Properties

Label 588.6.a.k.1.2
Level $588$
Weight $6$
Character 588.1
Self dual yes
Analytic conductor $94.306$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [588,6,Mod(1,588)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(588, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("588.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 588.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(94.3056860500\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{5569}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1392 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 84)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(37.8129\) of defining polynomial
Character \(\chi\) \(=\) 588.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+9.00000 q^{3} +77.6257 q^{5} +81.0000 q^{9} +O(q^{10})\) \(q+9.00000 q^{3} +77.6257 q^{5} +81.0000 q^{9} +477.380 q^{11} +63.7544 q^{13} +698.632 q^{15} -1037.63 q^{17} +667.018 q^{19} +3251.63 q^{23} +2900.75 q^{25} +729.000 q^{27} +2300.97 q^{29} -3717.05 q^{31} +4296.42 q^{33} +12245.9 q^{37} +573.790 q^{39} +1829.65 q^{41} -20794.2 q^{43} +6287.68 q^{45} +4283.37 q^{47} -9338.63 q^{51} +25718.4 q^{53} +37057.0 q^{55} +6003.16 q^{57} +2838.71 q^{59} -16803.2 q^{61} +4948.98 q^{65} -62535.1 q^{67} +29264.6 q^{69} +72301.0 q^{71} +55676.9 q^{73} +26106.8 q^{75} -3989.19 q^{79} +6561.00 q^{81} +46092.2 q^{83} -80546.5 q^{85} +20708.7 q^{87} -135385. q^{89} -33453.5 q^{93} +51777.7 q^{95} -142878. q^{97} +38667.8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 18 q^{3} + 6 q^{5} + 162 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 18 q^{3} + 6 q^{5} + 162 q^{9} - 90 q^{11} - 768 q^{13} + 54 q^{15} - 1926 q^{17} - 2248 q^{19} + 6354 q^{23} + 4906 q^{25} + 1458 q^{27} + 10572 q^{29} + 3312 q^{31} - 810 q^{33} + 2104 q^{37} - 6912 q^{39} - 1266 q^{41} - 5768 q^{43} + 486 q^{45} - 15612 q^{47} - 17334 q^{51} + 16512 q^{53} + 77696 q^{55} - 20232 q^{57} + 13140 q^{59} + 5796 q^{61} + 64524 q^{65} - 56116 q^{67} + 57186 q^{69} + 11022 q^{71} + 85384 q^{73} + 44154 q^{75} - 19620 q^{79} + 13122 q^{81} + 44424 q^{83} - 16916 q^{85} + 95148 q^{87} - 211218 q^{89} + 29808 q^{93} + 260568 q^{95} - 44864 q^{97} - 7290 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 9.00000 0.577350
\(4\) 0 0
\(5\) 77.6257 1.38861 0.694306 0.719680i \(-0.255712\pi\)
0.694306 + 0.719680i \(0.255712\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 81.0000 0.333333
\(10\) 0 0
\(11\) 477.380 1.18955 0.594775 0.803892i \(-0.297241\pi\)
0.594775 + 0.803892i \(0.297241\pi\)
\(12\) 0 0
\(13\) 63.7544 0.104629 0.0523145 0.998631i \(-0.483340\pi\)
0.0523145 + 0.998631i \(0.483340\pi\)
\(14\) 0 0
\(15\) 698.632 0.801715
\(16\) 0 0
\(17\) −1037.63 −0.870800 −0.435400 0.900237i \(-0.643393\pi\)
−0.435400 + 0.900237i \(0.643393\pi\)
\(18\) 0 0
\(19\) 667.018 0.423890 0.211945 0.977282i \(-0.432020\pi\)
0.211945 + 0.977282i \(0.432020\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 3251.63 1.28168 0.640842 0.767673i \(-0.278585\pi\)
0.640842 + 0.767673i \(0.278585\pi\)
\(24\) 0 0
\(25\) 2900.75 0.928241
\(26\) 0 0
\(27\) 729.000 0.192450
\(28\) 0 0
\(29\) 2300.97 0.508061 0.254031 0.967196i \(-0.418244\pi\)
0.254031 + 0.967196i \(0.418244\pi\)
\(30\) 0 0
\(31\) −3717.05 −0.694696 −0.347348 0.937736i \(-0.612918\pi\)
−0.347348 + 0.937736i \(0.612918\pi\)
\(32\) 0 0
\(33\) 4296.42 0.686787
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 12245.9 1.47057 0.735284 0.677759i \(-0.237049\pi\)
0.735284 + 0.677759i \(0.237049\pi\)
\(38\) 0 0
\(39\) 573.790 0.0604075
\(40\) 0 0
\(41\) 1829.65 0.169984 0.0849920 0.996382i \(-0.472914\pi\)
0.0849920 + 0.996382i \(0.472914\pi\)
\(42\) 0 0
\(43\) −20794.2 −1.71503 −0.857513 0.514463i \(-0.827991\pi\)
−0.857513 + 0.514463i \(0.827991\pi\)
\(44\) 0 0
\(45\) 6287.68 0.462870
\(46\) 0 0
\(47\) 4283.37 0.282840 0.141420 0.989950i \(-0.454833\pi\)
0.141420 + 0.989950i \(0.454833\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −9338.63 −0.502757
\(52\) 0 0
\(53\) 25718.4 1.25764 0.628818 0.777553i \(-0.283539\pi\)
0.628818 + 0.777553i \(0.283539\pi\)
\(54\) 0 0
\(55\) 37057.0 1.65182
\(56\) 0 0
\(57\) 6003.16 0.244733
\(58\) 0 0
\(59\) 2838.71 0.106167 0.0530837 0.998590i \(-0.483095\pi\)
