Properties

Label 588.4.k.e.521.23
Level $588$
Weight $4$
Character 588.521
Analytic conductor $34.693$
Analytic rank $0$
Dimension $48$
CM no
Inner twists $8$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 588.k (of order \(6\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(34.6931230834\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 521.23
Character \(\chi\) \(=\) 588.521
Dual form 588.4.k.e.509.23

$q$-expansion

\(f(q)\) \(=\) \(q+(5.15687 + 0.637690i) q^{3} +(6.99365 + 12.1134i) q^{5} +(26.1867 + 6.57697i) q^{9} +O(q^{10})\) \(q+(5.15687 + 0.637690i) q^{3} +(6.99365 + 12.1134i) q^{5} +(26.1867 + 6.57697i) q^{9} +(-27.5333 - 15.8964i) q^{11} +31.1041i q^{13} +(28.3408 + 66.9269i) q^{15} +(-61.5138 + 106.545i) q^{17} +(-62.7653 + 36.2376i) q^{19} +(66.1240 - 38.1767i) q^{23} +(-35.3223 + 61.1801i) q^{25} +(130.847 + 50.6156i) q^{27} -14.1082i q^{29} +(267.941 + 154.696i) q^{31} +(-131.849 - 99.5333i) q^{33} +(58.3602 + 101.083i) q^{37} +(-19.8347 + 160.400i) q^{39} -491.980 q^{41} +13.6538 q^{43} +(103.471 + 363.206i) q^{45} +(-43.4381 - 75.2370i) q^{47} +(-385.161 + 510.212i) q^{51} +(-388.989 - 224.583i) q^{53} -444.695i q^{55} +(-346.781 + 146.848i) q^{57} +(128.392 - 222.381i) q^{59} +(238.010 - 137.415i) q^{61} +(-376.775 + 217.531i) q^{65} +(-515.984 + 893.710i) q^{67} +(365.338 - 154.706i) q^{69} -931.763i q^{71} +(887.716 + 512.523i) q^{73} +(-221.167 + 292.973i) q^{75} +(462.310 + 800.745i) q^{79} +(642.487 + 344.459i) q^{81} +991.698 q^{83} -1720.82 q^{85} +(8.99667 - 72.7543i) q^{87} +(125.394 + 217.188i) q^{89} +(1283.09 + 968.611i) q^{93} +(-877.917 - 506.866i) q^{95} -1059.27i q^{97} +(-616.457 - 597.359i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 64 q^{9} + O(q^{10}) \) \( 48 q + 64 q^{9} - 192 q^{15} - 456 q^{25} + 432 q^{37} - 688 q^{39} + 1248 q^{43} + 1536 q^{51} - 2720 q^{57} + 528 q^{67} - 3744 q^{79} - 3408 q^{81} + 13824 q^{85} + 5088 q^{93} - 15472 q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/588\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(295\) \(493\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 5.15687 + 0.637690i 0.992441 + 0.122723i
\(4\) 0 0
\(5\) 6.99365 + 12.1134i 0.625531 + 1.08345i 0.988438 + 0.151626i \(0.0484511\pi\)
−0.362907 + 0.931826i \(0.618216\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 26.1867 + 6.57697i 0.969878 + 0.243592i
\(10\) 0 0
\(11\) −27.5333 15.8964i −0.754692 0.435721i 0.0726950 0.997354i \(-0.476840\pi\)
−0.827387 + 0.561633i \(0.810173\pi\)
\(12\) 0 0
\(13\) 31.1041i 0.663593i 0.943351 + 0.331797i \(0.107655\pi\)
−0.943351 + 0.331797i \(0.892345\pi\)
\(14\) 0 0
\(15\) 28.3408 + 66.9269i 0.487838 + 1.15203i
\(16\) 0 0
\(17\) −61.5138 + 106.545i −0.877605 + 1.52006i −0.0236424 + 0.999720i \(0.507526\pi\)
−0.853962 + 0.520335i \(0.825807\pi\)
\(18\) 0 0
\(19\) −62.7653 + 36.2376i −0.757860 + 0.437551i −0.828527 0.559949i \(-0.810821\pi\)
0.0706666 + 0.997500i \(0.477487\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 66.1240 38.1767i 0.599470 0.346104i −0.169363 0.985554i \(-0.554171\pi\)
0.768833 + 0.639449i \(0.220838\pi\)
\(24\) 0 0
\(25\) −35.3223 + 61.1801i −0.282579 + 0.489441i
\(26\) 0 0
\(27\) 130.847 + 50.6156i 0.932652 + 0.360777i
\(28\) 0 0
\(29\) 14.1082i 0.0903390i −0.998979 0.0451695i \(-0.985617\pi\)
0.998979 0.0451695i \(-0.0143828\pi\)
\(30\) 0 0
\(31\) 267.941 + 154.696i 1.55238 + 0.896265i 0.997948 + 0.0640343i \(0.0203967\pi\)
0.554429 + 0.832231i \(0.312937\pi\)
\(32\) 0 0
\(33\) −131.849 99.5333i −0.695514 0.525046i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 58.3602 + 101.083i 0.259307 + 0.449133i 0.966056 0.258331i \(-0.0831726\pi\)
−0.706750 + 0.707464i \(0.749839\pi\)
\(38\) 0 0
\(39\) −19.8347 + 160.400i −0.0814385 + 0.658577i
\(40\) 0 0
\(41\) −491.980 −1.87401 −0.937004 0.349319i \(-0.886413\pi\)
−0.937004 + 0.349319i \(0.886413\pi\)
\(42\) 0 0
\(43\) 13.6538 0.0484230 0.0242115 0.999707i \(-0.492292\pi\)
0.0242115 + 0.999707i \(0.492292\pi\)
\(44\) 0 0
\(45\) 103.471 + 363.206i 0.342769 + 1.20319i
\(46\) 0 0
