Properties

Label 588.4.k.e.521.22
Level $588$
Weight $4$
Character 588.521
Analytic conductor $34.693$
Analytic rank $0$
Dimension $48$
CM no
Inner twists $8$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 588.k (of order \(6\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(34.6931230834\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 521.22
Character \(\chi\) \(=\) 588.521
Dual form 588.4.k.e.509.22

$q$-expansion

\(f(q)\) \(=\) \(q+(5.14452 - 0.730696i) q^{3} +(3.83273 + 6.63849i) q^{5} +(25.9322 - 7.51816i) q^{9} +O(q^{10})\) \(q+(5.14452 - 0.730696i) q^{3} +(3.83273 + 6.63849i) q^{5} +(25.9322 - 7.51816i) q^{9} +(1.13857 + 0.657354i) q^{11} -23.9754i q^{13} +(24.5683 + 31.3513i) q^{15} +(29.5490 - 51.1804i) q^{17} +(24.4639 - 14.1243i) q^{19} +(65.7234 - 37.9454i) q^{23} +(33.1203 - 57.3661i) q^{25} +(127.915 - 57.6258i) q^{27} +302.001i q^{29} +(80.9549 + 46.7393i) q^{31} +(6.33773 + 2.54982i) q^{33} +(-133.433 - 231.113i) q^{37} +(-17.5187 - 123.342i) q^{39} +142.471 q^{41} +284.654 q^{43} +(149.300 + 143.335i) q^{45} +(104.876 + 181.651i) q^{47} +(114.618 - 284.890i) q^{51} +(545.190 + 314.765i) q^{53} +10.0779i q^{55} +(115.535 - 90.5383i) q^{57} +(-365.186 + 632.521i) q^{59} +(-471.964 + 272.488i) q^{61} +(159.160 - 91.8912i) q^{65} +(240.556 - 416.655i) q^{67} +(310.389 - 243.235i) q^{69} -46.5477i q^{71} +(834.095 + 481.565i) q^{73} +(128.471 - 319.322i) q^{75} +(-630.818 - 1092.61i) q^{79} +(615.955 - 389.924i) q^{81} -841.130 q^{83} +453.014 q^{85} +(220.671 + 1553.65i) q^{87} +(-641.169 - 1110.54i) q^{89} +(450.626 + 181.298i) q^{93} +(187.528 + 108.269i) q^{95} +60.2806i q^{97} +(34.4677 + 8.48666i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 64 q^{9} + O(q^{10}) \) \( 48 q + 64 q^{9} - 192 q^{15} - 456 q^{25} + 432 q^{37} - 688 q^{39} + 1248 q^{43} + 1536 q^{51} - 2720 q^{57} + 528 q^{67} - 3744 q^{79} - 3408 q^{81} + 13824 q^{85} + 5088 q^{93} - 15472 q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/588\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(295\) \(493\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 5.14452 0.730696i 0.990063 0.140622i
\(4\) 0 0
\(5\) 3.83273 + 6.63849i 0.342810 + 0.593764i 0.984953 0.172820i \(-0.0552879\pi\)
−0.642143 + 0.766585i \(0.721955\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 25.9322 7.51816i 0.960451 0.278450i
\(10\) 0 0
\(11\) 1.13857 + 0.657354i 0.0312084 + 0.0180182i 0.515523 0.856876i \(-0.327598\pi\)
−0.484315 + 0.874894i \(0.660931\pi\)
\(12\) 0 0
\(13\) 23.9754i 0.511505i −0.966742 0.255753i \(-0.917677\pi\)
0.966742 0.255753i \(-0.0823233\pi\)
\(14\) 0 0
\(15\) 24.5683 + 31.3513i 0.422900 + 0.539658i
