Properties

Label 588.6.a.l
Level $588$
Weight $6$
Character orbit 588.a
Self dual yes
Analytic conductor $94.306$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [588,6,Mod(1,588)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(588, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("588.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 588.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(94.3056860500\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{7081}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1770 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 84)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{7081})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 9 q^{3} + ( - \beta + 24) q^{5} + 81 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + 9 q^{3} + ( - \beta + 24) q^{5} + 81 q^{9} + (\beta - 204) q^{11} + ( - 5 \beta + 227) q^{13} + ( - 9 \beta + 216) q^{15} + (4 \beta - 936) q^{17} + (51 \beta - 757) q^{19} + (100 \beta - 72) q^{23} + ( - 47 \beta - 779) q^{25} + 729 q^{27} + ( - 109 \beta + 438) q^{29} + (76 \beta - 5623) q^{31} + (9 \beta - 1836) q^{33} + (21 \beta - 1567) q^{37} + ( - 45 \beta + 2043) q^{39} + ( - 6 \beta - 3918) q^{41} + (21 \beta - 6325) q^{43} + ( - 81 \beta + 1944) q^{45} + (36 \beta + 4770) q^{47} + (36 \beta - 8424) q^{51} + (231 \beta + 6582) q^{53} + (227 \beta - 6666) q^{55} + (459 \beta - 6813) q^{57} + (659 \beta - 24090) q^{59} + ( - 440 \beta - 31606) q^{61} + ( - 342 \beta + 14298) q^{65} + ( - 205 \beta + 22373) q^{67} + (900 \beta - 648) q^{69} + ( - 500 \beta - 62670) q^{71} + ( - 751 \beta + 3395) q^{73} + ( - 423 \beta - 7011) q^{75} + ( - 1634 \beta + 9611) q^{79} + 6561 q^{81} + ( - 1931 \beta + 20628) q^{83} + (1028 \beta - 29544) q^{85} + ( - 981 \beta + 3942) q^{87} + (18 \beta + 41532) q^{89} + (684 \beta - 50607) q^{93} + (1930 \beta - 108438) q^{95} + ( - 1135 \beta + 92960) q^{97} + (81 \beta - 16524) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 18 q^{3} + 47 q^{5} + 162 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 18 q^{3} + 47 q^{5} + 162 q^{9} - 407 q^{11} + 449 q^{13} + 423 q^{15} - 1868 q^{17} - 1463 q^{19} - 44 q^{23} - 1605 q^{25} + 1458 q^{27} + 767 q^{29} - 11170 q^{31} - 3663 q^{33} - 3113 q^{37} + 4041 q^{39} - 7842 q^{41} - 12629 q^{43} + 3807 q^{45} + 9576 q^{47} - 16812 q^{51} + 13395 q^{53} - 13105 q^{55} - 13167 q^{57} - 47521 q^{59} - 63652 q^{61} + 28254 q^{65} + 44541 q^{67} - 396 q^{69} - 125840 q^{71} + 6039 q^{73} - 14445 q^{75} + 17588 q^{79} + 13122 q^{81} + 39325 q^{83} - 58060 q^{85} + 6903 q^{87} + 83082 q^{89} - 100530 q^{93} - 214946 q^{95} + 184785 q^{97} - 32967 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
42.5743
−41.5743
0 9.00000 0 −18.5743 0 0 0 81.0000 0
1.2 0 9.00000 0 65.5743 0 0 0 81.0000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 588.6.a.l 2
7.b odd 2 1 588.6.a.h 2
7.c even 3 2 84.6.i.b 4
7.d odd 6 2 588.6.i.m 4
21.h odd 6 2 252.6.k.e 4
28.g odd 6 2 336.6.q.g 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
84.6.i.b 4 7.c even 3 2
252.6.k.e 4 21.h odd 6 2
336.6.q.g 4 28.g odd 6 2
588.6.a.h 2 7.b odd 2 1
588.6.a.l 2 1.a even 1 1 trivial
588.6.i.m 4 7.d odd 6 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{2} - 47T_{5} - 1218 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(588))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( (T - 9)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 47T - 1218 \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 407T + 39642 \) Copy content Toggle raw display
$13$ \( T^{2} - 449T + 6144 \) Copy content Toggle raw display
$17$ \( T^{2} + 1868 T + 844032 \) Copy content Toggle raw display
$19$ \( T^{2} + 1463 T - 4069328 \) Copy content Toggle raw display
$23$ \( T^{2} + 44 T - 17702016 \) Copy content Toggle raw display
$29$ \( T^{2} - 767 T - 20885268 \) Copy content Toggle raw display
$31$ \( T^{2} + 11170 T + 20967261 \) Copy content Toggle raw display
$37$ \( T^{2} + 3113 T + 1642012 \) Copy content Toggle raw display
$41$ \( T^{2} + 7842 T + 15310512 \) Copy content Toggle raw display
$43$ \( T^{2} + 12629 T + 39092230 \) Copy content Toggle raw display
$47$ \( T^{2} - 9576 T + 20630700 \) Copy content Toggle raw display
$53$ \( T^{2} - 13395 T - 49605804 \) Copy content Toggle raw display
$59$ \( T^{2} + 47521 T - 204224580 \) Copy content Toggle raw display
$61$ \( T^{2} + 63652 T + 670173876 \) Copy content Toggle raw display
$67$ \( T^{2} - 44541 T + 421580414 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots + 3516363900 \) Copy content Toggle raw display
$73$ \( T^{2} - 6039 T - 989305390 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots - 4649155173 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots - 6214225254 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots + 1725081120 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots + 6255893750 \) Copy content Toggle raw display
show more
show less