0.0530837 + 0.998590i \(0.483095\pi\)
\(60\) 0 0
\(61\) −16803.2 −0.578186 −0.289093 0.957301i \(-0.593354\pi\)
−0.289093 + 0.957301i \(0.593354\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 4948.98 0.145289
\(66\) 0 0
\(67\) −62535.1 −1.70191 −0.850955 0.525238i \(-0.823976\pi\)
−0.850955 + 0.525238i \(0.823976\pi\)
\(68\) 0 0
\(69\) 29264.6 0.739981
\(70\) 0 0
\(71\) 72301.0 1.70215 0.851077 0.525042i \(-0.175950\pi\)
0.851077 + 0.525042i \(0.175950\pi\)
\(72\) 0 0
\(73\) 55676.9 1.22283 0.611417 0.791308i \(-0.290600\pi\)
0.611417 + 0.791308i \(0.290600\pi\)
\(74\) 0 0
\(75\) 26106.8 0.535920
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −3989.19 −0.0719146 −0.0359573 0.999353i \(-0.511448\pi\)
−0.0359573 + 0.999353i \(0.511448\pi\)
\(80\) 0 0
\(81\) 6561.00 0.111111
\(82\) 0 0
\(83\) 46092.2 0.734400 0.367200 0.930142i \(-0.380316\pi\)
0.367200 + 0.930142i \(0.380316\pi\)
\(84\) 0 0
\(85\) −80546.5 −1.20920
\(86\) 0 0
\(87\) 20708.7 0.293329
\(88\) 0 0
\(89\) −135385. −1.81173 −0.905867 0.423562i \(-0.860780\pi\)
−0.905867 + 0.423562i \(0.860780\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −33453.5 −0.401083
\(94\) 0 0
\(95\) 51777.7 0.588619
\(96\) 0 0
\(97\) −142878. −1.54183 −0.770914 0.636939i \(-0.780200\pi\)
−0.770914 + 0.636939i \(0.780200\pi\)
\(98\) 0 0
\(99\) 38667.8 0.396517
\(100\) 0 0
\(101\) −44467.1 −0.433746 −0.216873 0.976200i \(-0.569586\pi\)
−0.216873 + 0.976200i \(0.569586\pi\)
\(102\) 0 0
\(103\) −202619. −1.88186 −0.940931 0.338598i \(-0.890047\pi\)
−0.940931 + 0.338598i \(0.890047\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 99525.9 0.840382 0.420191 0.907436i \(-0.361963\pi\)
0.420191 + 0.907436i \(0.361963\pi\)
\(108\) 0 0
\(109\) 220930. 1.78110 0.890551 0.454883i \(-0.150319\pi\)
0.890551 + 0.454883i \(0.150319\pi\)
\(110\) 0 0
\(111\) 110213. 0.849033
\(112\) 0 0
\(113\) 29623.1 0.218240 0.109120 0.994029i \(-0.465197\pi\)
0.109120 + 0.994029i \(0.465197\pi\)
\(114\) 0 0
\(115\) 252410. 1.77976
\(116\) 0 0
\(117\) 5164.11 0.0348763
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 66840.8 0.415029
\(122\) 0 0
\(123\) 16466.8 0.0981403
\(124\) 0 0
\(125\) −17407.2 −0.0996448
\(126\) 0 0
\(127\) −264132. −1.45315 −0.726577 0.687086i \(-0.758890\pi\)
−0.726577 + 0.687086i \(0.758890\pi\)
\(128\) 0 0
\(129\) −187148. −0.990170
\(130\) 0 0
\(131\) 77850.1 0.396352 0.198176 0.980166i \(-0.436498\pi\)
0.198176 + 0.980166i \(0.436498\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 56589.2 0.267238
\(136\) 0 0
\(137\) 372403. 1.69516 0.847581 0.530666i \(-0.178058\pi\)
0.847581 + 0.530666i \(0.178058\pi\)
\(138\) 0 0
\(139\) 274550. 1.20527 0.602636 0.798016i \(-0.294117\pi\)
0.602636 + 0.798016i \(0.294117\pi\)
\(140\) 0 0
\(141\) 38550.3 0.163298
\(142\) 0 0
\(143\) 30435.1 0.124461
\(144\) 0 0
\(145\) 178615. 0.705500
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −312982. −1.15492 −0.577462 0.816417i \(-0.695957\pi\)
−0.577462 + 0.816417i \(0.695957\pi\)
\(150\) 0 0
\(151\) 432095. 1.54219 0.771093 0.636723i \(-0.219710\pi\)
0.771093 + 0.636723i \(0.219710\pi\)
\(152\) 0 0
\(153\) −84047.7 −0.290267
\(154\) 0 0
\(155\) −288539. −0.964662
\(156\) 0 0
\(157\) 84603.7 0.273930 0.136965 0.990576i \(-0.456265\pi\)
0.136965 + 0.990576i \(0.456265\pi\)
\(158\) 0 0
\(159\) 231466. 0.726096
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 306303. 0.902989 0.451494 0.892274i \(-0.350891\pi\)
0.451494 + 0.892274i \(0.350891\pi\)
\(164\) 0 0
\(165\) 333513. 0.953680
\(166\) 0 0
\(167\) 606514. 1.68287 0.841433 0.540362i \(-0.181713\pi\)
0.841433 + 0.540362i \(0.181713\pi\)
\(168\) 0 0
\(169\) −367228. −0.989053
\(170\) 0 0
\(171\) 54028.4 0.141297
\(172\) 0 0
\(173\) 288481. 0.732828 0.366414 0.930452i \(-0.380585\pi\)
0.366414 + 0.930452i \(0.380585\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 25548.4 0.0612958
\(178\) 0 0
\(179\) 148858. 0.347248 0.173624 0.984812i \(-0.444452\pi\)
0.173624 + 0.984812i \(0.444452\pi\)
\(180\) 0 0
\(181\) −93377.8 −0.211859 −0.105930 0.994374i \(-0.533782\pi\)
−0.105930 + 0.994374i \(0.533782\pi\)
\(182\) 0 0
\(183\) −151229. −0.333816
\(184\) 0 0
\(185\) 950594. 2.04205
\(186\) 0 0
\(187\) −495342. −1.03586
