Properties

Label 588.4.k.e.521.24
Level $588$
Weight $4$
Character 588.521
Analytic conductor $34.693$
Analytic rank $0$
Dimension $48$
CM no
Inner twists $8$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 588.k (of order \(6\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(34.6931230834\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 521.24
Character \(\chi\) \(=\) 588.521
Dual form 588.4.k.e.509.24

$q$-expansion

\(f(q)\) \(=\) \(q+(5.19498 + 0.110261i) q^{3} +(-4.87287 - 8.44005i) q^{5} +(26.9757 + 1.14560i) q^{9} +O(q^{10})\) \(q+(5.19498 + 0.110261i) q^{3} +(-4.87287 - 8.44005i) q^{5} +(26.9757 + 1.14560i) q^{9} +(-42.9817 - 24.8155i) q^{11} -2.47499i q^{13} +(-24.3838 - 44.3832i) q^{15} +(24.7602 - 42.8858i) q^{17} +(-96.0631 + 55.4620i) q^{19} +(-149.767 + 86.4683i) q^{23} +(15.0103 - 25.9987i) q^{25} +(140.012 + 8.92575i) q^{27} -134.538i q^{29} +(-2.18514 - 1.26159i) q^{31} +(-220.553 - 133.655i) q^{33} +(58.5515 + 101.414i) q^{37} +(0.272894 - 12.8575i) q^{39} -160.696 q^{41} -442.678 q^{43} +(-121.780 - 233.259i) q^{45} +(-155.814 - 269.879i) q^{47} +(133.357 - 220.061i) q^{51} +(248.907 + 143.706i) q^{53} +483.690i q^{55} +(-505.161 + 277.532i) q^{57} +(-276.360 + 478.670i) q^{59} +(-504.937 + 291.525i) q^{61} +(-20.8890 + 12.0603i) q^{65} +(450.723 - 780.675i) q^{67} +(-787.573 + 432.688i) q^{69} -984.717i q^{71} +(-178.030 - 102.786i) q^{73} +(80.8451 - 133.408i) q^{75} +(-321.643 - 557.103i) q^{79} +(726.375 + 61.8069i) q^{81} -351.902 q^{83} -482.612 q^{85} +(14.8343 - 698.924i) q^{87} +(544.376 + 942.887i) q^{89} +(-11.2126 - 6.79487i) q^{93} +(936.205 + 540.518i) q^{95} +1365.09i q^{97} +(-1131.03 - 718.654i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48q + 64q^{9} + O(q^{10}) \) \( 48q + 64q^{9} - 192q^{15} - 456q^{25} + 432q^{37} - 688q^{39} + 1248q^{43} + 1536q^{51} - 2720q^{57} + 528q^{67} - 3744q^{79} - 3408q^{81} + 13824q^{85} + 5088q^{93} - 15472q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/588\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(295\) \(493\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 5.19498 + 0.110261i 0.999775 + 0.0212197i
\(4\) 0 0
\(5\) −4.87287 8.44005i −0.435842 0.754901i 0.561522 0.827462i \(-0.310216\pi\)
−0.997364 + 0.0725609i \(0.976883\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 26.9757 + 1.14560i 0.999099 + 0.0424298i
\(10\) 0 0
\(11\) −42.9817 24.8155i −1.17813 0.680195i −0.222551 0.974921i \(-0.571438\pi\)
−0.955582 + 0.294726i \(0.904772\pi\)
\(12\) 0 0
\(13\) 2.47499i 0.0528029i −0.999651 0.0264015i \(-0.991595\pi\)
0.999651 0.0264015i \(-0.00840482\pi\)
\(14\) 0 0
\(15\) −24.3838 44.3832i −0.419726 0.763980i
\(16\) 0 0
\(17\) 24.7602 42.8858i 0.353248 0.611844i −0.633568 0.773687i \(-0.718410\pi\)
0.986817 + 0.161843i \(0.0517438\pi\)
\(18\) 0 0
\(19\) −96.0631 + 55.4620i −1.15991 + 0.669677i −0.951284 0.308317i \(-0.900234\pi\)
−0.208631 + 0.977994i \(0.566901\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −149.767 + 86.4683i −1.35777 + 0.783908i −0.989323 0.145741i \(-0.953443\pi\)
−0.368446 + 0.929649i \(0.620110\pi\)
\(24\) 0 0
\(25\) 15.0103 25.9987i 0.120083 0.207989i
\(26\) 0 0
\(27\) 140.012 + 8.92575i 0.997974 + 0.0636208i
\(28\) 0 0
\(29\) 134.538i 0.861488i −0.902474 0.430744i \(-0.858251\pi\)
0.902474 0.430744i \(-0.141749\pi\)
\(30\) 0 0
\(31\) −2.18514 1.26159i −0.0126601 0.00730929i 0.493657 0.869657i \(-0.335660\pi\)
−0.506317 + 0.862348i \(0.668993\pi\)
\(32\) 0 0
\(33\) −220.553 133.655i −1.16343 0.705042i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 58.5515 + 101.414i 0.260157 + 0.450605i 0.966283 0.257481i \(-0.0828924\pi\)
−0.706127 + 0.708086i \(0.749559\pi\)
\(38\) 0 0
\(39\) 0.272894 12.8575i 0.00112046 0.0527910i
\(40\) 0 0
\(41\) −160.696 −0.612111 −0.306055 0.952014i \(-0.599009\pi\)
−0.306055 + 0.952014i \(0.599009\pi\)
\(42\) 0 0
\(43\) −442.678 −1.56995 −0.784973 0.619530i \(-0.787323\pi\)
−0.784973 + 0.619530i \(0.787323\pi\)
\(44\) 0 0
\(45\) −121.780 233.259i −0.403420 0.772714i
\(46\) 0 0
\(47\) −155.814 269.879i −0.483572 0.837571i 0.516250 0.856438i \(-0.327327\pi\)