\(47\) −43.4381 75.2370i −0.134811 0.233499i 0.790714 0.612185i \(-0.209709\pi\)
−0.925525 + 0.378686i \(0.876376\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −385.161 + 510.212i −1.05752 + 1.40086i
\(52\) 0 0
\(53\) −388.989 224.583i −1.00815 0.582053i −0.0974977 0.995236i \(-0.531084\pi\)
−0.910648 + 0.413182i \(0.864417\pi\)
\(54\) 0 0
\(55\) 444.695i 1.09023i
\(56\) 0 0
\(57\) −346.781 + 146.848i −0.805829 + 0.341236i
\(58\) 0 0
\(59\) 128.392 222.381i 0.283308 0.490704i −0.688889 0.724866i \(-0.741901\pi\)
0.972197 + 0.234162i \(0.0752348\pi\)
\(60\) 0 0
\(61\) 238.010 137.415i 0.499575 0.288430i −0.228963 0.973435i \(-0.573533\pi\)
0.728538 + 0.685005i \(0.240200\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −376.775 + 217.531i −0.718972 + 0.415098i
\(66\) 0 0
\(67\) −515.984 + 893.710i −0.940857 + 1.62961i −0.177016 + 0.984208i \(0.556644\pi\)
−0.763841 + 0.645404i \(0.776689\pi\)
\(68\) 0 0
\(69\) 365.338 154.706i 0.637414 0.269919i
\(70\) 0 0
\(71\) 931.763i 1.55746i −0.627356 0.778732i \(-0.715863\pi\)
0.627356 0.778732i \(-0.284137\pi\)
\(72\) 0 0
\(73\) 887.716 + 512.523i 1.42328 + 0.821730i 0.996578 0.0826631i \(-0.0263425\pi\)
0.426700 + 0.904393i \(0.359676\pi\)
\(74\) 0 0
\(75\) −221.167 + 292.973i −0.340509 + 0.451062i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 462.310 + 800.745i 0.658405 + 1.14039i 0.981029 + 0.193863i \(0.0621018\pi\)
−0.322624 + 0.946527i \(0.604565\pi\)
\(80\) 0 0
\(81\) 642.487 + 344.459i 0.881326 + 0.472508i
\(82\) 0 0
\(83\) 991.698 1.31148 0.655741 0.754986i \(-0.272356\pi\)
0.655741 + 0.754986i \(0.272356\pi\)
\(84\) 0 0
\(85\) −1720.82 −2.19588
\(86\) 0 0
\(87\) 8.99667 72.7543i 0.0110867 0.0896561i
\(88\) 0 0
\(89\) 125.394 + 217.188i 0.149345 + 0.258673i 0.930985 0.365056i \(-0.118950\pi\)
−0.781641 + 0.623729i \(0.785617\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 1283.09 + 968.611i 1.43065 + 1.08000i
\(94\) 0 0
\(95\) −877.917 506.866i −0.948131 0.547404i
\(96\) 0 0
\(97\) 1059.27i 1.10879i −0.832252 0.554397i \(-0.812949\pi\)
0.832252 0.554397i \(-0.187051\pi\)
\(98\) 0 0
\(99\) −616.457 597.359i −0.625821 0.606433i
\(100\) 0 0
\(101\) −764.116 + 1323.49i −0.752796 + 1.30388i 0.193666 + 0.981067i \(0.437962\pi\)
−0.946462 + 0.322814i \(0.895371\pi\)
\(102\) 0 0
\(103\) 164.739 95.1120i 0.157594 0.0909870i −0.419129 0.907927i \(-0.637664\pi\)
0.576723 + 0.816940i \(0.304331\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 154.050 88.9408i 0.139183 0.0803573i −0.428792 0.903403i \(-0.641061\pi\)
0.567975 + 0.823046i \(0.307727\pi\)
\(108\) 0 0
\(109\) −96.5195 + 167.177i −0.0848156 + 0.146905i −0.905313 0.424746i \(-0.860363\pi\)
0.820497 + 0.571651i \(0.193697\pi\)
\(110\) 0 0
\(111\) 236.497 + 558.487i 0.202228 + 0.477561i
\(112\) 0 0
\(113\) 452.079i 0.376354i −0.982135 0.188177i \(-0.939742\pi\)
0.982135 0.188177i \(-0.0602579\pi\)
\(114\) 0 0
\(115\) 924.897 + 533.989i 0.749975 + 0.432998i
\(116\) 0 0
\(117\) −204.571 + 814.513i −0.161646 + 0.643605i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −160.111 277.320i −0.120294 0.208355i
\(122\) 0 0
\(123\) −2537.08 313.731i −1.85984 0.229985i
\(124\) 0 0
\(125\) 760.285 0.544015
\(126\) 0 0
\(127\) 729.629 0.509796 0.254898 0.966968i \(-0.417958\pi\)
0.254898 + 0.966968i \(0.417958\pi\)
\(128\) 0 0
\(129\) 70.4110 + 8.70690i 0.0480569 + 0.00594264i
\(130\) 0 0
\(131\) 287.216 + 497.472i 0.191558 + 0.331789i 0.945767 0.324846i \(-0.105313\pi\)
−0.754208 + 0.656635i \(0.771979\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 301.976 + 1938.99i 0.192518 + 1.23616i
\(136\) 0 0
\(137\) 2102.50 + 1213.88i 1.31116 + 0.756998i 0.982288 0.187376i \(-0.0599984\pi\)
0.328871 + 0.944375i \(0.393332\pi\)
\(138\) 0 0
\(139\) 1453.63i 0.887014i −0.896271 0.443507i \(-0.853734\pi\)
0.896271 0.443507i \(-0.146266\pi\)
\(140\) 0 0
\(141\) −176.027 415.688i −0.105136 0.248278i
\(142\) 0 0
\(143\) 494.442 856.398i 0.289142 0.500808i
\(144\) 0 0
\(145\) 170.898 98.6680i 0.0978779 0.0565098i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −1704.20 + 983.920i −0.937003 + 0.540979i −0.889020 0.457869i \(-0.848613\pi\)