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 246915. 0.489738 0.244869 0.969556i \(-0.421255\pi\)
0.244869 + 0.969556i \(0.421255\pi\)
\(192\) 0 0
\(193\) 481437. 0.930349 0.465175 0.885219i \(-0.345992\pi\)
0.465175 + 0.885219i \(0.345992\pi\)
\(194\) 0 0
\(195\) 44540.8 0.0838826
\(196\) 0 0
\(197\) −548236. −1.00647 −0.503237 0.864149i \(-0.667858\pi\)
−0.503237 + 0.864149i \(0.667858\pi\)
\(198\) 0 0
\(199\) −158179. −0.283150 −0.141575 0.989928i \(-0.545217\pi\)
−0.141575 + 0.989928i \(0.545217\pi\)
\(200\) 0 0
\(201\) −562816. −0.982599
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 142028. 0.236042
\(206\) 0 0
\(207\) 263382. 0.427228
\(208\) 0 0
\(209\) 318421. 0.504238
\(210\) 0 0
\(211\) 283510. 0.438392 0.219196 0.975681i \(-0.429657\pi\)
0.219196 + 0.975681i \(0.429657\pi\)
\(212\) 0 0
\(213\) 650709. 0.982739
\(214\) 0 0
\(215\) −1.61416e6 −2.38150
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 501092. 0.706004
\(220\) 0 0
\(221\) −66153.2 −0.0911109
\(222\) 0 0
\(223\) 651135. 0.876817 0.438409 0.898776i \(-0.355542\pi\)
0.438409 + 0.898776i \(0.355542\pi\)
\(224\) 0 0
\(225\) 234961. 0.309414
\(226\) 0 0
\(227\) 378294. 0.487264 0.243632 0.969868i \(-0.421661\pi\)
0.243632 + 0.969868i \(0.421661\pi\)
\(228\) 0 0
\(229\) 22332.8 0.0281420 0.0140710 0.999901i \(-0.495521\pi\)
0.0140710 + 0.999901i \(0.495521\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −908940. −1.09685 −0.548423 0.836201i \(-0.684771\pi\)
−0.548423 + 0.836201i \(0.684771\pi\)
\(234\) 0 0
\(235\) 332500. 0.392755
\(236\) 0 0
\(237\) −35902.7 −0.0415199
\(238\) 0 0
\(239\) 1.05363e6 1.19315 0.596573 0.802559i \(-0.296529\pi\)
0.596573 + 0.802559i \(0.296529\pi\)
\(240\) 0 0
\(241\) −1.05233e6 −1.16710 −0.583550 0.812077i \(-0.698337\pi\)
−0.583550 + 0.812077i \(0.698337\pi\)
\(242\) 0 0
\(243\) 59049.0 0.0641500
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 42525.3 0.0443512
\(248\) 0 0
\(249\) 414830. 0.424006
\(250\) 0 0
\(251\) −972876. −0.974705 −0.487352 0.873205i \(-0.662037\pi\)
−0.487352 + 0.873205i \(0.662037\pi\)
\(252\) 0 0
\(253\) 1.55226e6 1.52463
\(254\) 0 0
\(255\) −724918. −0.698134
\(256\) 0 0
\(257\) −1.77948e6 −1.68058 −0.840290 0.542137i \(-0.817615\pi\)
−0.840290 + 0.542137i \(0.817615\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 186379. 0.169354
\(262\) 0 0
\(263\) 21959.6 0.0195765 0.00978827 0.999952i \(-0.496884\pi\)
0.00978827 + 0.999952i \(0.496884\pi\)
\(264\) 0 0
\(265\) 1.99641e6 1.74637
\(266\) 0 0
\(267\) −1.21846e6 −1.04601
\(268\) 0 0
\(269\) 1.69111e6 1.42492 0.712461 0.701712i \(-0.247581\pi\)
0.712461 + 0.701712i \(0.247581\pi\)
\(270\) 0 0
\(271\) 467863. 0.386986 0.193493 0.981102i \(-0.438018\pi\)
0.193493 + 0.981102i \(0.438018\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1.38476e6 1.10419
\(276\) 0 0
\(277\) 906169. 0.709594 0.354797 0.934943i \(-0.384550\pi\)
0.354797 + 0.934943i \(0.384550\pi\)
\(278\) 0 0
\(279\) −301081. −0.231565
\(280\) 0 0
\(281\) −781388. −0.590338 −0.295169 0.955445i \(-0.595376\pi\)
−0.295169 + 0.955445i \(0.595376\pi\)
\(282\) 0 0
\(283\) 1.49843e6 1.11217 0.556085 0.831125i \(-0.312303\pi\)
0.556085 + 0.831125i \(0.312303\pi\)
\(284\) 0 0
\(285\) 466000. 0.339839
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −343190. −0.241707
\(290\) 0 0
\(291\) −1.28590e6 −0.890175
\(292\) 0 0
\(293\) 1.56070e6 1.06206 0.531031 0.847352i \(-0.321805\pi\)
0.531031 + 0.847352i \(0.321805\pi\)
\(294\) 0 0
\(295\) 220357. 0.147425
\(296\) 0 0
\(297\) 348010. 0.228929
\(298\) 0 0
\(299\) 207305. 0.134101
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −400204. −0.250423
\(304\) 0 0
\(305\) −1.30436e6 −0.802875
\(306\) 0 0
\(307\) 889308. 0.538525 0.269263 0.963067i \(-0.413220\pi\)
0.269263 + 0.963067i \(0.413220\pi\)
\(308\) 0 0
\(309\) −1.82357e6 −1.08649
\(310\) 0 0
\(311\) −2.44826e6 −1.43535 −0.717674 0.696380i \(-0.754793\pi\)
−0.717674 + 0.696380i \(0.754793\pi\)
\(312\) 0 0
\(313\) 2.73102e6 1.57567 0.787834 0.615887i \(-0.211202\pi\)
0.787834 + 0.615887i \(0.211202\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −249603. −0.139509 −0.0697545 0.997564i \(-0.522222\pi\)
−0.0697545 + 0.997564i \(0.522222\pi\)
\(318\) 0 0
\(319\) 1.09844e6 0.604364
\(320\) 0 0
\(321\) 895733. 0.485195
\(322\) 0 0