−0.999822 + 0.0188668i \(0.993994\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 133.357 220.061i 0.366152 0.604210i
\(52\) 0 0
\(53\) 248.907 + 143.706i 0.645093 + 0.372445i 0.786574 0.617496i \(-0.211853\pi\)
−0.141480 + 0.989941i \(0.545186\pi\)
\(54\) 0 0
\(55\) 483.690i 1.18583i
\(56\) 0 0
\(57\) −505.161 + 277.532i −1.17386 + 0.644913i
\(58\) 0 0
\(59\) −276.360 + 478.670i −0.609814 + 1.05623i 0.381457 + 0.924387i \(0.375423\pi\)
−0.991271 + 0.131842i \(0.957911\pi\)
\(60\) 0 0
\(61\) −504.937 + 291.525i −1.05984 + 0.611901i −0.925389 0.379018i \(-0.876262\pi\)
−0.134455 + 0.990920i \(0.542928\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −20.8890 + 12.0603i −0.0398610 + 0.0230138i
\(66\) 0 0
\(67\) 450.723 780.675i 0.821859 1.42350i −0.0824369 0.996596i \(-0.526270\pi\)
0.904296 0.426906i \(-0.140396\pi\)
\(68\) 0 0
\(69\) −787.573 + 432.688i −1.37410 + 0.754920i
\(70\) 0 0
\(71\) 984.717i 1.64598i −0.568058 0.822988i \(-0.692305\pi\)
0.568058 0.822988i \(-0.307695\pi\)
\(72\) 0 0
\(73\) −178.030 102.786i −0.285436 0.164797i 0.350446 0.936583i \(-0.386030\pi\)
−0.635882 + 0.771786i \(0.719363\pi\)
\(74\) 0 0
\(75\) 80.8451 133.408i 0.124469 0.205394i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −321.643 557.103i −0.458072 0.793405i 0.540787 0.841160i \(-0.318127\pi\)
−0.998859 + 0.0477551i \(0.984793\pi\)
\(80\) 0 0
\(81\) 726.375 + 61.8069i 0.996399 + 0.0847832i
\(82\) 0 0
\(83\) −351.902 −0.465376 −0.232688 0.972551i \(-0.574752\pi\)
−0.232688 + 0.972551i \(0.574752\pi\)
\(84\) 0 0
\(85\) −482.612 −0.615842
\(86\) 0 0
\(87\) 14.8343 698.924i 0.0182805 0.861294i
\(88\) 0 0
\(89\) 544.376 + 942.887i 0.648357 + 1.12299i 0.983515 + 0.180825i \(0.0578767\pi\)
−0.335159 + 0.942162i \(0.608790\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −11.2126 6.79487i −0.0125021 0.00757629i
\(94\) 0 0
\(95\) 936.205 + 540.518i 1.01108 + 0.583747i
\(96\) 0 0
\(97\) 1365.09i 1.42891i 0.699683 + 0.714454i \(0.253325\pi\)
−0.699683 + 0.714454i \(0.746675\pi\)
\(98\) 0 0
\(99\) −1131.03 718.654i −1.14821 0.729571i
\(100\) 0 0
\(101\) 651.926 1129.17i 0.642268 1.11244i −0.342658 0.939460i \(-0.611327\pi\)
0.984925 0.172980i \(-0.0553396\pi\)
\(102\) 0 0
\(103\) −1094.23 + 631.752i −1.04677 + 0.604354i −0.921744 0.387800i \(-0.873235\pi\)
−0.125027 + 0.992153i \(0.539902\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1267.25 731.647i 1.14495 0.661037i 0.197299 0.980343i \(-0.436783\pi\)
0.947652 + 0.319306i \(0.103450\pi\)
\(108\) 0 0
\(109\) 1119.89 1939.71i 0.984093 1.70450i 0.338193 0.941077i \(-0.390184\pi\)
0.645900 0.763422i \(-0.276482\pi\)
\(110\) 0 0
\(111\) 292.992 + 533.300i 0.250536 + 0.456024i
\(112\) 0 0
\(113\) 281.355i 0.234227i 0.993119 + 0.117114i \(0.0373642\pi\)
−0.993119 + 0.117114i \(0.962636\pi\)
\(114\) 0 0
\(115\) 1459.59 + 842.697i 1.18355 + 0.683321i
\(116\) 0 0
\(117\) 2.83536 66.7645i 0.00224042 0.0527554i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 566.115 + 980.541i 0.425331 + 0.736695i
\(122\) 0 0
\(123\) −834.814 17.7185i −0.611973 0.0129888i
\(124\) 0 0
\(125\) −1510.79 −1.08103
\(126\) 0 0
\(127\) −576.095 −0.402521 −0.201261 0.979538i \(-0.564504\pi\)
−0.201261 + 0.979538i \(0.564504\pi\)
\(128\) 0 0
\(129\) −2299.70 48.8099i −1.56959 0.0333137i
\(130\) 0 0
\(131\) −1142.71 1979.23i −0.762130 1.32005i −0.941750 0.336313i \(-0.890820\pi\)
0.179620 0.983736i \(-0.442513\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −606.925 1225.20i −0.386932 0.781101i
\(136\) 0 0
\(137\) −892.802 515.459i −0.556768 0.321450i 0.195079 0.980787i \(-0.437504\pi\)
−0.751847 + 0.659337i \(0.770837\pi\)
\(138\) 0 0
\(139\) 234.497i 0.143092i 0.997437 + 0.0715460i \(0.0227933\pi\)
−0.997437 + 0.0715460i \(0.977207\pi\)
\(140\) 0 0
\(141\) −779.697 1419.19i −0.465690 0.847644i
\(142\) 0 0
\(143\) −61.4180 + 106.379i −0.0359163 + 0.0622088i
\(144\) 0 0
\(145\) −1135.51 + 655.587i −0.650338 + 0.375473i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −2015.55 + 1163.68i −1.10819 + 0.639814i −0.938360 0.345660i \(-0.887655\pi\)
