51197
\(746\) 0 0
\(747\) −6.24745e6 −0.409639
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 2.32495e7 1.50423 0.752115 0.659032i \(-0.229034\pi\)
0.752115 + 0.659032i \(0.229034\pi\)
\(752\) 0 0
\(753\) −1.76624e6 −0.113517
\(754\) 0 0
\(755\) −1.31556e7 −0.839928
\(756\) 0 0
\(757\) −1.49939e7 −0.950985 −0.475492 0.879720i \(-0.657730\pi\)
−0.475492 + 0.879720i \(0.657730\pi\)
\(758\) 0 0
\(759\) −1.56687e7 −0.987252
\(760\) 0 0
\(761\) −1.27319e7 −0.796952 −0.398476 0.917179i \(-0.630461\pi\)
−0.398476 + 0.917179i \(0.630461\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 7.06876e6 0.436707
\(766\) 0 0
\(767\) −2.05669e7 −1.26235
\(768\) 0 0
\(769\) 2.34653e6 0.143090 0.0715451 0.997437i \(-0.477207\pi\)
0.0715451 + 0.997437i \(0.477207\pi\)
\(770\) 0 0
\(771\) 1.53820e7 0.931915
\(772\) 0 0
\(773\) 2.71863e7 1.63644 0.818222 0.574903i \(-0.194960\pi\)
0.818222 + 0.574903i \(0.194960\pi\)
\(774\) 0 0
\(775\) 3.10074e7 1.85443
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 7.50364e6 0.443025
\(780\) 0 0
\(781\) 1.41768e7 0.831671
\(782\) 0 0
\(783\) 2.37522e6 0.138452
\(784\) 0 0
\(785\) −1.10994e6 −0.0642874
\(786\) 0 0
\(787\) 4.30273e6 0.247632 0.123816 0.992305i \(-0.460487\pi\)
0.123816 + 0.992305i \(0.460487\pi\)
\(788\) 0 0
\(789\) 7.12372e6 0.407394
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −2.56772e7 −1.44999
\(794\) 0 0
\(795\) 1.38354e7 0.776378
\(796\) 0 0
\(797\) 1.92325e7 1.07248 0.536241 0.844065i \(-0.319844\pi\)
0.536241 + 0.844065i \(0.319844\pi\)
\(798\) 0 0
\(799\) 1.43161e7 0.793337
\(800\) 0 0
\(801\) 25984.2 0.00143096
\(802\) 0 0
\(803\) −4.67812e7 −2.56025
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −1.04310e7 −0.563824
\(808\) 0 0
\(809\) −4.76367e6 −0.255900 −0.127950 0.991781i \(-0.540840\pi\)
−0.127950 + 0.991781i \(0.540840\pi\)
\(810\) 0 0
\(811\) 1.05529e7 0.563404 0.281702 0.959502i \(-0.409101\pi\)
0.281702 + 0.959502i \(0.409101\pi\)
\(812\) 0 0
\(813\) −2.00821e6 −0.106557
\(814\) 0 0
\(815\) 5.14809e7 2.71489
\(816\) 0 0
\(817\) 5.33141e6 0.279439
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −1.51066e7 −0.782186 −0.391093 0.920351i \(-0.627903\pi\)
−0.391093 + 0.920351i \(0.627903\pi\)
\(822\) 0 0
\(823\) 2.48152e7 1.27708 0.638541 0.769588i \(-0.279538\pi\)
0.638541 + 0.769588i \(0.279538\pi\)
\(824\) 0 0
\(825\) −1.90709e7 −0.975518
\(826\) 0 0
\(827\) −5.89505e6 −0.299726 −0.149863 0.988707i \(-0.547883\pi\)
−0.149863 + 0.988707i \(0.547883\pi\)
\(828\) 0 0
\(829\) −9.16246e6 −0.463048 −0.231524 0.972829i \(-0.574371\pi\)
−0.231524 + 0.972829i \(0.574371\pi\)
\(830\) 0 0
\(831\) 4.22141e6 0.212058
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 1.43926e7 0.714372
\(836\) 0 0
\(837\) −7.37682e6 −0.363962