\(323\) −692115. −0.369124
\(324\) 0 0
\(325\) 184936. 0.0971209
\(326\) 0 0
\(327\) 1.98837e6 1.02832
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 646617. 0.324397 0.162199 0.986758i \(-0.448142\pi\)
0.162199 + 0.986758i \(0.448142\pi\)
\(332\) 0 0
\(333\) 991915. 0.490189
\(334\) 0 0
\(335\) −4.85433e6 −2.36329
\(336\) 0 0
\(337\) −1.02782e6 −0.492994 −0.246497 0.969144i \(-0.579280\pi\)
−0.246497 + 0.969144i \(0.579280\pi\)
\(338\) 0 0
\(339\) 266608. 0.126001
\(340\) 0 0
\(341\) −1.77445e6 −0.826375
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 2.27169e6 1.02755
\(346\) 0 0
\(347\) −1.64916e6 −0.735256 −0.367628 0.929973i \(-0.619830\pi\)
−0.367628 + 0.929973i \(0.619830\pi\)
\(348\) 0 0
\(349\) −2.21201e6 −0.972128 −0.486064 0.873923i \(-0.661568\pi\)
−0.486064 + 0.873923i \(0.661568\pi\)
\(350\) 0 0
\(351\) 46477.0 0.0201358
\(352\) 0 0
\(353\) −1.10158e6 −0.470520 −0.235260 0.971932i \(-0.575594\pi\)
−0.235260 + 0.971932i \(0.575594\pi\)
\(354\) 0 0
\(355\) 5.61242e6 2.36363
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −1.29940e6 −0.532116 −0.266058 0.963957i \(-0.585721\pi\)
−0.266058 + 0.963957i \(0.585721\pi\)
\(360\) 0 0
\(361\) −2.03119e6 −0.820317
\(362\) 0 0
\(363\) 601567. 0.239617
\(364\) 0 0
\(365\) 4.32196e6 1.69804
\(366\) 0 0
\(367\) −1.55669e6 −0.603305 −0.301652 0.953418i \(-0.597538\pi\)
−0.301652 + 0.953418i \(0.597538\pi\)
\(368\) 0 0
\(369\) 148202. 0.0566614
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −3.12660e6 −1.16359 −0.581796 0.813335i \(-0.697650\pi\)
−0.581796 + 0.813335i \(0.697650\pi\)
\(374\) 0 0
\(375\) −156665. −0.0575299
\(376\) 0 0
\(377\) 146697. 0.0531579
\(378\) 0 0
\(379\) −2.96497e6 −1.06029 −0.530143 0.847908i \(-0.677862\pi\)
−0.530143 + 0.847908i \(0.677862\pi\)
\(380\) 0 0
\(381\) −2.37719e6 −0.838978
\(382\) 0 0
\(383\) −2.74774e6 −0.957149 −0.478574 0.878047i \(-0.658846\pi\)
−0.478574 + 0.878047i \(0.658846\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −1.68433e6 −0.571675
\(388\) 0 0
\(389\) −611343. −0.204838 −0.102419 0.994741i \(-0.532658\pi\)
−0.102419 + 0.994741i \(0.532658\pi\)
\(390\) 0 0
\(391\) −3.37397e6 −1.11609
\(392\) 0 0
\(393\) 700651. 0.228834
\(394\) 0 0
\(395\) −309664. −0.0998615
\(396\) 0 0
\(397\) −2.16794e6 −0.690352 −0.345176 0.938538i \(-0.612181\pi\)
−0.345176 + 0.938538i \(0.612181\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −3.14644e6 −0.977143 −0.488572 0.872524i \(-0.662482\pi\)
−0.488572 + 0.872524i \(0.662482\pi\)
\(402\) 0 0
\(403\) −236978. −0.0726852
\(404\) 0 0
\(405\) 509302. 0.154290
\(406\) 0 0
\(407\) 5.84593e6 1.74931
\(408\) 0 0
\(409\) −5.58165e6 −1.64989 −0.824943 0.565215i \(-0.808793\pi\)
−0.824943 + 0.565215i \(0.808793\pi\)
\(410\) 0 0
\(411\) 3.35162e6 0.978703
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 3.57794e6 1.01980
\(416\) 0 0
\(417\) 2.47095e6 0.695864
\(418\) 0 0
\(419\) −2.25054e6 −0.626257 −0.313128 0.949711i \(-0.601377\pi\)
−0.313128 + 0.949711i \(0.601377\pi\)
\(420\) 0 0
\(421\) 3.45914e6 0.951180 0.475590 0.879667i \(-0.342235\pi\)
0.475590 + 0.879667i \(0.342235\pi\)
\(422\) 0 0
\(423\) 346953. 0.0942800
\(424\) 0 0
\(425\) −3.00990e6 −0.808313
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 273916. 0.0718578
\(430\) 0 0
\(431\) −6.55926e6 −1.70083 −0.850417 0.526109i \(-0.823650\pi\)
−0.850417 + 0.526109i \(0.823650\pi\)
\(432\) 0 0
\(433\) −5.05669e6 −1.29612 −0.648062 0.761587i \(-0.724420\pi\)
−0.648062 + 0.761587i \(0.724420\pi\)
\(434\) 0 0
\(435\) 1.60753e6 0.407320
\(436\) 0 0
\(437\) 2.16889e6 0.543293
\(438\) 0 0
\(439\) −4.23225e6 −1.04812 −0.524059 0.851682i \(-0.675583\pi\)
−0.524059 + 0.851682i \(0.675583\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −6.05525e6 −1.46596 −0.732981 0.680249i \(-0.761872\pi\)
−0.732981 + 0.680249i \(0.761872\pi\)
\(444\) 0 0
\(445\) −1.05093e7 −2.51579
\(446\) 0 0
\(447\) −2.81684e6 −0.666796
\(448\) 0 0
\(449\) −299186. −0.0700368 −0.0350184 0.999387i \(-0.511149\pi\)
−0.0350184 + 0.999387i \(0.511149\pi\)
\(450\) 0 0
\(451\) 873438. 0.202204
\(452\) 0 0
\(453\) 3.88885e6 0.890381
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 3.75177e6 0.840322 0.420161 0.907450i \(-0.361974\pi\)
0.420161 + 0.907450i \(0.361974\pi\)
\(458\) 0 0