−0.169830 + 0.985473i \(0.554322\pi\)
\(150\) 0 0
\(151\) −527.571 + 913.779i −0.284325 + 0.492466i −0.972445 0.233131i \(-0.925103\pi\)
0.688120 + 0.725597i \(0.258436\pi\)
\(152\) 0 0
\(153\) 717.052 1128.51i 0.378891 0.596305i
\(154\) 0 0
\(155\) 24.5902i 0.0127428i
\(156\) 0 0
\(157\) 38.3884 + 22.1635i 0.0195142 + 0.0112665i 0.509725 0.860337i \(-0.329747\pi\)
−0.490211 + 0.871604i \(0.663080\pi\)
\(158\) 0 0
\(159\) 1277.22 + 773.996i 0.637045 + 0.386050i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 126.057 + 218.337i 0.0605738 + 0.104917i 0.894722 0.446623i \(-0.147374\pi\)
−0.834148 + 0.551540i \(0.814040\pi\)
\(164\) 0 0
\(165\) −53.3320 + 2512.76i −0.0251630 + 1.18556i
\(166\) 0 0
\(167\) 1657.35 0.767962 0.383981 0.923341i \(-0.374553\pi\)
0.383981 + 0.923341i \(0.374553\pi\)
\(168\) 0 0
\(169\) 2190.87 0.997212
\(170\) 0 0
\(171\) −2654.90 + 1386.08i −1.18728 + 0.619859i
\(172\) 0 0
\(173\) −1663.55 2881.36i −0.731084 1.26627i −0.956420 0.291994i \(-0.905681\pi\)
0.225336 0.974281i \(-0.427652\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −1488.46 + 2456.21i −0.632090 + 1.04305i
\(178\) 0 0
\(179\) −372.577 215.108i −0.155574 0.0898206i 0.420192 0.907435i \(-0.361963\pi\)
−0.575766 + 0.817615i \(0.695296\pi\)
\(180\) 0 0
\(181\) 2230.49i 0.915971i −0.888960 0.457986i \(-0.848571\pi\)
0.888960 0.457986i \(-0.151429\pi\)
\(182\) 0 0
\(183\) −2655.28 + 1458.79i −1.07259 + 0.589274i
\(184\) 0 0
\(185\) 570.627 988.355i 0.226775 0.392785i
\(186\) 0 0
\(187\) −2128.47 + 1228.87i −0.832346 + 0.480555i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 1003.30 579.256i 0.380086 0.219442i −0.297770 0.954638i \(-0.596243\pi\)
0.677855 + 0.735195i \(0.262910\pi\)
\(192\) 0 0
\(193\) 1127.84 1953.48i 0.420641 0.728572i −0.575361 0.817899i \(-0.695138\pi\)
0.996002 + 0.0893276i \(0.0284718\pi\)
\(194\) 0 0
\(195\) −109.848 + 60.3497i −0.0403404 + 0.0221627i
\(196\) 0 0
\(197\) 3280.44i 1.18641i 0.805053 + 0.593203i \(0.202137\pi\)
−0.805053 + 0.593203i \(0.797863\pi\)
\(198\) 0 0
\(199\) 3818.10 + 2204.38i 1.36009 + 0.785248i 0.989635 0.143603i \(-0.0458687\pi\)
0.370454 + 0.928851i \(0.379202\pi\)
\(200\) 0 0
\(201\) 2427.58 4005.90i 0.851880 1.40574i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 783.051 + 1356.28i 0.266784 + 0.462083i
\(206\) 0 0
\(207\) −4139.14 + 2160.97i −1.38981 + 0.725592i
\(208\) 0 0
\(209\) 5505.27 1.82204
\(210\) 0 0
\(211\) 5620.46 1.83378 0.916892 0.399135i \(-0.130689\pi\)
0.916892 + 0.399135i \(0.130689\pi\)
\(212\) 0 0
\(213\) 108.576 5115.59i 0.0349271 1.64561i
\(214\) 0 0
\(215\) 2157.11 + 3736.22i 0.684249 + 1.18515i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −913.530 553.600i −0.281875 0.170816i
\(220\) 0 0
\(221\) −106.142 61.2811i −0.0323072 0.0186525i
\(222\) 0 0
\(223\) 1134.63i 0.340718i −0.985382 0.170359i \(-0.945507\pi\)
0.985382 0.170359i \(-0.0544928\pi\)
\(224\) 0 0
\(225\) 434.699 684.136i 0.128800 0.202707i
\(226\) 0 0
\(227\) −1061.60 + 1838.75i −0.310400 + 0.537629i −0.978449 0.206488i \(-0.933796\pi\)
0.668049 + 0.744118i \(0.267130\pi\)
\(228\) 0 0
\(229\) 2299.77 1327.77i 0.663638 0.383152i −0.130023 0.991511i \(-0.541505\pi\)
0.793662 + 0.608359i \(0.208172\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 2734.14 1578.56i 0.768754 0.443840i −0.0636761 0.997971i \(-0.520282\pi\)
0.832430 + 0.554130i \(0.186949\pi\)
\(234\) 0 0
\(235\) −1518.53 + 2630.16i −0.421522 + 0.730098i
\(236\) 0 0
\(237\) −1609.51 2929.60i −0.441133 0.802946i
\(238\) 0 0
\(239\) 2040.14i 0.552157i −0.961135 0.276079i \(-0.910965\pi\)
0.961135 0.276079i \(-0.0890351\pi\)
\(240\) 0 0
\(241\) 3958.64 + 2285.52i 1.05809 + 0.610886i 0.924902 0.380205i \(-0.124147\pi\)
0.133184 + 0.991091i \(0.457480\pi\)
\(242\) 0 0
\(243\) 3766.69 + 401.177i 0.994376 + 0.105907i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 137.268 + 237.755i 0.0353609 + 0.0612469i
\(248\) 0 0
\(249\) −1828.12 38.8009i −0.465272 0.00987513i
\(250\) 0 0
\(251\) −5848.44 −1.47072 −0.735359 0.677678i \(-0.762986\pi\)
−0.735359 + 0.677678i \(0.762986\pi\)