−0.0479834 + 0.998848i \(0.515279\pi\)
\(150\) 0 0
\(151\) −1086.40 + 1881.71i −0.585499 + 1.01411i 0.409314 + 0.912394i \(0.365768\pi\)
−0.994813 + 0.101720i \(0.967565\pi\)
\(152\) 0 0
\(153\) −2311.59 + 2385.49i −1.22144 + 1.26049i
\(154\) 0 0
\(155\) 4327.56i 2.24257i
\(156\) 0 0
\(157\) 2857.15 + 1649.57i 1.45239 + 0.838538i 0.998617 0.0525797i \(-0.0167444\pi\)
0.453773 + 0.891117i \(0.350078\pi\)
\(158\) 0 0
\(159\) −1862.75 1406.20i −0.929094 0.701377i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −1399.63 2424.23i −0.672562 1.16491i −0.977175 0.212436i \(-0.931860\pi\)
0.304612 0.952476i \(-0.401473\pi\)
\(164\) 0 0
\(165\) 283.577 2293.23i 0.133797 1.08199i
\(166\) 0 0
\(167\) −1933.50 −0.895921 −0.447960 0.894053i \(-0.647849\pi\)
−0.447960 + 0.894053i \(0.647849\pi\)
\(168\) 0 0
\(169\) 1229.54 0.559644
\(170\) 0 0
\(171\) −1881.95 + 536.137i −0.841616 + 0.239763i
\(172\) 0 0
\(173\) −1752.50 3035.43i −0.770176 1.33398i −0.937466 0.348076i \(-0.886835\pi\)
0.167290 0.985908i \(-0.446498\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 803.910 1064.92i 0.341387 0.452226i
\(178\) 0 0
\(179\) 1598.90 + 923.127i 0.667640 + 0.385462i 0.795182 0.606371i \(-0.207375\pi\)
−0.127542 + 0.991833i \(0.540709\pi\)
\(180\) 0 0
\(181\) 369.402i 0.151699i −0.997119 0.0758493i \(-0.975833\pi\)
0.997119 0.0758493i \(-0.0241668\pi\)
\(182\) 0 0
\(183\) 1315.02 556.857i 0.531196 0.224940i
\(184\) 0 0
\(185\) −816.302 + 1413.88i −0.324409 + 0.561893i
\(186\) 0 0
\(187\) 3387.36 1955.69i 1.32464 0.764782i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 206.710 119.344i 0.0783088 0.0452116i −0.460334 0.887746i \(-0.652270\pi\)
0.538643 + 0.842534i \(0.318937\pi\)
\(192\) 0 0
\(193\) 841.049 1456.74i 0.313679 0.543308i −0.665477 0.746418i \(-0.731772\pi\)
0.979156 + 0.203111i \(0.0651051\pi\)
\(194\) 0 0
\(195\) −2081.70 + 881.514i −0.764479 + 0.323726i
\(196\) 0 0
\(197\) 2988.01i 1.08065i −0.841458 0.540323i \(-0.818302\pi\)
0.841458 0.540323i \(-0.181698\pi\)
\(198\) 0 0
\(199\) −1746.98 1008.62i −0.622312 0.359292i 0.155457 0.987843i \(-0.450315\pi\)
−0.777768 + 0.628551i \(0.783648\pi\)
\(200\) 0 0
\(201\) −3230.77 + 4279.71i −1.13374 + 1.50183i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −3440.73 5959.53i −1.17225 2.03040i
\(206\) 0 0
\(207\) 1982.66 564.827i 0.665721 0.189653i
\(208\) 0 0
\(209\) 2304.18 0.762601
\(210\) 0 0
\(211\) 4685.01 1.52858 0.764288 0.644875i \(-0.223091\pi\)
0.764288 + 0.644875i \(0.223091\pi\)
\(212\) 0 0
\(213\) 594.176 4804.99i 0.191137 1.54569i
\(214\) 0 0
\(215\) 95.4901 + 165.394i 0.0302901 + 0.0524640i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 4251.01 + 3209.10i 1.31167 + 0.990188i
\(220\) 0 0
\(221\) −3313.98 1913.33i −1.00870 0.582373i
\(222\) 0 0
\(223\) 17.2808i 0.00518927i −0.999997 0.00259463i \(-0.999174\pi\)
0.999997 0.00259463i \(-0.000825899\pi\)
\(224\) 0 0
\(225\) −1327.36 + 1369.79i −0.393290 + 0.405864i
\(226\) 0 0
\(227\) 731.937 1267.75i 0.214011 0.370677i −0.738956 0.673754i \(-0.764681\pi\)
0.952966 + 0.303077i \(0.0980140\pi\)
\(228\) 0 0
\(229\) 100.522 58.0363i 0.0290073 0.0167474i −0.485426 0.874278i \(-0.661336\pi\)
0.514434 + 0.857530i \(0.328002\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 3248.11 1875.30i 0.913265 0.527274i 0.0317846 0.999495i \(-0.489881\pi\)
0.881480 + 0.472221i \(0.156548\pi\)
\(234\) 0 0
\(235\) 607.582 1052.36i 0.168656 0.292122i
\(236\) 0 0
\(237\) 1873.45 + 4424.15i 0.513475 + 1.21257i
\(238\) 0 0
\(239\) 5423.48i 1.46785i 0.679232 + 0.733924i \(0.262313\pi\)
−0.679232 + 0.733924i \(0.737687\pi\)
\(240\) 0 0
\(241\) −3933.77 2271.16i −1.05144 0.607048i −0.128386 0.991724i \(-0.540980\pi\)
−0.923051 + 0.384677i \(0.874313\pi\)
\(242\) 0 0
\(243\) 3093.57 + 2186.04i 0.816676 + 0.577096i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −1127.14 1952.26i −0.290356 0.502911i
\(248\) 0 0
\(249\) 5114.06 + 632.396i 1.30157 + 0.160950i
\(250\) 0 0
\(251\) 1115.63 0.280549 0.140275 0.990113i \(-0.455201\pi\)
