Properties

Label 588.6.a.n
Level $588$
Weight $6$
Character orbit 588.a
Self dual yes
Analytic conductor $94.306$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [588,6,Mod(1,588)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(588, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("588.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 588.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(94.3056860500\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 699x^{2} - 686x + 59664 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{3}\cdot 3^{2}\cdot 7 \)
Twist minimal: no (minimal twist has level 84)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 9 q^{3} - \beta_{2} q^{5} + 81 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - 9 q^{3} - \beta_{2} q^{5} + 81 q^{9} + (\beta_{3} + \beta_1 + 116) q^{11} + (\beta_{3} - 4 \beta_{2} + 3 \beta_1 - 149) q^{13} + 9 \beta_{2} q^{15} + (\beta_{3} - 9 \beta_{2} - 2 \beta_1 - 58) q^{17} + ( - 2 \beta_{3} - 7 \beta_{2} + \cdots - 89) q^{19}+ \cdots + (81 \beta_{3} + 81 \beta_1 + 9396) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 36 q^{3} + 324 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 36 q^{3} + 324 q^{9} + 462 q^{11} - 602 q^{13} - 228 q^{17} - 358 q^{19} + 2148 q^{23} + 5454 q^{25} - 2916 q^{27} - 5532 q^{29} - 830 q^{31} - 4158 q^{33} + 3914 q^{37} + 5418 q^{39} - 8316 q^{41} - 14518 q^{43} - 41700 q^{47} + 2052 q^{51} - 22164 q^{53} + 3892 q^{55} + 3222 q^{57} - 32886 q^{59} - 83732 q^{61} + 93192 q^{65} + 80034 q^{67} - 19332 q^{69} + 44772 q^{71} + 22470 q^{73} - 49086 q^{75} + 75286 q^{79} + 26244 q^{81} - 17418 q^{83} + 139252 q^{85} + 49788 q^{87} - 28944 q^{89} + 7470 q^{93} + 144120 q^{95} - 216678 q^{97} + 37422 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 2x^{3} - 699x^{2} - 686x + 59664 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( 3\nu^{3} + 76\nu^{2} + 4535\nu - 33814 ) / 427 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{3} + 117\nu^{2} - 373\nu - 39257 ) / 427 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{3} + 5\nu^{2} + 495\nu - 435 ) / 7 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} - 13\beta_{2} + 16\beta _1 + 134 ) / 252 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -2\beta_{3} + 215\beta_{2} + 31\beta _1 + 22097 ) / 63 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -187\beta_{3} - 305\beta_{2} + 1220\beta _1 + 56950 ) / 36 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−22.4831
26.2941
−10.9924
9.18135
0 −9.00000 0 −92.8255 0 0 0 81.0000 0
1.2 0 −9.00000 0 −31.9616 0 0 0 81.0000 0
1.3 0 −9.00000 0 46.1154 0 0 0 81.0000 0
1.4 0 −9.00000 0 78.6718 0 0 0 81.0000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 588.6.a.n 4
7.b odd 2 1 588.6.a.p 4
7.c even 3 2 84.6.i.c 8
7.d odd 6 2 588.6.i.o 8
21.h odd 6 2 252.6.k.f 8
28.g odd 6 2 336.6.q.i 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
84.6.i.c 8 7.c even 3 2
252.6.k.f 8 21.h odd 6 2
336.6.q.i 8 28.g odd 6 2
588.6.a.n 4 1.a even 1 1 trivial
588.6.a.p 4 7.b odd 2 1
588.6.i.o 8 7.d odd 6 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{4} - 8977T_{5}^{2} + 82500T_{5} + 10763676 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(588))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( (T + 9)^{4} \) Copy content Toggle raw display
$5$ \( T^{4} - 8977 T^{2} + \cdots + 10763676 \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( T^{4} + \cdots - 16028038332 \) Copy content Toggle raw display
$13$ \( T^{4} + \cdots + 755795447424 \) Copy content Toggle raw display
$17$ \( T^{4} + \cdots - 15241024512 \) Copy content Toggle raw display
$19$ \( T^{4} + \cdots + 865904533024 \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots - 13518157473792 \) Copy content Toggle raw display
$29$ \( T^{4} + \cdots - 333378202056336 \) Copy content Toggle raw display
$31$ \( T^{4} + \cdots + 100222024781907 \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots + 40\!\cdots\!96 \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots - 15\!\cdots\!88 \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots - 359515701753932 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots - 76\!\cdots\!24 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots - 29\!\cdots\!92 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 12\!\cdots\!28 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots - 62\!\cdots\!84 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots - 56\!\cdots\!04 \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots + 41\!\cdots\!92 \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 14\!\cdots\!00 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots - 18\!\cdots\!69 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 53\!\cdots\!08 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots + 11\!\cdots\!28 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots - 37\!\cdots\!72 \) Copy content Toggle raw display
show more
show less