\(459\) −756429. −0.167586
\(460\) 0 0
\(461\) −6.94525e6 −1.52207 −0.761036 0.648709i \(-0.775309\pi\)
−0.761036 + 0.648709i \(0.775309\pi\)
\(462\) 0 0
\(463\) −9.13226e6 −1.97982 −0.989910 0.141697i \(-0.954744\pi\)
−0.989910 + 0.141697i \(0.954744\pi\)
\(464\) 0 0
\(465\) −2.59685e6 −0.556948
\(466\) 0 0
\(467\) 424136. 0.0899940 0.0449970 0.998987i \(-0.485672\pi\)
0.0449970 + 0.998987i \(0.485672\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 761433. 0.158154
\(472\) 0 0
\(473\) −9.92673e6 −2.04011
\(474\) 0 0
\(475\) 1.93485e6 0.393472
\(476\) 0 0
\(477\) 2.08319e6 0.419212
\(478\) 0 0
\(479\) 7.78605e6 1.55052 0.775262 0.631640i \(-0.217618\pi\)
0.775262 + 0.631640i \(0.217618\pi\)
\(480\) 0 0
\(481\) 780727. 0.153864
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −1.10910e7 −2.14100
\(486\) 0 0
\(487\) 2.32259e6 0.443763 0.221881 0.975074i \(-0.428780\pi\)
0.221881 + 0.975074i \(0.428780\pi\)
\(488\) 0 0
\(489\) 2.75673e6 0.521341
\(490\) 0 0
\(491\) 6.01036e6 1.12512 0.562558 0.826758i \(-0.309817\pi\)
0.562558 + 0.826758i \(0.309817\pi\)
\(492\) 0 0
\(493\) −2.38755e6 −0.442420
\(494\) 0 0
\(495\) 3.00162e6 0.550607
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 3.37385e6 0.606562 0.303281 0.952901i \(-0.401918\pi\)
0.303281 + 0.952901i \(0.401918\pi\)
\(500\) 0 0
\(501\) 5.45862e6 0.971603
\(502\) 0 0
\(503\) 1.22068e6 0.215120 0.107560 0.994199i \(-0.465696\pi\)
0.107560 + 0.994199i \(0.465696\pi\)
\(504\) 0 0
\(505\) −3.45179e6 −0.602304
\(506\) 0 0
\(507\) −3.30506e6 −0.571030
\(508\) 0 0
\(509\) −1.56897e6 −0.268423 −0.134212 0.990953i \(-0.542850\pi\)
−0.134212 + 0.990953i \(0.542850\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 486256. 0.0815777
\(514\) 0 0
\(515\) −1.57285e7 −2.61318
\(516\) 0 0
\(517\) 2.04480e6 0.336452
\(518\) 0 0
\(519\) 2.59633e6 0.423098
\(520\) 0 0
\(521\) −1.06779e7 −1.72342 −0.861708 0.507404i \(-0.830605\pi\)
−0.861708 + 0.507404i \(0.830605\pi\)
\(522\) 0 0
\(523\) 1.21007e7 1.93444 0.967219 0.253943i \(-0.0817275\pi\)
0.967219 + 0.253943i \(0.0817275\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 3.85691e6 0.604941
\(528\) 0 0
\(529\) 4.13673e6 0.642714
\(530\) 0 0
\(531\) 229936. 0.0353892
\(532\) 0 0
\(533\) 116648. 0.0177852
\(534\) 0 0
\(535\) 7.72577e6 1.16696
\(536\) 0 0
\(537\) 1.33972e6 0.200484
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −3.19805e6 −0.469778 −0.234889 0.972022i \(-0.575473\pi\)
−0.234889 + 0.972022i \(0.575473\pi\)
\(542\) 0 0
\(543\) −840400. −0.122317
\(544\) 0 0
\(545\) 1.71499e7 2.47326
\(546\) 0 0
\(547\) 3.97811e6 0.568471 0.284235 0.958755i \(-0.408260\pi\)
0.284235 + 0.958755i \(0.408260\pi\)
\(548\) 0 0
\(549\) −1.36106e6 −0.192729
\(550\) 0 0
\(551\) 1.53479e6 0.215362
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 8.55534e6 1.17898
\(556\) 0 0
\(557\) 1.14113e7 1.55847 0.779236 0.626731i \(-0.215608\pi\)
0.779236 + 0.626731i \(0.215608\pi\)
\(558\) 0 0
\(559\) −1.32572e6 −0.179441
\(560\) 0 0
\(561\) −4.45808e6 −0.598054
\(562\) 0 0
\(563\) 6.46973e6 0.860231 0.430115 0.902774i \(-0.358473\pi\)
0.430115 + 0.902774i \(0.358473\pi\)
\(564\) 0 0
\(565\) 2.29952e6 0.303051
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 717028. 0.0928444 0.0464222 0.998922i \(-0.485218\pi\)
0.0464222 + 0.998922i \(0.485218\pi\)
\(570\) 0 0
\(571\) 6.00286e6 0.770491 0.385246 0.922814i \(-0.374117\pi\)
0.385246 + 0.922814i \(0.374117\pi\)
\(572\) 0 0
\(573\) 2.22223e6 0.282750
\(574\) 0 0
\(575\) 9.43217e6 1.18971
\(576\) 0 0
\(577\) −1.55712e7 −1.94707 −0.973537 0.228531i \(-0.926608\pi\)
−0.973537 + 0.228531i \(0.926608\pi\)
\(578\) 0 0
\(579\) 4.33293e6 0.537137
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 1.22775e7 1.49602
\(584\) 0 0
\(585\) 400868. 0.0484296
\(586\) 0 0
\(587\) −7.84621e6 −0.939863 −0.469931 0.882703i \(-0.655721\pi\)
−0.469931 + 0.882703i \(0.655721\pi\)
\(588\) 0 0
\(589\) −2.47934e6 −0.294475
\(590\) 0 0
\(591\) −4.93413e6 −0.581088
\(592\) 0 0
\(593\) −1.33248e7 −1.55605 −0.778026 0.628232i \(-0.783779\pi\)
−0.778026 + 0.628232i \(0.783779\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −1.42361e6 −0.163477
\(598\) 0 0
\(599\) −7.77916e6 −0.885861 −0.442930 0.896556i \(-0.646061\pi\)
−0.442930 + 0.896556i \(0.646061\pi\)