0.140275 + 0.990113i \(0.455201\pi\)
\(252\) 0 0
\(253\) −2427.49 −0.603220
\(254\) 0 0
\(255\) −8874.07 1097.35i −2.17928 0.269486i
\(256\) 0 0
\(257\) 3189.65 + 5524.63i 0.774182 + 1.34092i 0.935253 + 0.353979i \(0.115172\pi\)
−0.161071 + 0.986943i \(0.551495\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 92.7894 369.448i 0.0220058 0.0876178i
\(262\) 0 0
\(263\) 624.597 + 360.611i 0.146442 + 0.0845485i 0.571431 0.820650i \(-0.306389\pi\)
−0.424989 + 0.905199i \(0.639722\pi\)
\(264\) 0 0
\(265\) 6282.62i 1.45637i
\(266\) 0 0
\(267\) 508.140 + 1199.97i 0.116471 + 0.275046i
\(268\) 0 0
\(269\) 2373.32 4110.72i 0.537933 0.931728i −0.461082 0.887358i \(-0.652539\pi\)
0.999015 0.0443703i \(-0.0141281\pi\)
\(270\) 0 0
\(271\) 7124.62 4113.40i 1.59701 0.922034i 0.604951 0.796263i \(-0.293193\pi\)
0.992059 0.125772i \(-0.0401407\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1945.08 1122.99i 0.426519 0.246251i
\(276\) 0 0
\(277\) 2551.88 4419.99i 0.553529 0.958741i −0.444487 0.895785i \(-0.646614\pi\)
0.998016 0.0629556i \(-0.0200526\pi\)
\(278\) 0 0
\(279\) 5999.07 + 5813.22i 1.28729 + 1.24741i
\(280\) 0 0
\(281\) 6818.51i 1.44754i −0.690042 0.723769i \(-0.742408\pi\)
0.690042 0.723769i \(-0.257592\pi\)
\(282\) 0 0
\(283\) −2317.66 1338.10i −0.486822 0.281067i 0.236433 0.971648i \(-0.424022\pi\)
−0.723255 + 0.690581i \(0.757355\pi\)
\(284\) 0 0
\(285\) −4204.09 3173.68i −0.873784 0.659624i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −5111.38 8853.18i −1.04038 1.80199i
\(290\) 0 0
\(291\) 675.489 5462.55i 0.136075 1.10041i
\(292\) 0 0
\(293\) −1743.71 −0.347674 −0.173837 0.984774i \(-0.555617\pi\)
−0.173837 + 0.984774i \(0.555617\pi\)
\(294\) 0 0
\(295\) 3591.71 0.708872
\(296\) 0 0
\(297\) −2798.06 3473.62i −0.546666 0.678652i
\(298\) 0 0
\(299\) 1187.45 + 2056.73i 0.229673 + 0.397804i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −4784.43 + 6337.79i −0.907123 + 1.20164i
\(304\) 0 0
\(305\) 3329.12 + 1922.07i 0.625000 + 0.360844i
\(306\) 0 0
\(307\) 1503.17i 0.279448i −0.990191 0.139724i \(-0.955378\pi\)
0.990191 0.139724i \(-0.0446215\pi\)
\(308\) 0 0
\(309\) 910.189 385.428i 0.167569 0.0709587i
\(310\) 0 0
\(311\) 4370.72 7570.31i 0.796916 1.38030i −0.124699 0.992195i \(-0.539796\pi\)
0.921615 0.388105i \(-0.126870\pi\)
\(312\) 0 0
\(313\) −3230.92 + 1865.37i −0.583458 + 0.336860i −0.762507 0.646980i \(-0.776032\pi\)
0.179048 + 0.983840i \(0.442698\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 4312.95 2490.08i 0.764163 0.441190i −0.0666256 0.997778i \(-0.521223\pi\)
0.830788 + 0.556589i \(0.187890\pi\)
\(318\) 0 0
\(319\) −224.269 + 388.446i −0.0393626 + 0.0681781i
\(320\) 0 0
\(321\) 851.133 360.421i 0.147993 0.0626689i
\(322\) 0 0
\(323\) 8916.43i 1.53599i
\(324\) 0 0
\(325\) −1902.95 1098.67i −0.324790 0.187517i
\(326\) 0 0
\(327\) −604.346 + 800.560i −0.102203 + 0.135386i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −3097.27 5364.63i −0.514324 0.890836i −0.999862 0.0166199i \(-0.994709\pi\)
0.485538 0.874216i \(-0.338624\pi\)
\(332\) 0 0
\(333\) 863.442 + 3030.86i 0.142091 + 0.498769i
\(334\) 0 0
\(335\) −14434.4 −2.35414
\(336\) 0 0
\(337\) −2866.79 −0.463395 −0.231697 0.972788i \(-0.574428\pi\)
−0.231697 + 0.972788i \(0.574428\pi\)
\(338\) 0 0
\(339\) 288.286 2331.31i 0.0461875 0.373509i
\(340\) 0 0
\(341\) −4918.21 8518.59i −0.781044 1.35281i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 4429.06 + 3343.51i 0.691166 + 0.521764i
\(346\) 0 0
\(347\) 1253.66 + 723.803i 0.193949 + 0.111976i 0.593830 0.804591i \(-0.297615\pi\)
−0.399881 + 0.916567i \(0.630949\pi\)
\(348\) 0 0
\(349\) 5343.79i 0.819618i −0.912171 0.409809i \(-0.865595\pi\)
0.912171 0.409809i \(-0.134405\pi\)
\(350\) 0 0
\(351\) −1574.35 + 4069.89i −0.239409 + 0.618902i
\(352\) 0 0
\(353\) −2201.40 + 3812.93i −0.331922 + 0.574906i −0.982889 0.184200i \(-0.941031\pi\)
0.650966 + 0.759107i \(0.274364\pi\)
\(354\) 0 0
\(355\) 11286.8 6516.43i 1.68744 0.974243i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −4640.81 + 2679.37i −0.682263 + 0.393905i −0.800707 0.599056i \(-0.795543\pi\)