\(16\) 0 0
\(17\) 29.5490 51.1804i 0.421570 0.730181i −0.574523 0.818488i \(-0.694813\pi\)
0.996093 + 0.0883076i \(0.0281458\pi\)
\(18\) 0 0
\(19\) 24.4639 14.1243i 0.295390 0.170544i −0.344980 0.938610i \(-0.612114\pi\)
0.640370 + 0.768066i \(0.278781\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 65.7234 37.9454i 0.595838 0.344008i −0.171564 0.985173i \(-0.554882\pi\)
0.767403 + 0.641165i \(0.221549\pi\)
\(24\) 0 0
\(25\) 33.1203 57.3661i 0.264963 0.458929i
\(26\) 0 0
\(27\) 127.915 57.6258i 0.911751 0.410744i
\(28\) 0 0
\(29\) 302.001i 1.93380i 0.255151 + 0.966901i \(0.417875\pi\)
−0.255151 + 0.966901i \(0.582125\pi\)
\(30\) 0 0
\(31\) 80.9549 + 46.7393i 0.469030 + 0.270795i 0.715834 0.698271i \(-0.246047\pi\)
−0.246804 + 0.969066i \(0.579380\pi\)
\(32\) 0 0
\(33\) 6.33773 + 2.54982i 0.0334320 + 0.0134505i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −133.433 231.113i −0.592871 1.02688i −0.993843 0.110793i \(-0.964661\pi\)
0.400972 0.916090i \(-0.368672\pi\)
\(38\) 0 0
\(39\) −17.5187 123.342i −0.0719292 0.506423i
\(40\) 0 0
\(41\) 142.471 0.542688 0.271344 0.962482i \(-0.412532\pi\)
0.271344 + 0.962482i \(0.412532\pi\)
\(42\) 0 0
\(43\) 284.654 1.00952 0.504760 0.863260i \(-0.331581\pi\)
0.504760 + 0.863260i \(0.331581\pi\)
\(44\) 0 0
\(45\) 149.300 + 143.335i 0.494586 + 0.474826i
\(46\) 0 0
\(47\) 104.876 + 181.651i 0.325484 + 0.563755i 0.981610 0.190896i \(-0.0611393\pi\)
−0.656126 + 0.754651i \(0.727806\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 114.618 284.890i 0.314701 0.782207i
\(52\) 0 0
\(53\) 545.190 + 314.765i 1.41297 + 0.815780i 0.995667 0.0929859i \(-0.0296412\pi\)
0.417306 + 0.908766i \(0.362974\pi\)
\(54\) 0 0
\(55\) 10.0779i 0.0247072i
\(56\) 0 0
\(57\) 115.535 90.5383i 0.268473 0.210387i
\(58\) 0 0
\(59\) −365.186 + 632.521i −0.805817 + 1.39572i 0.109922 + 0.993940i \(0.464940\pi\)
−0.915738 + 0.401775i \(0.868393\pi\)
\(60\) 0 0
\(61\) −471.964 + 272.488i −0.990635 + 0.571943i −0.905464 0.424423i \(-0.860477\pi\)
−0.0851710 + 0.996366i \(0.527144\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 159.160 91.8912i 0.303714 0.175349i
\(66\) 0 0
\(67\) 240.556 416.655i 0.438635 0.759739i −0.558949 0.829202i \(-0.688795\pi\)
0.997585 + 0.0694632i \(0.0221286\pi\)
\(68\) 0 0
\(69\) 310.389 243.235i 0.541543 0.424377i
\(70\) 0 0
\(71\) 46.5477i 0.0778056i −0.999243 0.0389028i \(-0.987614\pi\)
0.999243 0.0389028i \(-0.0123863\pi\)
\(72\) 0 0
\(73\) 834.095 + 481.565i 1.33731 + 0.772095i 0.986407 0.164318i \(-0.0525423\pi\)
0.350900 + 0.936413i \(0.385876\pi\)
\(74\) 0 0
\(75\) 128.471 319.322i 0.197794 0.491628i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −630.818 1092.61i −0.898386 1.55605i −0.829557 0.558422i \(-0.811407\pi\)