\(252\) 0 0
\(253\) 8583.01 2.13284
\(254\) 0 0
\(255\) −2507.16 53.2131i −0.615704 0.0130680i
\(256\) 0 0
\(257\) 3884.44 + 6728.05i 0.942820 + 1.63301i 0.760058 + 0.649855i \(0.225170\pi\)
0.182762 + 0.983157i \(0.441496\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 154.128 3629.26i 0.0365527 0.860712i
\(262\) 0 0
\(263\) −4077.64 2354.23i −0.956038 0.551969i −0.0610865 0.998132i \(-0.519457\pi\)
−0.894951 + 0.446164i \(0.852790\pi\)
\(264\) 0 0
\(265\) 2801.05i 0.649309i
\(266\) 0 0
\(267\) 2724.06 + 4958.30i 0.624381 + 1.13649i
\(268\) 0 0
\(269\) −2054.29 + 3558.14i −0.465622 + 0.806481i −0.999229 0.0392514i \(-0.987503\pi\)
0.533607 + 0.845732i \(0.320836\pi\)
\(270\) 0 0
\(271\) 700.809 404.612i 0.157089 0.0906953i −0.419395 0.907804i \(-0.637758\pi\)
0.576484 + 0.817109i \(0.304424\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −1290.34 + 744.978i −0.282947 + 0.163359i
\(276\) 0 0
\(277\) 3727.43 6456.10i 0.808518 1.40039i −0.105372 0.994433i \(-0.533603\pi\)
0.913890 0.405962i \(-0.133063\pi\)
\(278\) 0 0
\(279\) −57.5003 36.5355i −0.0123385 0.00783988i
\(280\) 0 0
\(281\) 1289.89i 0.273837i 0.990582 + 0.136919i \(0.0437198\pi\)
−0.990582 + 0.136919i \(0.956280\pi\)
\(282\) 0 0
\(283\) 7466.08 + 4310.54i 1.56824 + 0.905424i 0.996374 + 0.0850780i \(0.0271139\pi\)
0.571867 + 0.820346i \(0.306219\pi\)
\(284\) 0 0
\(285\) 4803.97 + 2911.21i 0.998466 + 0.605071i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 1230.37 + 2131.06i 0.250431 + 0.433760i
\(290\) 0 0
\(291\) −150.516 + 7091.62i −0.0303209 + 1.42859i
\(292\) 0 0
\(293\) 6187.72 1.23376 0.616878 0.787059i \(-0.288397\pi\)
0.616878 + 0.787059i \(0.288397\pi\)
\(294\) 0 0
\(295\) 5386.66 1.06313
\(296\) 0 0
\(297\) −5796.45 3858.10i −1.13247 0.753771i
\(298\) 0 0
\(299\) 214.008 + 370.673i 0.0413926 + 0.0716941i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 3511.25 5794.13i 0.665729 1.09856i
\(304\) 0 0
\(305\) 4920.98 + 2841.13i 0.923850 + 0.533385i
\(306\) 0 0
\(307\) 3785.51i 0.703747i 0.936048 + 0.351873i \(0.114455\pi\)
−0.936048 + 0.351873i \(0.885545\pi\)
\(308\) 0 0
\(309\) −5754.15 + 3161.29i −1.05936 + 0.582005i
\(310\) 0 0
\(311\) 2998.76 5194.00i 0.546765 0.947025i −0.451728 0.892156i \(-0.649192\pi\)
0.998494 0.0548698i \(-0.0174744\pi\)
\(312\) 0 0
\(313\) 4960.97 2864.22i 0.895881 0.517237i 0.0200193 0.999800i \(-0.493627\pi\)
0.875861 + 0.482563i \(0.160294\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −5818.71 + 3359.43i −1.03095 + 0.595219i −0.917257 0.398297i \(-0.869602\pi\)
−0.113693 + 0.993516i \(0.536268\pi\)
\(318\) 0 0
\(319\) −3338.63 + 5782.68i −0.585980 + 1.01495i
\(320\) 0 0
\(321\) 6664.01 3661.17i 1.15872 0.636593i
\(322\) 0 0
\(323\) 5493.00i 0.946249i
\(324\) 0 0
\(325\) −64.3464 37.1504i −0.0109825 0.00634072i
\(326\) 0 0
\(327\) 6031.69 9953.27i 1.02004 1.68323i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −845.184 1463.90i −0.140349 0.243092i 0.787279 0.616597i \(-0.211489\pi\)
−0.927628 + 0.373505i \(0.878156\pi\)
\(332\) 0 0
\(333\) 1463.29 + 2802.79i 0.240803 + 0.461237i
\(334\) 0 0
\(335\) −8785.25 −1.43280
\(336\) 0 0
\(337\) 4257.51 0.688194 0.344097 0.938934i \(-0.388185\pi\)
0.344097 + 0.938934i \(0.388185\pi\)
\(338\) 0 0
\(339\) −31.0224 + 1461.64i −0.00497023 + 0.234174i
\(340\) 0 0
\(341\) 62.6139 + 108.450i 0.00994349 + 0.0172226i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 7489.65 + 4538.73i 1.16878 + 0.708281i
\(346\) 0 0
\(347\) −1092.59 630.806i −0.169029 0.0975891i 0.413099 0.910686i \(-0.364446\pi\)
−0.582128 + 0.813097i \(0.697780\pi\)
\(348\) 0 0
\(349\) 10981.9i 1.68438i −0.539179 0.842191i \(-0.681265\pi\)
0.539179 0.842191i \(-0.318735\pi\)
\(350\) 0 0
\(351\) 22.0911 346.528i 0.00335936 0.0526960i
\(352\) 0 0
\(353\) −3677.09 + 6368.90i −0.554424 + 0.960290i 0.443524 + 0.896262i \(0.353728\pi\)
−0.997948 + 0.0640280i \(0.979605\pi\)
\(354\) 0 0
\(355\) −8311.06 + 4798.39i −1.24255 + 0.717387i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −432.312 + 249.595i −0.0635559 + 0.0366940i −0.531441 0.847095i \(-0.678349\pi\)