0.118444 + 0.992961i \(0.462209\pi\)
\(360\) 0 0
\(361\) −803.178 + 1391.14i −0.117098 + 0.202820i
\(362\) 0 0
\(363\) −648.828 1532.21i −0.0938144 0.221543i
\(364\) 0 0
\(365\) 14337.6i 2.05607i
\(366\) 0 0
\(367\) 7217.32 + 4166.92i 1.02654 + 0.592674i 0.915992 0.401196i \(-0.131405\pi\)
0.110550 + 0.993871i \(0.464739\pi\)
\(368\) 0 0
\(369\) −12883.3 3235.74i −1.81756 0.456493i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −3597.98 6231.89i −0.499454 0.865080i 0.500546 0.865710i \(-0.333133\pi\)
−1.00000 0.000630094i \(0.999799\pi\)
\(374\) 0 0
\(375\) 3920.69 + 484.826i 0.539903 + 0.0667635i
\(376\) 0 0
\(377\) 438.823 0.0599483
\(378\) 0 0
\(379\) 12312.1 1.66869 0.834343 0.551245i \(-0.185847\pi\)
0.834343 + 0.551245i \(0.185847\pi\)
\(380\) 0 0
\(381\) 3762.61 + 465.277i 0.505943 + 0.0625640i
\(382\) 0 0
\(383\) 5365.18 + 9292.76i 0.715791 + 1.23979i 0.962654 + 0.270736i \(0.0872669\pi\)
−0.246863 + 0.969050i \(0.579400\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 357.549 + 89.8008i 0.0469644 + 0.0117954i
\(388\) 0 0
\(389\) −8674.30 5008.11i −1.13060 0.652754i −0.186516 0.982452i \(-0.559720\pi\)
−0.944086 + 0.329698i \(0.893053\pi\)
\(390\) 0 0
\(391\) 9393.58i 1.21497i
\(392\) 0 0
\(393\) 1163.90 + 2748.56i 0.149392 + 0.352790i
\(394\) 0 0
\(395\) −6466.47 + 11200.3i −0.823705 + 1.42670i
\(396\) 0 0
\(397\) −3240.86 + 1871.11i −0.409708 + 0.236545i −0.690664 0.723176i \(-0.742682\pi\)
0.280956 + 0.959721i \(0.409348\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −8343.83 + 4817.31i −1.03908 + 0.599913i −0.919572 0.392920i \(-0.871465\pi\)
−0.119507 + 0.992833i \(0.538131\pi\)
\(402\) 0 0
\(403\) −4811.67 + 8334.06i −0.594756 + 1.03015i
\(404\) 0 0
\(405\) 320.779 + 10191.7i 0.0393571 + 1.25044i
\(406\) 0 0
\(407\) 3710.86i 0.451942i
\(408\) 0 0
\(409\) 4547.71 + 2625.62i 0.549803 + 0.317429i 0.749043 0.662522i \(-0.230514\pi\)
−0.199239 + 0.979951i \(0.563847\pi\)
\(410\) 0 0
\(411\) 10068.3 + 7600.57i 1.20835 + 0.912186i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 6935.59 + 12012.8i 0.820373 + 1.42093i
\(416\) 0 0
\(417\) 926.963 7496.17i 0.108858 0.880309i
\(418\) 0 0
\(419\) 11867.1 1.38364 0.691819 0.722071i \(-0.256809\pi\)
0.691819 + 0.722071i \(0.256809\pi\)
\(420\) 0 0
\(421\) −8108.04 −0.938626 −0.469313 0.883032i \(-0.655498\pi\)
−0.469313 + 0.883032i \(0.655498\pi\)
\(422\) 0 0
\(423\) −642.669 2255.90i −0.0738715 0.259304i
\(424\) 0 0
\(425\) −4345.62 7526.83i −0.495985 0.859071i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 3095.89 4101.04i 0.348417 0.461538i
\(430\) 0 0
\(431\) 390.334 + 225.360i 0.0436235 + 0.0251860i 0.521653 0.853158i \(-0.325316\pi\)
−0.478030 + 0.878344i \(0.658649\pi\)
\(432\) 0 0
\(433\) 8133.13i 0.902664i −0.892356 0.451332i \(-0.850949\pi\)
0.892356 0.451332i \(-0.149051\pi\)
\(434\) 0 0
\(435\) 944.219 399.838i 0.104073 0.0440708i
\(436\) 0 0
\(437\) −2766.86 + 4792.35i −0.302876 + 0.524597i
\(438\) 0 0
\(439\) −8016.30 + 4628.21i −0.871520 + 0.503172i −0.867853 0.496821i \(-0.834500\pi\)
−0.00366672 + 0.999993i \(0.501167\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 8854.31 5112.04i 0.949618 0.548262i 0.0566558 0.998394i \(-0.481956\pi\)
0.892962 + 0.450132i \(0.148623\pi\)
\(444\) 0 0
\(445\) −1753.92 + 3037.87i −0.186840 + 0.323616i
\(446\) 0 0
\(447\) −9415.78 + 3987.20i −0.996311 + 0.421897i
\(448\) 0 0
\(449\) 2896.50i 0.304442i 0.988346 + 0.152221i \(0.0486425\pi\)
−0.988346 + 0.152221i \(0.951357\pi\)
\(450\) 0 0
\(451\) 13545.8 + 7820.69i 1.41430 + 0.816545i
\(452\) 0 0
\(453\) −6802.40 + 9010.94i −0.705529 + 0.934594i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 3995.15 + 6919.80i 0.408939 + 0.708303i 0.994771 0.102129i \(-0.0325655\pi\)
−0.585832 + 0.810432i \(0.699232\pi\)
\(458\) 0 0
\(459\) −13441.8 + 10827.6i −1.36690 + 1.10106i
\(460\) 0 0
\(461\) 4639.50 0.468727 0.234363 0.972149i \(-0.424699\pi\)
0.234363 + 0.972149i \(0.424699\pi\)
\(462\) 0 0
\(463\) 4926.63 0.494514 0.247257 0.968950i \(-0.420471\pi\)
0.247257 + 0.968950i \(0.420471\pi\)
\(464\) 0 0