−0.0688294 0.997628i \(-0.521926\pi\)
\(80\) 0 0
\(81\) 615.955 389.924i 0.844931 0.534876i
\(82\) 0 0
\(83\) −841.130 −1.11236 −0.556181 0.831061i \(-0.687734\pi\)
−0.556181 + 0.831061i \(0.687734\pi\)
\(84\) 0 0
\(85\) 453.014 0.578074
\(86\) 0 0
\(87\) 220.671 + 1553.65i 0.271936 + 1.91459i
\(88\) 0 0
\(89\) −641.169 1110.54i −0.763638 1.32266i −0.940964 0.338507i \(-0.890078\pi\)
0.177326 0.984152i \(-0.443255\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 450.626 + 181.298i 0.502449 + 0.202148i
\(94\) 0 0
\(95\) 187.528 + 108.269i 0.202525 + 0.116928i
\(96\) 0 0
\(97\) 60.2806i 0.0630986i 0.999502 + 0.0315493i \(0.0100441\pi\)
−0.999502 + 0.0315493i \(0.989956\pi\)
\(98\) 0 0
\(99\) 34.4677 + 8.48666i 0.0349913 + 0.00861557i
\(100\) 0 0
\(101\) −584.358 + 1012.14i −0.575701 + 0.997144i 0.420264 + 0.907402i \(0.361938\pi\)
−0.995965 + 0.0897419i \(0.971396\pi\)
\(102\) 0 0
\(103\) 15.8686 9.16173i 0.0151804 0.00876439i −0.492391 0.870374i \(-0.663877\pi\)
0.507571 + 0.861610i \(0.330544\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 824.968 476.295i 0.745352 0.430329i −0.0786602 0.996901i \(-0.525064\pi\)
0.824012 + 0.566572i \(0.191731\pi\)
\(108\) 0 0
\(109\) 353.940 613.042i 0.311021 0.538704i −0.667563 0.744554i \(-0.732662\pi\)
0.978584 + 0.205849i \(0.0659957\pi\)
\(110\) 0 0
\(111\) −855.322 1091.46i −0.731383 0.933309i
\(112\) 0 0
\(113\) 9.01287i 0.00750318i 0.999993 + 0.00375159i \(0.00119417\pi\)
−0.999993 + 0.00375159i \(0.998806\pi\)
\(114\) 0 0
\(115\) 503.801 + 290.870i 0.408519 + 0.235858i
\(116\) 0 0
\(117\) −180.251 621.733i −0.142429 0.491276i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −664.636 1151.18i −0.499351 0.864901i
\(122\) 0 0
\(123\) 732.944 104.103i 0.537296 0.0763141i
\(124\) 0 0
\(125\) 1465.95 1.04895
\(126\) 0 0
\(127\) 387.174 0.270521 0.135260 0.990810i \(-0.456813\pi\)
0.135260 + 0.990810i \(0.456813\pi\)
\(128\) 0 0
\(129\) 1464.41 207.996i 0.999488 0.141961i
\(130\) 0 0
\(131\) 705.778 + 1222.44i 0.470718 + 0.815308i 0.999439 0.0334876i \(-0.0106614\pi\)
−0.528721 + 0.848796i \(0.677328\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 872.813 + 628.298i 0.556443 + 0.400558i
\(136\) 0 0
\(137\) 631.197 + 364.422i 0.393626 + 0.227260i 0.683730 0.729735i \(-0.260357\pi\)
−0.290104 + 0.956995i \(0.593690\pi\)
\(138\) 0 0
\(139\) 1262.40i 0.770324i 0.922849 + 0.385162i \(0.125854\pi\)
−0.922849 + 0.385162i \(0.874146\pi\)
\(140\) 0 0
\(141\) 672.269 + 857.874i 0.401527 + 0.512383i
\(142\) 0 0
\(143\) 15.7603 27.2977i 0.00921639 0.0159632i
\(144\) 0 0