0.467885 + 0.883789i \(0.345016\pi\)
\(360\) 0 0
\(361\) 2722.58 4715.64i 0.396935 0.687511i
\(362\) 0 0
\(363\) 2832.84 + 5156.31i 0.409603 + 0.745554i
\(364\) 0 0
\(365\) 2003.44i 0.287302i
\(366\) 0 0
\(367\) 282.908 + 163.337i 0.0402390 + 0.0232320i 0.519985 0.854176i \(-0.325938\pi\)
−0.479746 + 0.877408i \(0.659271\pi\)
\(368\) 0 0
\(369\) −4334.89 184.094i −0.611559 0.0259717i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 137.986 + 239.000i 0.0191546 + 0.0331767i 0.875444 0.483320i \(-0.160569\pi\)
−0.856289 + 0.516497i \(0.827236\pi\)
\(374\) 0 0
\(375\) −7848.53 166.581i −1.08079 0.0229392i
\(376\) 0 0
\(377\) −332.981 −0.0454891
\(378\) 0 0
\(379\) 508.854 0.0689659 0.0344829 0.999405i \(-0.489022\pi\)
0.0344829 + 0.999405i \(0.489022\pi\)
\(380\) 0 0
\(381\) −2992.80 63.5206i −0.402430 0.00854137i
\(382\) 0 0
\(383\) −2212.79 3832.66i −0.295217 0.511331i 0.679818 0.733381i \(-0.262059\pi\)
−0.975035 + 0.222049i \(0.928725\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −11941.5 507.133i −1.56853 0.0666125i
\(388\) 0 0
\(389\) −1558.98 900.077i −0.203196 0.117315i 0.394949 0.918703i \(-0.370762\pi\)
−0.598146 + 0.801388i \(0.704096\pi\)
\(390\) 0 0
\(391\) 8563.87i 1.10766i
\(392\) 0 0
\(393\) −5718.13 10408.1i −0.733948 1.33592i
\(394\) 0 0
\(395\) −3134.65 + 5429.38i −0.399295 + 0.691599i
\(396\) 0 0
\(397\) −5601.29 + 3233.91i −0.708113 + 0.408829i −0.810362 0.585930i \(-0.800729\pi\)
0.102249 + 0.994759i \(0.467396\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −2974.16 + 1717.13i −0.370381 + 0.213839i −0.673625 0.739074i \(-0.735264\pi\)
0.303244 + 0.952913i \(0.401930\pi\)
\(402\) 0 0
\(403\) −3.12242 + 5.40819i −0.000385952 + 0.000668489i
\(404\) 0 0
\(405\) −3017.88 6431.82i −0.370270 0.789135i
\(406\) 0 0
\(407\) 5811.93i 0.707829i
\(408\) 0 0
\(409\) 817.228 + 471.827i 0.0988003 + 0.0570424i 0.548586 0.836094i \(-0.315166\pi\)
−0.449786 + 0.893136i \(0.648500\pi\)
\(410\) 0 0
\(411\) −4581.26 2776.24i −0.549822 0.333192i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 1714.77 + 2970.07i 0.202831 + 0.351313i
\(416\) 0 0
\(417\) −25.8558 + 1218.21i −0.00303637 + 0.143060i
\(418\) 0 0
\(419\) 10148.4 1.18325 0.591626 0.806213i \(-0.298486\pi\)
0.591626 + 0.806213i \(0.298486\pi\)
\(420\) 0 0
\(421\) −6775.40 −0.784354 −0.392177 0.919890i \(-0.628278\pi\)
−0.392177 + 0.919890i \(0.628278\pi\)
\(422\) 0 0
\(423\) −3894.03 7458.66i −0.447598 0.857335i
\(424\) 0 0
\(425\) −743.317 1287.46i −0.0848381 0.146944i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −330.795 + 545.865i −0.0372283 + 0.0614327i
\(430\) 0 0
\(431\) −14439.3 8336.51i −1.61372 0.931684i −0.988497 0.151241i \(-0.951673\pi\)
−0.625227 0.780443i \(-0.714993\pi\)
\(432\) 0 0
\(433\) 2848.46i 0.316140i 0.987428 + 0.158070i \(0.0505271\pi\)
−0.987428 + 0.158070i \(0.949473\pi\)
\(434\) 0 0
\(435\) −5971.24 + 3280.56i −0.658159 + 0.361588i
\(436\) 0 0
\(437\) 9591.41 16612.8i 1.04993 1.81853i
\(438\) 0 0
\(439\) −8042.46 + 4643.32i −0.874364 + 0.504814i −0.868796 0.495170i \(-0.835106\pi\)
−0.00556785 + 0.999984i \(0.501772\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 4281.76 2472.08i 0.459216 0.265128i −0.252499 0.967597i \(-0.581252\pi\)
0.711714 + 0.702469i \(0.247919\pi\)
\(444\) 0 0
\(445\) 5305.34 9189.12i 0.565163 0.978890i
\(446\) 0 0
\(447\) −10599.1 + 5823.05i −1.12152 + 0.616154i
\(448\) 0 0
\(449\) 15964.7i 1.67799i −0.544136 0.838997i \(-0.683142\pi\)
0.544136 0.838997i \(-0.316858\pi\)
\(450\) 0 0
\(451\) 6906.99 + 3987.75i 0.721147 + 0.416355i
\(452\) 0 0
\(453\) −2841.47 + 4688.90i −0.294711 + 0.486321i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 4133.41 + 7159.28i 0.423092 + 0.732816i 0.996240 0.0866354i \(-0.0276115\pi\)
−0.573148 + 0.819452i \(0.694278\pi\)
\(458\) 0 0
\(459\) 3849.50 5783.53i 0.391459 0.588130i
\(460\) 0 0
\(461\) 3468.42 0.350413 0.175207 0.984532i \(-0.443941\pi\)
0.175207 + 0.984532i \(0.443941\pi\)
\(462\) 0 0
\(463\) −9918.45 −0.995572 −0.497786 0.867300i \(-0.665853\pi\)
−0.497786 + 0.867300i \(0.665853\pi\)
\(464\) 0 0