\(465\) −2759.64 + 22316.7i −0.275216 + 2.22562i
\(466\) 0 0
\(467\) −3404.64 5897.01i −0.337362 0.584328i 0.646574 0.762852i \(-0.276201\pi\)
−0.983936 + 0.178523i \(0.942868\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 13682.0 + 10328.6i 1.33850 + 1.01044i
\(472\) 0 0
\(473\) −375.935 217.046i −0.0365444 0.0210989i
\(474\) 0 0
\(475\) 5119.98i 0.494570i
\(476\) 0 0
\(477\) −8709.26 8439.45i −0.835995 0.810097i
\(478\) 0 0
\(479\) 1116.45 1933.75i 0.106497 0.184458i −0.807852 0.589386i \(-0.799370\pi\)
0.914349 + 0.404927i \(0.132703\pi\)
\(480\) 0 0
\(481\) −3144.09 + 1815.24i −0.298042 + 0.172074i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 12831.4 7408.20i 1.20133 0.693586i
\(486\) 0 0
\(487\) 60.8391 105.376i 0.00566095 0.00980505i −0.863181 0.504895i \(-0.831531\pi\)
0.868842 + 0.495089i \(0.164865\pi\)
\(488\) 0 0
\(489\) −5671.82 13394.0i −0.524516 1.23865i
\(490\) 0 0
\(491\) 9638.92i 0.885944i 0.896535 + 0.442972i \(0.146076\pi\)
−0.896535 + 0.442972i \(0.853924\pi\)
\(492\) 0 0
\(493\) 1503.16 + 867.849i 0.137320 + 0.0792819i
\(494\) 0 0
\(495\) 2924.74 11645.1i 0.265571 1.05739i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 1875.57 + 3248.58i 0.168261 + 0.291436i 0.937808 0.347153i \(-0.112852\pi\)
−0.769548 + 0.638589i \(0.779518\pi\)
\(500\) 0 0
\(501\) −9970.82 1232.97i −0.889148 0.109951i
\(502\) 0 0
\(503\) 13881.9 1.23054 0.615272 0.788315i \(-0.289046\pi\)
0.615272 + 0.788315i \(0.289046\pi\)
\(504\) 0 0
\(505\) −21375.9 −1.88359
\(506\) 0 0
\(507\) 6340.57 + 784.064i 0.555413 + 0.0686814i
\(508\) 0 0
\(509\) 3096.63 + 5363.52i 0.269658 + 0.467061i 0.968773 0.247948i \(-0.0797561\pi\)
−0.699116 + 0.715009i \(0.746423\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −10046.9 + 1564.69i −0.864678 + 0.134664i
\(514\) 0 0
\(515\) 2304.25 + 1330.36i 0.197160 + 0.113830i
\(516\) 0 0
\(517\) 2762.03i 0.234959i
\(518\) 0 0
\(519\) −7101.78 16770.9i −0.600643 1.41842i
\(520\) 0 0
\(521\) 2256.61 3908.57i 0.189758 0.328671i −0.755411 0.655251i \(-0.772563\pi\)
0.945170 + 0.326580i \(0.105896\pi\)
\(522\) 0 0
\(523\) 537.821 310.511i 0.0449661 0.0259612i −0.477348 0.878714i \(-0.658402\pi\)
0.522315 + 0.852753i \(0.325069\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −32964.2 + 19031.9i −2.72475 + 1.57313i
\(528\) 0 0
\(529\) −3168.58 + 5488.13i −0.260424 + 0.451067i
\(530\) 0 0
\(531\) 4824.75 4979.00i 0.394306 0.406912i
\(532\) 0 0
\(533\) 15302.6i 1.24358i
\(534\) 0 0
\(535\) 2154.74 + 1244.04i 0.174127 + 0.100532i
\(536\) 0 0
\(537\) 7656.67 + 5780.06i 0.615288 + 0.464484i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 5101.80 + 8836.58i 0.405441 + 0.702244i 0.994373 0.105938i \(-0.0337846\pi\)
−0.588932 + 0.808183i \(0.700451\pi\)
\(542\) 0 0
\(543\) 235.564 1904.96i 0.0186170 0.150552i
\(544\) 0 0
\(545\) −2700.10 −0.212219
\(546\) 0 0
\(547\) −6359.52 −0.497100 −0.248550 0.968619i \(-0.579954\pi\)
−0.248550 + 0.968619i \(0.579954\pi\)
\(548\) 0 0
\(549\) 7136.48 2033.07i 0.554786 0.158049i
\(550\) 0 0
\(551\) 511.247 + 885.507i 0.0395279 + 0.0684643i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −5111.18 + 6770.63i −0.390914 + 0.517833i
\(556\) 0 0
\(557\) 18905.0 + 10914.8i 1.43812 + 0.830298i 0.997719 0.0675048i \(-0.0215038\pi\)
0.440399 + 0.897802i \(0.354837\pi\)
\(558\) 0 0
\(559\) 424.689i 0.0321332i
\(560\) 0 0
\(561\) 18715.3 7925.17i 1.40849 0.596436i
\(562\) 0 0
\(563\) −312.001 + 540.401i −0.0233557 + 0.0404533i −0.877467 0.479637i \(-0.840768\pi\)
0.854111 + 0.520090i \(0.174102\pi\)
\(564\) 0 0
\(565\) 5476.19 3161.68i 0.407761 0.235421i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −12198.4 + 7042.74i −0.898739 + 0.518887i −0.876791 0.480872i \(-0.840320\pi\)
−0.0219483 + 0.999759i \(0.506987\pi\)
\(570\) 0 0
\(571\) −4105.50 + 7110.94i −0.300893 + 0.521162i −0.976338 0.216248i \(-0.930618\pi\)
0.675445 + 0.737410i \(0.263951\pi\)
\(572\) 0 0
\(573\) 1142.08 483.625i 0.0832654 0.0352595i
\(574\) 0 0
\(575\) 5393.96i 0.391207i
\(576\) 0 0
\(577\) 9649.07 + 5570.89i 0.696180 + 0.401940i 0.805923 0.592020i \(-0.201669\pi\)