\(145\) −2004.83 + 1157.49i −1.14822 + 0.662927i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 817.509 471.989i 0.449483 0.259509i −0.258129 0.966111i \(-0.583106\pi\)
0.707612 + 0.706601i \(0.249773\pi\)
\(150\) 0 0
\(151\) −153.771 + 266.339i −0.0828722 + 0.143539i −0.904483 0.426511i \(-0.859743\pi\)
0.821610 + 0.570050i \(0.193076\pi\)
\(152\) 0 0
\(153\) 381.488 1549.37i 0.201578 0.818689i
\(154\) 0 0
\(155\) 716.557i 0.371324i
\(156\) 0 0
\(157\) −1614.46 932.111i −0.820690 0.473825i 0.0299645 0.999551i \(-0.490461\pi\)
−0.850654 + 0.525726i \(0.823794\pi\)
\(158\) 0 0
\(159\) 3034.74 + 1220.95i 1.51365 + 0.608978i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −1620.61 2806.98i −0.778749 1.34883i −0.932663 0.360749i \(-0.882521\pi\)
0.153913 0.988084i \(-0.450812\pi\)
\(164\) 0 0
\(165\) 7.36384 + 51.8457i 0.00347439 + 0.0244617i
\(166\) 0 0
\(167\) 2021.13 0.936523 0.468262 0.883590i \(-0.344881\pi\)
0.468262 + 0.883590i \(0.344881\pi\)
\(168\) 0 0
\(169\) 1622.18 0.738362
\(170\) 0 0
\(171\) 528.215 550.197i 0.236220 0.246050i
\(172\) 0 0
\(173\) −350.294 606.727i −0.153944 0.266639i 0.778730 0.627359i \(-0.215864\pi\)
−0.932674 + 0.360720i \(0.882531\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −1416.53 + 3520.86i −0.601541 + 1.49516i
\(178\) 0 0
\(179\) −2484.84 1434.62i −1.03757 0.599043i −0.118428 0.992963i \(-0.537785\pi\)
−0.919145 + 0.393920i \(0.871119\pi\)
\(180\) 0 0
\(181\) 1974.33i 0.810778i 0.914144 + 0.405389i \(0.132864\pi\)
−0.914144 + 0.405389i \(0.867136\pi\)
\(182\) 0 0
\(183\) −2228.92 + 1746.68i −0.900363 + 0.705566i
\(184\) 0 0
\(185\) 1022.83 1771.59i 0.406485 0.704052i
\(186\) 0 0
\(187\) 67.2873 38.8483i 0.0263130 0.0151918i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −941.978 + 543.851i −0.356854 + 0.206030i −0.667700 0.744431i \(-0.732721\pi\)
0.310846 + 0.950460i \(0.399388\pi\)
\(192\) 0 0
\(193\) −1917.52 + 3321.24i −0.715161 + 1.23870i 0.247736 + 0.968828i \(0.420314\pi\)
−0.962897 + 0.269868i \(0.913020\pi\)
\(194\) 0 0
\(195\) 751.658 589.034i 0.276038 0.216316i
\(196\) 0 0
\(197\) 1635.24i 0.591400i 0.955281 + 0.295700i \(0.0955528\pi\)
−0.955281 + 0.295700i \(0.904447\pi\)
\(198\) 0 0
\(199\) −3734.89 2156.34i −1.33045 0.768134i −0.345079 0.938574i \(-0.612148\pi\)
−0.985368 + 0.170439i \(0.945481\pi\)
\(200\) 0 0
\(201\) 933.096 2319.26i 0.327440 0.813871i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 546.053 + 945.791i 0.186039 + 0.322229i
\(206\) 0 0
\(207\) 1419.07 1478.13i 0.476484 0.496314i
\(208\) 0 0
\(209\) 37.1386 0.0122915
\(210\) 0 0
\(211\) −2882.49 −0.940468 −0.470234 0.882542i \(-0.655831\pi\)
−0.470234 + 0.882542i \(0.655831\pi\)
\(212\) 0 0