\(465\) −2.71133 + 127.746i −0.000270398 + 0.0127399i
\(466\) 0 0
\(467\) −8430.55 14602.1i −0.835373 1.44691i −0.893726 0.448613i \(-0.851918\pi\)
0.0583529 0.998296i \(-0.481415\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 196.983 + 119.372i 0.0192707 + 0.0116781i
\(472\) 0 0
\(473\) 19027.0 + 10985.3i 1.84960 + 1.06787i
\(474\) 0 0
\(475\) 3330.02i 0.321667i
\(476\) 0 0
\(477\) 6549.80 + 4161.72i 0.628710 + 0.399481i
\(478\) 0 0
\(479\) 1578.16 2733.46i 0.150539 0.260741i −0.780887 0.624672i \(-0.785232\pi\)
0.931426 + 0.363932i \(0.118566\pi\)
\(480\) 0 0
\(481\) 250.999 144.914i 0.0237932 0.0137370i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 11521.4 6651.91i 1.07868 0.622778i
\(486\) 0 0
\(487\) −1214.17 + 2103.01i −0.112976 + 0.195681i −0.916969 0.398958i \(-0.869372\pi\)
0.803993 + 0.594639i \(0.202705\pi\)
\(488\) 0 0
\(489\) 630.789 + 1148.15i 0.0583339 + 0.106179i
\(490\) 0 0
\(491\) 1304.86i 0.119933i 0.998200 + 0.0599667i \(0.0190995\pi\)
−0.998200 + 0.0599667i \(0.980901\pi\)
\(492\) 0 0
\(493\) −5769.79 3331.19i −0.527096 0.304319i
\(494\) 0 0
\(495\) −554.117 + 13047.9i −0.0503146 + 1.18476i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −1272.72 2204.42i −0.114178 0.197762i 0.803273 0.595611i \(-0.203090\pi\)
−0.917451 + 0.397849i \(0.869757\pi\)
\(500\) 0 0
\(501\) 8609.91 + 182.741i 0.767789 + 0.0162959i
\(502\) 0 0
\(503\) 787.994 0.0698507 0.0349253 0.999390i \(-0.488881\pi\)
0.0349253 + 0.999390i \(0.488881\pi\)
\(504\) 0 0
\(505\) −12707.0 −1.11971
\(506\) 0 0
\(507\) 11381.6 + 241.567i 0.996987 + 0.0211605i
\(508\) 0 0
\(509\) −1538.89 2665.44i −0.134008 0.232109i 0.791210 0.611544i \(-0.209451\pi\)
−0.925218 + 0.379436i \(0.876118\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −13945.0 + 6907.91i −1.20017 + 0.594526i
\(514\) 0 0
\(515\) 10664.0 + 6156.89i 0.912454 + 0.526806i
\(516\) 0 0
\(517\) 15466.4i 1.31569i
\(518\) 0 0
\(519\) −8324.43 15152.0i −0.704050 1.28150i
\(520\) 0 0
\(521\) 663.114 1148.55i 0.0557611 0.0965811i −0.836797 0.547513i \(-0.815575\pi\)
0.892559 + 0.450931i \(0.148908\pi\)
\(522\) 0 0
\(523\) −5799.32 + 3348.24i −0.484869 + 0.279940i −0.722444 0.691430i \(-0.756981\pi\)
0.237574 + 0.971369i \(0.423648\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −108.209 + 62.4743i −0.00894429 + 0.00516399i
\(528\) 0 0
\(529\) 8870.03 15363.3i 0.729023 1.26271i
\(530\) 0 0
\(531\) −8003.37 + 12595.8i −0.654080 + 1.02940i
\(532\) 0 0
\(533\) 397.721i 0.0323212i
\(534\) 0 0
\(535\) −12350.3 7130.44i −0.998036 0.576216i
\(536\) 0 0
\(537\) −1911.81 1158.56i −0.153633 0.0931016i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −9558.74 16556.2i −0.759634 1.31573i −0.943037 0.332687i \(-0.892045\pi\)
0.183403 0.983038i \(-0.441289\pi\)
\(542\) 0 0
\(543\) 245.935 11587.3i 0.0194366 0.915765i
\(544\) 0 0
\(545\) −21828.3 −1.71564
\(546\) 0 0
\(547\) −12400.5 −0.969297 −0.484649 0.874709i \(-0.661053\pi\)
−0.484649 + 0.874709i \(0.661053\pi\)
\(548\) 0 0
\(549\) −13955.0 + 7285.64i −1.08485 + 0.566381i
\(550\) 0 0
\(551\) 7461.77 + 12924.2i 0.576918 + 0.999252i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 3073.37 5071.57i 0.235058 0.387885i
\(556\) 0 0
\(557\) −6062.22 3500.02i −0.461157 0.266249i 0.251374 0.967890i \(-0.419118\pi\)
−0.712531 + 0.701641i \(0.752451\pi\)
\(558\) 0 0
\(559\) 1095.62i 0.0828978i
\(560\) 0 0
\(561\) −11192.8 + 6149.27i −0.842356 + 0.462785i
\(562\) 0 0
\(563\) −10239.9 + 17736.1i −0.766538 + 1.32768i 0.172891 + 0.984941i \(0.444689\pi\)
−0.939430 + 0.342742i \(0.888644\pi\)
\(564\) 0 0
\(565\) 2374.65 1371.01i 0.176818 0.102086i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 8603.00 4966.94i 0.633843 0.365949i −0.148396 0.988928i \(-0.547411\pi\)
0.782239 + 0.622979i \(0.214078\pi\)
\(570\) 0 0
\(571\) −2929.14 + 5073.42i −0.214677 + 0.371832i −0.953173 0.302427i \(-0.902203\pi\)
0.738496 + 0.674258i \(0.235537\pi\)
\(572\) 0 0
\(573\) 5276.00 2898.60i 0.384656 0.211328i
\(574\) 0 0
\(575\) 5191.68i 0.376535i
\(576\) 0 0
\(577\) −15287.5 8826.26i −1.10300 0.636815i −0.165989 0.986128i \(-0.553082\pi\)