−0.109743 + 0.993960i \(0.535003\pi\)
\(578\) 0 0
\(579\) 5266.13 6975.89i 0.377984 0.500705i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 7140.10 + 12367.0i 0.507226 + 0.878541i
\(584\) 0 0
\(585\) −11297.2 + 3218.38i −0.798429 + 0.227459i
\(586\) 0 0
\(587\) 5198.19 0.365507 0.182753 0.983159i \(-0.441499\pi\)
0.182753 + 0.983159i \(0.441499\pi\)
\(588\) 0 0
\(589\) −22423.2 −1.56865
\(590\) 0 0
\(591\) 1905.43 15408.8i 0.132621 1.07248i
\(592\) 0 0
\(593\) −5485.15 9500.55i −0.379845 0.657910i 0.611195 0.791480i \(-0.290689\pi\)
−0.991039 + 0.133570i \(0.957356\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −8365.76 6315.35i −0.573514 0.432948i
\(598\) 0 0
\(599\) −22359.1 12909.0i −1.52515 0.880547i −0.999555 0.0298138i \(-0.990509\pi\)
−0.525597 0.850734i \(-0.676158\pi\)
\(600\) 0 0
\(601\) 11968.5i 0.812323i −0.913801 0.406162i \(-0.866867\pi\)
0.913801 0.406162i \(-0.133133\pi\)
\(602\) 0 0
\(603\) −19389.8 + 20009.7i −1.30948 + 1.35134i
\(604\) 0 0
\(605\) 2239.52 3878.96i 0.150495 0.260665i
\(606\) 0 0
\(607\) −5412.72 + 3125.04i −0.361937 + 0.208964i −0.669930 0.742424i \(-0.733676\pi\)
0.307993 + 0.951389i \(0.400343\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 2340.18 1351.10i 0.154948 0.0894594i
\(612\) 0 0
\(613\) −2469.83 + 4277.87i −0.162733 + 0.281862i −0.935848 0.352404i \(-0.885364\pi\)
0.773115 + 0.634266i \(0.218698\pi\)
\(614\) 0 0
\(615\) −13943.1 32926.7i −0.914212 2.15891i
\(616\) 0 0
\(617\) 14836.2i 0.968042i −0.875056 0.484021i \(-0.839176\pi\)
0.875056 0.484021i \(-0.160824\pi\)
\(618\) 0 0
\(619\) −10534.4 6082.04i −0.684028 0.394924i 0.117343 0.993091i \(-0.462562\pi\)
−0.801371 + 0.598168i \(0.795896\pi\)
\(620\) 0 0
\(621\) 10584.5 1648.42i 0.683964 0.106520i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 9732.46 + 16857.1i 0.622877 + 1.07886i
\(626\) 0 0
\(627\) 11882.4 + 1469.35i 0.756837 + 0.0935891i
\(628\) 0 0
\(629\) −14359.8 −0.910276
\(630\) 0 0
\(631\) 8372.13 0.528192 0.264096 0.964496i \(-0.414926\pi\)
0.264096 + 0.964496i \(0.414926\pi\)
\(632\) 0 0
\(633\) 24160.0 + 2987.58i 1.51702 + 0.187592i
\(634\) 0 0
\(635\) 5102.77 + 8838.26i 0.318893 + 0.552340i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 6128.18 24399.8i 0.379385 1.51055i
\(640\) 0 0
\(641\) 12972.5 + 7489.69i 0.799351 + 0.461505i 0.843244 0.537531i \(-0.180643\pi\)
−0.0438933 + 0.999036i \(0.513976\pi\)
\(642\) 0 0
\(643\) 4861.62i 0.298170i 0.988824 + 0.149085i \(0.0476329\pi\)
−0.988824 + 0.149085i \(0.952367\pi\)
\(644\) 0 0
\(645\) 386.960 + 913.807i 0.0236226 + 0.0557847i
\(646\) 0 0
\(647\) −13592.4 + 23542.8i −0.825925 + 1.43054i 0.0752852 + 0.997162i \(0.476013\pi\)
−0.901210 + 0.433382i \(0.857320\pi\)
\(648\) 0 0
\(649\) −7070.10 + 4081.92i −0.427620 + 0.246887i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 3755.80 2168.41i 0.225078 0.129949i −0.383222 0.923656i \(-0.625185\pi\)
0.608299 + 0.793708i \(0.291852\pi\)
\(654\) 0 0
\(655\) −4017.37 + 6958.30i −0.239652 + 0.415089i
\(656\) 0 0
\(657\) 19875.5 + 19259.8i 1.18024 + 1.14368i
\(658\) 0 0
\(659\) 15562.8i 0.919939i −0.887935 0.459969i \(-0.847860\pi\)
0.887935 0.459969i \(-0.152140\pi\)
\(660\) 0 0
\(661\) −12267.0 7082.34i −0.721830 0.416749i 0.0935956 0.995610i \(-0.470164\pi\)
−0.815426 + 0.578861i \(0.803497\pi\)
\(662\) 0 0
\(663\) −15869.7 11980.1i −0.929603 0.701761i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −538.606 932.892i −0.0312667 0.0541555i
\(668\) 0 0
\(669\) 11.0198 89.1148i 0.000636845 0.00515004i
\(670\) 0 0
\(671\) −8737.62 −0.502700
\(672\) 0 0
\(673\) 21045.6 1.20542 0.602710 0.797960i \(-0.294087\pi\)
0.602710 + 0.797960i \(0.294087\pi\)
\(674\) 0 0
\(675\) −7718.51 + 6217.40i −0.440127 + 0.354530i
\(676\) 0 0
\(677\) 9037.10 + 15652.7i 0.513034 + 0.888601i 0.999886 + 0.0151166i \(0.00481194\pi\)
−0.486852 + 0.873485i \(0.661855\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 4582.94 6070.89i 0.257884 0.341611i
\(682\) 0 0
\(683\) −21428.1 12371.5i −1.20047 0.693092i −0.239811 0.970820i \(-0.577086\pi\)