\(600\) 0 0
\(601\) −8.62898e6 −0.974480 −0.487240 0.873268i \(-0.661996\pi\)
−0.487240 + 0.873268i \(0.661996\pi\)
\(602\) 0 0
\(603\) −5.06534e6 −0.567304
\(604\) 0 0
\(605\) 5.18857e6 0.576314
\(606\) 0 0
\(607\) 7.09353e6 0.781431 0.390715 0.920512i \(-0.372228\pi\)
0.390715 + 0.920512i \(0.372228\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 273084. 0.0295932
\(612\) 0 0
\(613\) 4.52640e6 0.486521 0.243261 0.969961i \(-0.421783\pi\)
0.243261 + 0.969961i \(0.421783\pi\)
\(614\) 0 0
\(615\) 1.27825e6 0.136279
\(616\) 0 0
\(617\) −8.38009e6 −0.886208 −0.443104 0.896470i \(-0.646123\pi\)
−0.443104 + 0.896470i \(0.646123\pi\)
\(618\) 0 0
\(619\) 168342. 0.0176590 0.00882949 0.999961i \(-0.497189\pi\)
0.00882949 + 0.999961i \(0.497189\pi\)
\(620\) 0 0
\(621\) 2.37044e6 0.246660
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −1.04161e7 −1.06661
\(626\) 0 0
\(627\) 2.86579e6 0.291122
\(628\) 0 0
\(629\) −1.27066e7 −1.28057
\(630\) 0 0
\(631\) 1.66208e7 1.66180 0.830899 0.556423i \(-0.187826\pi\)
0.830899 + 0.556423i \(0.187826\pi\)
\(632\) 0 0
\(633\) 2.55159e6 0.253106
\(634\) 0 0
\(635\) −2.05034e7 −2.01786
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 5.85638e6 0.567384
\(640\) 0 0
\(641\) 1.02473e6 0.0985068 0.0492534 0.998786i \(-0.484316\pi\)
0.0492534 + 0.998786i \(0.484316\pi\)
\(642\) 0 0
\(643\) 1.22962e7 1.17286 0.586428 0.810001i \(-0.300534\pi\)
0.586428 + 0.810001i \(0.300534\pi\)
\(644\) 0 0
\(645\) −1.45275e7 −1.37496
\(646\) 0 0
\(647\) 2.16537e6 0.203363 0.101682 0.994817i \(-0.467578\pi\)
0.101682 + 0.994817i \(0.467578\pi\)
\(648\) 0 0
\(649\) 1.35515e6 0.126292
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −1.22501e7 −1.12424 −0.562119 0.827056i \(-0.690014\pi\)
−0.562119 + 0.827056i \(0.690014\pi\)
\(654\) 0 0
\(655\) 6.04317e6 0.550379
\(656\) 0 0
\(657\) 4.50983e6 0.407612
\(658\) 0 0
\(659\) 1.18607e6 0.106389 0.0531944 0.998584i \(-0.483060\pi\)
0.0531944 + 0.998584i \(0.483060\pi\)
\(660\) 0 0
\(661\) 1.45382e7 1.29421 0.647107 0.762399i \(-0.275979\pi\)
0.647107 + 0.762399i \(0.275979\pi\)
\(662\) 0 0
\(663\) −595379. −0.0526029
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 7.48190e6 0.651174
\(668\) 0 0
\(669\) 5.86022e6 0.506231
\(670\) 0 0
\(671\) −8.02151e6 −0.687781
\(672\) 0 0
\(673\) −5.99405e6 −0.510132 −0.255066 0.966924i \(-0.582097\pi\)
−0.255066 + 0.966924i \(0.582097\pi\)
\(674\) 0 0
\(675\) 2.11465e6 0.178640
\(676\) 0 0
\(677\) −2.08389e7 −1.74744 −0.873721 0.486428i \(-0.838300\pi\)
−0.873721 + 0.486428i \(0.838300\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 3.40464e6 0.281322
\(682\) 0 0
\(683\) 4.55565e6 0.373679 0.186840 0.982390i \(-0.440176\pi\)
0.186840 + 0.982390i \(0.440176\pi\)
\(684\) 0 0
\(685\) 2.89080e7 2.35392
\(686\) 0 0
\(687\) 200995. 0.0162478
\(688\) 0 0
\(689\) 1.63966e6 0.131585
\(690\) 0 0
\(691\) −1.68542e6 −0.134281 −0.0671404 0.997744i \(-0.521388\pi\)
−0.0671404 + 0.997744i \(0.521388\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 2.13122e7 1.67365
\(696\) 0 0
\(697\) −1.89849e6 −0.148022
\(698\) 0 0
\(699\) −8.18046e6 −0.633264
\(700\) 0 0
\(701\) 2.45349e6 0.188577 0.0942887 0.995545i \(-0.469942\pi\)
0.0942887 + 0.995545i \(0.469942\pi\)
\(702\) 0 0
\(703\) 8.16820e6 0.623359
\(704\) 0 0
\(705\) 2.99250e6 0.226757
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −1.32314e7 −0.988530 −0.494265 0.869311i \(-0.664563\pi\)
−0.494265 + 0.869311i \(0.664563\pi\)
\(710\) 0 0
\(711\) −323125. −0.0239715
\(712\) 0 0
\(713\) −1.20865e7 −0.890380
\(714\) 0 0
\(715\) 2.36255e6 0.172828
\(716\) 0 0
\(717\) 9.48267e6 0.688863
\(718\) 0 0
\(719\) −1.35337e7 −0.976324 −0.488162 0.872753i \(-0.662333\pi\)
−0.488162 + 0.872753i \(0.662333\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −9.47094e6 −0.673826
\(724\) 0 0
\(725\) 6.67455e6 0.471604
\(726\) 0 0
\(727\) −5.29416e6 −0.371502 −0.185751 0.982597i \(-0.559472\pi\)
−0.185751 + 0.982597i \(0.559472\pi\)
\(728\) 0 0
\(729\) 531441. 0.0370370
\(730\) 0 0
\(731\) 2.15766e7 1.49344
\(732\) 0 0
\(733\) 2.25014e7 1.54685 0.773426 0.633886i \(-0.218541\pi\)
0.773426 + 0.633886i \(0.218541\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −2.98530e7 −2.02451
\(738\) 0 0