−0.937006 + 0.349313i \(0.886415\pi\)
\(578\) 0 0
\(579\) 6074.50 10023.9i 0.436006 0.719482i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −7132.28 12353.5i −0.506670 0.877579i
\(584\) 0 0
\(585\) −577.312 + 301.404i −0.0408016 + 0.0213017i
\(586\) 0 0
\(587\) −25424.1 −1.78768 −0.893838 0.448390i \(-0.851998\pi\)
−0.893838 + 0.448390i \(0.851998\pi\)
\(588\) 0 0
\(589\) 279.881 0.0195795
\(590\) 0 0
\(591\) −361.704 + 17041.8i −0.0251751 + 1.18614i
\(592\) 0 0
\(593\) −3832.38 6637.89i −0.265392 0.459672i 0.702275 0.711906i \(-0.252168\pi\)
−0.967666 + 0.252235i \(0.918835\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 19591.9 + 11872.7i 1.34312 + 0.813932i
\(598\) 0 0
\(599\) 23961.5 + 13834.2i 1.63446 + 0.943655i 0.982695 + 0.185233i \(0.0593041\pi\)
0.651764 + 0.758422i \(0.274029\pi\)
\(600\) 0 0
\(601\) 11624.0i 0.788937i 0.918909 + 0.394469i \(0.129071\pi\)
−0.918909 + 0.394469i \(0.870929\pi\)
\(602\) 0 0
\(603\) 13052.9 20542.9i 0.881518 1.38735i
\(604\) 0 0
\(605\) 5517.21 9556.09i 0.370754 0.642166i
\(606\) 0 0
\(607\) 2675.97 1544.97i 0.178936 0.103309i −0.407857 0.913046i \(-0.633724\pi\)
0.586793 + 0.809737i \(0.300390\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −667.946 + 385.639i −0.0442262 + 0.0255340i
\(612\) 0 0
\(613\) 1623.78 2812.47i 0.106989 0.185310i −0.807560 0.589785i \(-0.799213\pi\)
0.914549 + 0.404475i \(0.132546\pi\)
\(614\) 0 0
\(615\) 3918.39 + 7132.21i 0.256918 + 0.467640i
\(616\) 0 0
\(617\) 10686.9i 0.697307i 0.937252 + 0.348654i \(0.113361\pi\)
−0.937252 + 0.348654i \(0.886639\pi\)
\(618\) 0 0
\(619\) 4946.00 + 2855.58i 0.321158 + 0.185420i 0.651908 0.758298i \(-0.273969\pi\)
−0.330751 + 0.943718i \(0.607302\pi\)
\(620\) 0 0
\(621\) −21741.0 + 10769.8i −1.40489 + 0.695938i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 5485.59 + 9501.31i 0.351077 + 0.608084i
\(626\) 0 0
\(627\) 28599.8 + 607.014i 1.82163 + 0.0386632i
\(628\) 0 0
\(629\) 5798.97 0.367600
\(630\) 0 0
\(631\) −13708.4 −0.864854 −0.432427 0.901669i \(-0.642343\pi\)
−0.432427 + 0.901669i \(0.642343\pi\)
\(632\) 0 0
\(633\) 29198.2 + 619.716i 1.83337 + 0.0389123i
\(634\) 0 0
\(635\) 2807.23 + 4862.27i 0.175436 + 0.303864i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 1128.10 26563.4i 0.0698385 1.64449i
\(640\) 0 0
\(641\) −14083.3 8131.00i −0.867796 0.501022i −0.00118054 0.999999i \(-0.500376\pi\)
−0.866615 + 0.498977i \(0.833709\pi\)
\(642\) 0 0
\(643\) 13805.8i 0.846729i −0.905959 0.423365i \(-0.860849\pi\)
0.905959 0.423365i \(-0.139151\pi\)
\(644\) 0 0
\(645\) 10794.2 + 19647.4i 0.658947 + 1.19941i
\(646\) 0 0
\(647\) 9180.08 15900.4i 0.557815 0.966163i −0.439864 0.898064i \(-0.644973\pi\)
0.997679 0.0680988i \(-0.0216933\pi\)
\(648\) 0 0
\(649\) 23756.8 13716.0i 1.43688 0.829585i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −16302.6 + 9412.30i −0.976983 + 0.564061i −0.901358 0.433075i \(-0.857428\pi\)
−0.0756247 + 0.997136i \(0.524095\pi\)
\(654\) 0 0
\(655\) −11136.6 + 19289.1i −0.664338 + 1.15067i
\(656\) 0 0
\(657\) −4684.73 2976.67i −0.278187 0.176759i
\(658\) 0 0
\(659\) 3472.55i 0.205268i 0.994719 + 0.102634i \(0.0327270\pi\)
−0.994719 + 0.102634i \(0.967273\pi\)
\(660\) 0 0
\(661\) −11328.2 6540.36i −0.666592 0.384857i 0.128192 0.991749i \(-0.459083\pi\)
−0.794784 + 0.606892i \(0.792416\pi\)
\(662\) 0 0
\(663\) −544.649 330.057i −0.0319041 0.0193339i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 11633.3 + 20149.5i 0.675327 + 1.16970i
\(668\) 0 0
\(669\) 125.105 5894.36i 0.00722993 0.340641i
\(670\) 0 0
\(671\) 28937.3 1.66485
\(672\) 0 0
\(673\) −13701.5 −0.784775 −0.392388 0.919800i \(-0.628351\pi\)
−0.392388 + 0.919800i \(0.628351\pi\)
\(674\) 0 0
\(675\) 2333.68 3506.15i 0.133072 0.199928i
\(676\) 0 0
\(677\) −1975.54 3421.74i −0.112151 0.194251i 0.804486 0.593971i \(-0.202441\pi\)
−0.916637 + 0.399720i \(0.869107\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −5717.74 + 9435.20i −0.321739 + 0.530922i
\(682\) 0 0
\(683\) −22216.3 12826.6i −1.24463 0.718589i −0.274598 0.961559i \(-0.588545\pi\)