\(838\) 0 0
\(839\) −1.65127e7 −0.809868 −0.404934 0.914346i \(-0.632705\pi\)
−0.404934 + 0.914346i \(0.632705\pi\)
\(840\) 0 0
\(841\) −9.89532e6 −0.482436
\(842\) 0 0
\(843\) 1.36302e7 0.660593
\(844\) 0 0
\(845\) 2.35252e7 1.13342
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 9.63545e6 0.458778
\(850\) 0 0
\(851\) 1.22597e7 0.580306
\(852\) 0 0
\(853\) −2.99081e7 −1.40740 −0.703699 0.710498i \(-0.748470\pi\)
−0.703699 + 0.710498i \(0.748470\pi\)
\(854\) 0 0
\(855\) −3.65169e6 −0.170836
\(856\) 0 0
\(857\) 1.32675e7 0.617072 0.308536 0.951213i \(-0.400161\pi\)
0.308536 + 0.951213i \(0.400161\pi\)
\(858\) 0 0
\(859\) −2.20488e7 −1.01954 −0.509769 0.860312i \(-0.670269\pi\)
−0.509769 + 0.860312i \(0.670269\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 1.57732e7 0.720930 0.360465 0.932773i \(-0.382618\pi\)
0.360465 + 0.932773i \(0.382618\pi\)
\(864\) 0 0
\(865\) −2.29728e7 −1.04394
\(866\) 0 0
\(867\) 1.70429e6 0.0770007
\(868\) 0 0
\(869\) 9.73652e6 0.437375
\(870\) 0 0
\(871\) 4.58030e7 2.04573
\(872\) 0 0
\(873\) −9.07270e6 −0.402903
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 2.15132e7 0.944507 0.472253 0.881463i \(-0.343441\pi\)
0.472253 + 0.881463i \(0.343441\pi\)
\(878\) 0 0
\(879\) −1.30905e7 −0.571458
\(880\) 0 0
\(881\) −8.57354e6 −0.372152 −0.186076 0.982535i \(-0.559577\pi\)
−0.186076 + 0.982535i \(0.559577\pi\)
\(882\) 0 0
\(883\) −5.13016e6 −0.221426 −0.110713 0.993852i \(-0.535314\pi\)
−0.110713 + 0.993852i \(0.535314\pi\)
\(884\) 0 0
\(885\) 1.77864e7 0.763362
\(886\) 0 0
\(887\) −3.61335e6 −0.154206 −0.0771030 0.997023i \(-0.524567\pi\)
−0.0771030 + 0.997023i \(0.524567\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 4.53706e6 0.191461
\(892\) 0 0
\(893\) −7.39562e6 −0.310346
\(894\) 0 0
\(895\) 1.53227e7 0.639408
\(896\) 0 0
\(897\) −1.85511e7 −0.769820
\(898\) 0 0
\(899\) −3.29700e7 −1.36057
\(900\) 0 0
\(901\) −2.16755e7 −0.889523
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −2.01898e7 −0.819429
\(906\) 0 0
\(907\) 2.69438e7 1.08753 0.543765 0.839238i \(-0.316998\pi\)
0.543765 + 0.839238i \(0.316998\pi\)
\(908\) 0 0
\(909\) 5.44757e6 0.218672
\(910\) 0 0
\(911\) −3.89588e7 −1.55528 −0.777641 0.628708i \(-0.783584\pi\)
−0.777641 + 0.628708i \(0.783584\pi\)
\(912\) 0 0
\(913\) −5.33362e7 −2.11761
\(914\) 0 0
\(915\) 2.22059e7 0.876829
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 3.46434e7 1.35311 0.676553 0.736394i \(-0.263473\pi\)
0.676553 + 0.736394i \(0.263473\pi\)
\(920\) 0 0
\(921\) 2.01482e7 0.782684
\(922\) 0 0
\(923\) 1.67848e7 0.648504
\(924\) 0 0
\(925\) 1.49217e7 0.573409
\(926\) 0 0
\(927\) −9.44746e6 −0.361090
\(928\) 0 0
\(929\) −3.52341e7 −1.33944 −0.669721 0.742613i \(-0.733586\pi\)