\(739\) 1.60739e7 1.08271 0.541353 0.840795i \(-0.317912\pi\)
0.541353 + 0.840795i \(0.317912\pi\)
\(740\) 0 0
\(741\) 382728. 0.0256062
\(742\) 0 0
\(743\) −2.31604e6 −0.153913 −0.0769563 0.997034i \(-0.524520\pi\)
−0.0769563 + 0.997034i \(0.524520\pi\)
\(744\) 0 0
\(745\) −2.42955e7 −1.60374
\(746\) 0 0
\(747\) 3.73347e6 0.244800
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −7.77263e6 −0.502885 −0.251442 0.967872i \(-0.580905\pi\)
−0.251442 + 0.967872i \(0.580905\pi\)
\(752\) 0 0
\(753\) −8.75588e6 −0.562746
\(754\) 0 0
\(755\) 3.35417e7 2.14150
\(756\) 0 0
\(757\) −1.59716e7 −1.01300 −0.506498 0.862241i \(-0.669060\pi\)
−0.506498 + 0.862241i \(0.669060\pi\)
\(758\) 0 0
\(759\) 1.39704e7 0.880244
\(760\) 0 0
\(761\) −1.84940e7 −1.15763 −0.578815 0.815459i \(-0.696485\pi\)
−0.578815 + 0.815459i \(0.696485\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −6.52426e6 −0.403068
\(766\) 0 0
\(767\) 180980. 0.0111082
\(768\) 0 0
\(769\) 2.33524e7 1.42402 0.712009 0.702170i \(-0.247786\pi\)
0.712009 + 0.702170i \(0.247786\pi\)
\(770\) 0 0
\(771\) −1.60153e7 −0.970283
\(772\) 0 0
\(773\) −7.25262e6 −0.436562 −0.218281 0.975886i \(-0.570045\pi\)
−0.218281 + 0.975886i \(0.570045\pi\)
\(774\) 0 0
\(775\) −1.07823e7 −0.644845
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 1.22041e6 0.0720546
\(780\) 0 0
\(781\) 3.45151e7 2.02480
\(782\) 0 0
\(783\) 1.67741e6 0.0977764
\(784\) 0 0
\(785\) 6.56742e6 0.380383
\(786\) 0 0
\(787\) −1.18935e6 −0.0684497 −0.0342248 0.999414i \(-0.510896\pi\)
−0.0342248 + 0.999414i \(0.510896\pi\)
\(788\) 0 0
\(789\) 197637. 0.0113025
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −1.07128e6 −0.0604949
\(794\) 0 0
\(795\) 1.79677e7 1.00827
\(796\) 0 0
\(797\) −2.14041e7 −1.19358 −0.596790 0.802397i \(-0.703558\pi\)
−0.596790 + 0.802397i \(0.703558\pi\)
\(798\) 0 0
\(799\) −4.44453e6 −0.246297
\(800\) 0 0
\(801\) −1.09662e7 −0.603911
\(802\) 0 0
\(803\) 2.65790e7 1.45462
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 1.52200e7 0.822679
\(808\) 0 0
\(809\) 9.60341e6 0.515886 0.257943 0.966160i \(-0.416955\pi\)
0.257943 + 0.966160i \(0.416955\pi\)
\(810\) 0 0
\(811\) −2.62263e7 −1.40018 −0.700091 0.714054i \(-0.746857\pi\)
−0.700091 + 0.714054i \(0.746857\pi\)
\(812\) 0 0
\(813\) 4.21077e6 0.223427
\(814\) 0 0
\(815\) 2.37770e7 1.25390
\(816\) 0 0
\(817\) −1.38701e7 −0.726982
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 3.65685e7 1.89343 0.946715 0.322073i \(-0.104380\pi\)
0.946715 + 0.322073i \(0.104380\pi\)
\(822\) 0 0
\(823\) −7.73488e6 −0.398065 −0.199032 0.979993i \(-0.563780\pi\)
−0.199032 + 0.979993i \(0.563780\pi\)
\(824\) 0 0
\(825\) 1.24629e7 0.637504
\(826\) 0 0
\(827\) −1.47172e7 −0.748277 −0.374138 0.927373i \(-0.622061\pi\)
−0.374138 + 0.927373i \(0.622061\pi\)
\(828\) 0 0
\(829\) 7.41886e6 0.374931 0.187465 0.982271i \(-0.439973\pi\)
0.187465 + 0.982271i \(0.439973\pi\)
\(830\) 0 0
\(831\) 8.15552e6 0.409684
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 4.70811e7 2.33685
\(836\) 0 0
\(837\) −2.70973e6 −0.133694
\(838\) 0 0
\(839\) −116538. −0.00571559 −0.00285780 0.999996i \(-0.500910\pi\)
−0.00285780 + 0.999996i \(0.500910\pi\)
\(840\) 0 0
\(841\) −1.52167e7 −0.741874
\(842\) 0 0
\(843\) −7.03249e6 −0.340832
\(844\) 0 0
\(845\) −2.85064e7 −1.37341
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 1.34859e7 0.642112
\(850\) 0 0
\(851\) 3.98190e7 1.88480
\(852\) 0 0
\(853\) 1.91763e7 0.902387 0.451193 0.892426i \(-0.350998\pi\)
0.451193 + 0.892426i \(0.350998\pi\)
\(854\) 0 0
\(855\) 4.19400e6 0.196206
\(856\) 0 0
\(857\) 1.62548e6 0.0756012 0.0378006 0.999285i \(-0.487965\pi\)
0.0378006 + 0.999285i \(0.487965\pi\)
\(858\) 0 0
\(859\) 1.65931e7 0.767265 0.383632 0.923486i \(-0.374673\pi\)
0.383632 + 0.923486i \(0.374673\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −2.30415e7 −1.05314 −0.526568 0.850133i \(-0.676521\pi\)
−0.526568 + 0.850133i \(0.676521\pi\)
\(864\) 0 0
\(865\) 2.23935e7 1.01761
\(866\) 0 0
\(867\) −3.08871e6 −0.139550
\(868\) 0 0
\(869\) −1.90436e6 −0.0855460
\(870\) 0 0
\(871\) −3.98689e6 −0.178069
\(872\) 0 0
\(873\) −1.15731e7 −0.513943
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 1.84493e7 0.809993 0.404996 0.914318i \(-0.367273\pi\)
0.404996 + 0.914318i \(0.367273\pi\)