−0.970034 + 0.242970i \(0.921878\pi\)
\(684\) 0 0
\(685\) 10047.1i 0.560406i
\(686\) 0 0
\(687\) 12093.7 6644.19i 0.671619 0.368983i
\(688\) 0 0
\(689\) 355.671 616.041i 0.0196662 0.0340628i
\(690\) 0 0
\(691\) −7142.53 + 4123.74i −0.393219 + 0.227025i −0.683554 0.729900i \(-0.739567\pi\)
0.290335 + 0.956925i \(0.406233\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 1979.17 1142.67i 0.108020 0.0623655i
\(696\) 0 0
\(697\) −3978.86 + 6891.59i −0.216227 + 0.374516i
\(698\) 0 0
\(699\) 14377.9 7899.11i 0.777999 0.427428i
\(700\) 0 0
\(701\) 25364.7i 1.36663i −0.730122 0.683317i \(-0.760537\pi\)
0.730122 0.683317i \(-0.239463\pi\)
\(702\) 0 0
\(703\) −11249.3 6494.77i −0.603519 0.348442i
\(704\) 0 0
\(705\) −8178.72 + 13496.2i −0.436920 + 0.720989i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −14695.0 25452.5i −0.778397 1.34822i −0.932865 0.360225i \(-0.882700\pi\)
0.154469 0.987998i \(-0.450633\pi\)
\(710\) 0 0
\(711\) −8038.33 15396.7i −0.423996 0.812126i
\(712\) 0 0
\(713\) 436.350 0.0229193
\(714\) 0 0
\(715\) 1197.13 0.0626154
\(716\) 0 0
\(717\) 224.947 10598.5i 0.0117166 0.552033i
\(718\) 0 0
\(719\) 1802.02 + 3121.19i 0.0934687 + 0.161893i 0.908968 0.416865i \(-0.136871\pi\)
−0.815500 + 0.578757i \(0.803538\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 20313.1 + 12309.7i 1.04488 + 0.633201i
\(724\) 0 0
\(725\) −3497.82 2019.47i −0.179180 0.103450i
\(726\) 0 0
\(727\) 35634.9i 1.81792i −0.416887 0.908958i \(-0.636879\pi\)
0.416887 0.908958i \(-0.363121\pi\)
\(728\) 0 0
\(729\) 19523.7 + 2499.42i 0.991905 + 0.126984i
\(730\) 0 0
\(731\) −10960.8 + 18984.6i −0.554581 + 0.960562i
\(732\) 0 0
\(733\) 10831.6 6253.60i 0.545802 0.315119i −0.201625 0.979463i \(-0.564622\pi\)
0.747427 + 0.664344i \(0.231289\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −38745.6 + 22369.8i −1.93652 + 1.11805i
\(738\) 0 0
\(739\) −4972.17 + 8612.05i −0.247502 + 0.428687i −0.962832 0.270100i \(-0.912943\pi\)
0.715330 + 0.698787i \(0.246276\pi\)
\(740\) 0 0
\(741\) 686.889 + 1250.27i 0.0340533 + 0.0619835i
\(742\) 0 0
\(743\) 12175.9i 0.601198i −0.953751 0.300599i \(-0.902813\pi\)
0.953751 0.300599i \(-0.0971866\pi\)
\(744\) 0 0
\(745\) 19643.0 + 11340.9i 0.965992 + 0.557716i
\(746\) 0 0
\(747\) −9492.79 403.140i −0.464957 0.0197458i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 7950.95 + 13771.4i 0.386331 + 0.669144i 0.991953 0.126608i \(-0.0404091\pi\)
−0.605622 + 0.795752i \(0.707076\pi\)
\(752\) 0 0
\(753\) −30382.5 644.853i −1.47039 0.0312081i
\(754\) 0 0
\(755\) 10283.1 0.495684
\(756\) 0 0
\(757\) 39209.6 1.88256 0.941279 0.337630i \(-0.109625\pi\)
0.941279 + 0.337630i \(0.109625\pi\)
\(758\) 0 0
\(759\) 44588.6 + 946.368i 2.13236 + 0.0452582i
\(760\) 0 0
\(761\) 5888.86 + 10199.8i 0.280514 + 0.485864i 0.971511 0.236993i \(-0.0761619\pi\)
−0.690998 + 0.722857i \(0.742829\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −13018.8 552.882i −0.615288 0.0261301i
\(766\) 0 0
\(767\) 1184.70 + 683.988i 0.0557720 + 0.0322000i
\(768\) 0 0
\(769\) 5932.67i 0.278202i −0.990278 0.139101i \(-0.955579\pi\)
0.990278 0.139101i \(-0.0444213\pi\)
\(770\) 0 0
\(771\) 19437.8 + 35380.4i 0.907956 + 1.65265i
\(772\) 0 0
\(773\) −12154.4 + 21052.1i −0.565543 + 0.979550i 0.431456 + 0.902134i \(0.358000\pi\)
−0.996999 + 0.0774157i \(0.975333\pi\)
\(774\) 0 0
\(775\) −65.5993 + 37.8738i −0.00304051 + 0.00175544i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 15437.0 8912.54i 0.709996 0.409916i
\(780\) 0 0
\(781\) −24436.2 + 42324.8i −1.11959 + 1.93918i
\(782\) 0 0
\(783\) 1200.86 18837.0i 0.0548085 0.859742i
\(784\) 0 0
\(785\) 432.000i 0.0196417i
\(786\) 0 0
\(787\) −32642.3 18846.0i −1.47849 0.853606i −0.478785 0.877932i \(-0.658923\pi\)
−0.999704 + 0.0243259i \(0.992256\pi\)
\(788\) 0 0
\(789\) −20923.7 12679.8i −0.944110 0.572131i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 721.521 + 1249.71i 0.0323102 + 0.0559629i
\(794\) 0 0
\(795\) 308.845 14551.4i 0.0137781 0.649163i
\(796\) 0 0
\(797\) −5364.15 −0.238404 −0.119202 0.992870i \(-0.538034\pi\)
−0.119202 + 0.992870i \(0.538034\pi\)
\(798\) 0