−0.669721 + 0.742613i \(0.733586\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 1.35125e7 0.508197
\(934\) 0 0
\(935\) 6.03479e7 2.25753
\(936\) 0 0
\(937\) 7.21950e6 0.268632 0.134316 0.990939i \(-0.457116\pi\)
0.134316 + 0.990939i \(0.457116\pi\)
\(938\) 0 0
\(939\) 1.60212e7 0.592968
\(940\) 0 0
\(941\) 3.73332e7 1.37443 0.687213 0.726456i \(-0.258834\pi\)
0.687213 + 0.726456i \(0.258834\pi\)
\(942\) 0 0
\(943\) −3.29662e7 −1.20723
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −4.17014e7 −1.51104 −0.755520 0.655126i \(-0.772616\pi\)
−0.755520 + 0.655126i \(0.772616\pi\)
\(948\) 0 0
\(949\) −5.53872e7 −1.99638
\(950\) 0 0
\(951\) −1.32390e7 −0.474683
\(952\) 0 0
\(953\) 5.07681e7 1.81075 0.905374 0.424614i \(-0.139590\pi\)
0.905374 + 0.424614i \(0.139590\pi\)
\(954\) 0 0
\(955\) −2.31255e7 −0.820507
\(956\) 0 0
\(957\) 2.02779e7 0.715721
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 7.37671e7 2.57664
\(962\) 0 0
\(963\) −1.30123e7 −0.452155
\(964\) 0 0
\(965\) −5.43859e6 −0.188004
\(966\) 0 0
\(967\) −2.00129e7 −0.688246 −0.344123 0.938925i \(-0.611824\pi\)
−0.344123 + 0.938925i \(0.611824\pi\)
\(968\) 0 0
\(969\) 5.72099e6 0.195732
\(970\) 0 0
\(971\) 1.48724e7 0.506213 0.253107 0.967438i \(-0.418548\pi\)
0.253107 + 0.967438i \(0.418548\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −2.25792e7 −0.760670
\(976\) 0 0
\(977\) −4.86941e6 −0.163207 −0.0816037 0.996665i \(-0.526004\pi\)
−0.0816037 + 0.996665i \(0.526004\pi\)
\(978\) 0 0
\(979\) 221834. 0.00739727
\(980\) 0 0
\(981\) 9.66627e6 0.320691
\(982\) 0 0
\(983\) −4.33110e7 −1.42960 −0.714800 0.699329i \(-0.753482\pi\)
−0.714800 + 0.699329i \(0.753482\pi\)
\(984\) 0 0
\(985\) 2.60992e7 0.857111
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −2.34228e7 −0.761461
\(990\) 0 0
\(991\) 1.03036e7 0.333277 0.166638 0.986018i \(-0.446709\pi\)
0.166638 + 0.986018i \(0.446709\pi\)
\(992\) 0 0
\(993\) 1.64677e7 0.529981
\(994\) 0 0
\(995\) 4.51913e7 1.44710
\(996\) 0 0
\(997\) −3.88437e7 −1.23761 −0.618803 0.785546i \(-0.712382\pi\)
−0.618803 + 0.785546i \(0.712382\pi\)
\(998\) 0 0
\(999\) −3.54995e6 −0.112541
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 588.6.a.n.1.4 4
7.2 even 3 84.6.i.c.25.1 8
7.3 odd 6 588.6.i.o.373.4 8
7.4 even 3 84.6.i.c.37.1 yes 8
7.5 odd 6 588.6.i.o.361.4 8
7.6 odd 2 588.6.a.p.1.1 4
21.2 odd 6 252.6.k.f.109.4 8
21.11 odd 6 252.6.k.f.37.4 8
28.11 odd 6 336.6.q.i.289.1 8
28.23 odd 6 336.6.q.i.193.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
84.6.i.c.25.1 8 7.2 even 3
84.6.i.c.37.1 yes 8 7.4 even 3
252.6.k.f.37.4 8 21.11 odd 6
252.6.k.f.109.4 8 21.2 odd 6
336.6.q.i.193.1 8 28.23 odd 6
336.6.q.i.289.1 8 28.11 odd 6
588.6.a.n.1.4 4 1.1 even 1 trivial
588.6.a.p.1.1 4 7.6 odd 2
588.6.i.o.361.4 8 7.5 odd 6
588.6.i.o.373.4 8 7.3 odd 6