\(878\) 0 0
\(879\) 1.40463e7 0.613182
\(880\) 0 0
\(881\) 3.70548e7 1.60844 0.804219 0.594333i \(-0.202584\pi\)
0.804219 + 0.594333i \(0.202584\pi\)
\(882\) 0 0
\(883\) −5.28466e6 −0.228095 −0.114047 0.993475i \(-0.536382\pi\)
−0.114047 + 0.993475i \(0.536382\pi\)
\(884\) 0 0
\(885\) 1.98321e6 0.0851161
\(886\) 0 0
\(887\) 1.98545e7 0.847326 0.423663 0.905820i \(-0.360744\pi\)
0.423663 + 0.905820i \(0.360744\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 3.13209e6 0.132172
\(892\) 0 0
\(893\) 2.85708e6 0.119893
\(894\) 0 0
\(895\) 1.15552e7 0.482193
\(896\) 0 0
\(897\) 1.86575e6 0.0774234
\(898\) 0 0
\(899\) −8.55283e6 −0.352948
\(900\) 0 0
\(901\) −2.66861e7 −1.09515
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −7.24852e6 −0.294190
\(906\) 0 0
\(907\) −2.00483e7 −0.809207 −0.404603 0.914492i \(-0.632590\pi\)
−0.404603 + 0.914492i \(0.632590\pi\)
\(908\) 0 0
\(909\) −3.60183e6 −0.144582
\(910\) 0 0
\(911\) −765753. −0.0305698 −0.0152849 0.999883i \(-0.504866\pi\)
−0.0152849 + 0.999883i \(0.504866\pi\)
\(912\) 0 0
\(913\) 2.20035e7 0.873605
\(914\) 0 0
\(915\) −1.17392e7 −0.463540
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −1.87846e7 −0.733692 −0.366846 0.930282i \(-0.619562\pi\)
−0.366846 + 0.930282i \(0.619562\pi\)
\(920\) 0 0
\(921\) 8.00377e6 0.310918
\(922\) 0 0
\(923\) 4.60951e6 0.178094
\(924\) 0 0
\(925\) 3.55222e7 1.36504
\(926\) 0 0
\(927\) −1.64122e7 −0.627288
\(928\) 0 0
\(929\) 4.56290e7 1.73461 0.867304 0.497778i \(-0.165851\pi\)
0.867304 + 0.497778i \(0.165851\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −2.20344e7 −0.828698
\(934\) 0 0
\(935\) −3.84513e7 −1.43841
\(936\) 0 0
\(937\) −6.67800e6 −0.248484 −0.124242 0.992252i \(-0.539650\pi\)
−0.124242 + 0.992252i \(0.539650\pi\)
\(938\) 0 0
\(939\) 2.45792e7 0.909713
\(940\) 0 0
\(941\) −3.42716e7 −1.26171 −0.630857 0.775899i \(-0.717297\pi\)
−0.630857 + 0.775899i \(0.717297\pi\)
\(942\) 0 0
\(943\) 5.94933e6 0.217866
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 5.28766e7 1.91597 0.957984 0.286821i \(-0.0925984\pi\)
0.957984 + 0.286821i \(0.0925984\pi\)
\(948\) 0 0
\(949\) 3.54965e6 0.127944
\(950\) 0 0
\(951\) −2.24643e6 −0.0805455
\(952\) 0 0
\(953\) 5.33439e6 0.190262 0.0951311 0.995465i \(-0.469673\pi\)
0.0951311 + 0.995465i \(0.469673\pi\)
\(954\) 0 0
\(955\) 1.91669e7 0.680056
\(956\) 0 0
\(957\) 9.88594e6 0.348930
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −1.48127e7 −0.517398
\(962\) 0 0
\(963\) 8.06160e6 0.280127
\(964\) 0 0
\(965\) 3.73719e7 1.29189
\(966\) 0 0
\(967\) −1.93877e7 −0.666744 −0.333372 0.942795i \(-0.608187\pi\)
−0.333372 + 0.942795i \(0.608187\pi\)
\(968\) 0 0
\(969\) −6.22903e6 −0.213114
\(970\) 0 0
\(971\) −1.07463e7 −0.365772 −0.182886 0.983134i \(-0.558544\pi\)
−0.182886 + 0.983134i \(0.558544\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 1.66442e6 0.0560728
\(976\) 0 0
\(977\) −2.41051e7 −0.807926 −0.403963 0.914775i \(-0.632368\pi\)
−0.403963 + 0.914775i \(0.632368\pi\)
\(978\) 0 0
\(979\) −6.46300e7 −2.15515
\(980\) 0 0
\(981\) 1.78953e7 0.593701
\(982\) 0 0
\(983\) 4.05038e7 1.33694 0.668470 0.743739i \(-0.266950\pi\)
0.668470 + 0.743739i \(0.266950\pi\)
\(984\) 0 0
\(985\) −4.25573e7 −1.39760
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −6.76149e7 −2.19812
\(990\) 0 0
\(991\) −4.01588e7 −1.29896 −0.649482 0.760377i \(-0.725014\pi\)
−0.649482 + 0.760377i \(0.725014\pi\)
\(992\) 0 0
\(993\) 5.81955e6 0.187291
\(994\) 0 0
\(995\) −1.22788e7 −0.393185
\(996\) 0 0
\(997\) 2.72276e7 0.867505 0.433753 0.901032i \(-0.357189\pi\)
0.433753 + 0.901032i \(0.357189\pi\)
\(998\) 0 0
\(999\) 8.92723e6 0.283011
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 588.6.a.k.1.2 2
7.2 even 3 588.6.i.i.361.1 4
7.3 odd 6 588.6.i.l.373.2 4
7.4 even 3 588.6.i.i.373.1 4
7.5 odd 6 588.6.i.l.361.2 4
7.6 odd 2 84.6.a.c.1.1 2
21.20 even 2 252.6.a.h.1.2 2
28.27 even 2 336.6.a.x.1.1 2
84.83 odd 2 1008.6.a.bo.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
84.6.a.c.1.1 2 7.6 odd 2
252.6.a.h.1.2 2 21.20 even 2
336.6.a.x.1.1 2 28.27 even 2
588.6.a.k.1.2 2 1.1 even 1 trivial
588.6.i.i.361.1 4 7.2 even 3
588.6.i.i.373.1 4 7.4 even 3
588.6.i.l.361.2 4 7.5 odd 6
588.6.i.l.373.2 4 7.3 odd 6
1008.6.a.bo.1.2 2 84.83 odd 2