−0.960660 + 0.277727i \(0.910419\pi\)
\(684\) 0 0
\(685\) 33957.8i 1.89410i
\(686\) 0 0
\(687\) 555.388 235.184i 0.0308433 0.0130609i
\(688\) 0 0
\(689\) 6985.44 12099.1i 0.386247 0.668999i
\(690\) 0 0
\(691\) −20190.9 + 11657.2i −1.11158 + 0.641769i −0.939237 0.343269i \(-0.888466\pi\)
−0.172339 + 0.985038i \(0.555132\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 17608.3 10166.2i 0.961038 0.554855i
\(696\) 0 0
\(697\) 30263.5 52418.0i 1.64464 2.84860i
\(698\) 0 0
\(699\) 17945.9 7599.38i 0.971070 0.411209i
\(700\) 0 0
\(701\) 901.167i 0.0485544i 0.999705 + 0.0242772i \(0.00772843\pi\)
−0.999705 + 0.0242772i \(0.992272\pi\)
\(702\) 0 0
\(703\) −7325.99 4229.66i −0.393037 0.226920i
\(704\) 0 0
\(705\) 3804.30 5039.45i 0.203232 0.269215i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 2917.65 + 5053.52i 0.154548 + 0.267685i 0.932894 0.360150i \(-0.117274\pi\)
−0.778346 + 0.627835i \(0.783941\pi\)
\(710\) 0 0
\(711\) 6839.90 + 24009.5i 0.360783 + 1.26642i
\(712\) 0 0
\(713\) 23623.1 1.24080
\(714\) 0 0
\(715\) 13831.8 0.723469
\(716\) 0 0
\(717\) −3458.50 + 27968.2i −0.180139 + 1.45675i
\(718\) 0 0
\(719\) −9234.41 15994.5i −0.478978 0.829615i 0.520731 0.853721i \(-0.325659\pi\)
−0.999709 + 0.0241060i \(0.992326\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −18837.7 14220.6i −0.968991 0.731495i
\(724\) 0 0
\(725\) 863.142 + 498.335i 0.0442156 + 0.0255279i
\(726\) 0 0
\(727\) 32300.3i 1.64780i 0.566735 + 0.823900i \(0.308206\pi\)
−0.566735 + 0.823900i \(0.691794\pi\)
\(728\) 0 0
\(729\) 14559.1 + 13245.9i 0.739680 + 0.672959i
\(730\) 0 0
\(731\) −839.898 + 1454.75i −0.0424962 + 0.0736056i
\(732\) 0 0
\(733\) 5189.33 2996.06i 0.261490 0.150971i −0.363524 0.931585i \(-0.618427\pi\)
0.625014 + 0.780613i \(0.285093\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 28413.5 16404.5i 1.42011 0.819903i
\(738\) 0 0
\(739\) 653.898 1132.58i 0.0325494 0.0563772i −0.849292 0.527924i \(-0.822971\pi\)
0.881841 + 0.471546i \(0.156304\pi\)
\(740\) 0 0
\(741\) −4567.56 10786.3i −0.226442 0.534743i
\(742\) 0 0
\(743\) 30175.4i 1.48995i 0.667095 + 0.744973i \(0.267538\pi\)
−0.667095 + 0.744973i \(0.732462\pi\)
\(744\) 0 0
\(745\) −23837.2 13762.4i −1.17225 0.676798i
\(746\) 0 0
\(747\) 25969.3 + 6522.37i 1.27198 + 0.319466i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −536.353 928.990i −0.0260610 0.0451389i 0.852701 0.522400i \(-0.174963\pi\)
−0.878762 + 0.477261i \(0.841630\pi\)
\(752\) 0 0
\(753\) 5753.16 + 711.425i 0.278428 + 0.0344300i
\(754\) 0 0
\(755\) −30391.7 −1.46499
\(756\) 0 0
\(757\) −7773.72 −0.373237 −0.186619 0.982432i \(-0.559753\pi\)
−0.186619 + 0.982432i \(0.559753\pi\)
\(758\) 0 0
\(759\) −12518.2 1547.98i −0.598660 0.0740293i
\(760\) 0 0
\(761\) 10431.8 + 18068.4i 0.496916 + 0.860683i 0.999994 0.00355768i \(-0.00113245\pi\)
−0.503078 + 0.864241i \(0.667799\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −45062.7 11317.8i −2.12973 0.534897i
\(766\) 0 0
\(767\) 6916.95 + 3993.50i 0.325628 + 0.188001i
\(768\) 0 0
\(769\) 1423.15i 0.0667364i 0.999443 + 0.0333682i \(0.0106234\pi\)
−0.999443 + 0.0333682i \(0.989377\pi\)
\(770\) 0 0
\(771\) 12925.6 + 30523.8i 0.603767 + 1.42580i
\(772\) 0 0
\(773\) 2664.15 4614.44i 0.123962 0.214709i −0.797365 0.603498i \(-0.793773\pi\)
0.921327 + 0.388789i \(0.127107\pi\)
\(774\) 0 0
\(775\) −18928.6 + 10928.4i −0.877337 + 0.506531i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 30879.3 17828.1i 1.42024 0.819974i
\(780\) 0 0
\(781\) −14811.7 + 25654.5i −0.678621 + 1.17541i
\(782\) 0 0
\(783\) 714.096 1846.02i 0.0325922 0.0842548i
\(784\) 0 0
\(785\) 46146.2i 2.09813i
\(786\) 0 0
\(787\) 9982.43 + 5763.36i 0.452141 + 0.261044i 0.708734 0.705476i \(-0.249267\pi\)
−0.256593 + 0.966520i \(0.582600\pi\)
\(788\) 0 0
\(789\) 2991.01 + 2257.93i 0.134959 + 0.101881i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 4274.17 + 7403.09i 0.191400 + 0.331515i
\(794\) 0 0
\(795\) 4006.36 32398.7i 0.178731 1.44536i
\(796\) 0 0
\(797\) −42557.4 −1.89142 −0.945709 0.325013i \(-0.894631\pi\)
−0.945709 + 0.325013i \(0.894631\pi\)
\(798\) 0 0