\(213\) −34.0122 239.466i −0.0109412 0.0770325i
\(214\) 0 0
\(215\) 1091.00 + 1889.67i 0.346073 + 0.599417i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 4642.90 + 1867.95i 1.43259 + 0.576367i
\(220\) 0 0
\(221\) −1227.07 708.449i −0.373491 0.215635i
\(222\) 0 0
\(223\) 3378.49i 1.01453i 0.861790 + 0.507265i \(0.169344\pi\)
−0.861790 + 0.507265i \(0.830656\pi\)
\(224\) 0 0
\(225\) 427.594 1736.63i 0.126695 0.514557i
\(226\) 0 0
\(227\) 2538.84 4397.39i 0.742328 1.28575i −0.209105 0.977893i \(-0.567055\pi\)
0.951433 0.307857i \(-0.0996117\pi\)
\(228\) 0 0
\(229\) −3784.94 + 2185.24i −1.09221 + 0.630587i −0.934164 0.356844i \(-0.883853\pi\)
−0.158046 + 0.987432i \(0.550519\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −3335.56 + 1925.79i −0.937854 + 0.541470i −0.889287 0.457350i \(-0.848799\pi\)
−0.0485671 + 0.998820i \(0.515465\pi\)
\(234\) 0 0
\(235\) −803.925 + 1392.44i −0.223159 + 0.386522i
\(236\) 0 0
\(237\) −4043.62 5160.01i −1.10827 1.41426i
\(238\) 0 0
\(239\) 7067.79i 1.91288i −0.291937 0.956438i \(-0.594300\pi\)
0.291937 0.956438i \(-0.405700\pi\)
\(240\) 0 0
\(241\) −2636.64 1522.26i −0.704733 0.406878i 0.104375 0.994538i \(-0.466716\pi\)
−0.809108 + 0.587660i \(0.800049\pi\)
\(242\) 0 0
\(243\) 2883.87 2456.05i 0.761319 0.648377i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −338.634 586.532i −0.0872340 0.151094i
\(248\) 0 0
\(249\) −4327.21 + 614.610i −1.10131 + 0.156423i
\(250\) 0 0
\(251\) −5439.29 −1.36783 −0.683914 0.729562i \(-0.739724\pi\)
−0.683914 + 0.729562i \(0.739724\pi\)
\(252\) 0 0
\(253\) 99.7744 0.0247935
\(254\) 0 0
\(255\) 2330.54 331.015i 0.572330 0.0812902i
\(256\) 0 0
\(257\) −1139.37 1973.45i −0.276545 0.478990i 0.693979 0.719996i \(-0.255856\pi\)
−0.970524 + 0.241005i \(0.922523\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 2270.50 + 7831.55i 0.538468 + 1.85732i
\(262\) 0 0
\(263\) 1003.97 + 579.643i 0.235390 + 0.135902i 0.613056 0.790039i \(-0.289940\pi\)
−0.377666 + 0.925942i \(0.623273\pi\)
\(264\) 0 0
\(265\) 4825.65i 1.11863i
\(266\) 0 0
\(267\) −4109.97 5244.68i −0.942045 1.20213i
\(268\) 0 0
\(269\) −1873.94 + 3245.77i −0.424745 + 0.735680i −0.996397 0.0848164i \(-0.972970\pi\)
0.571651 + 0.820497i \(0.306303\pi\)
\(270\) 0 0
\(271\) 1771.74 1022.91i 0.397142 0.229290i −0.288108 0.957598i \(-0.593026\pi\)
0.685250 + 0.728308i \(0.259693\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 75.4197 43.5436i 0.0165381 0.00954827i
\(276\) 0 0
\(277\) −2421.58 + 4194.29i −0.525265 + 0.909785i 0.474302 + 0.880362i \(0.342700\pi\)
−0.999567 + 0.0294232i \(0.990633\pi\)
\(278\) 0 0
\(279\) 2450.73 + 603.420i 0.525883 + 0.129483i
\(280\) 0 0
\(281\) 827.961i 0.175772i −0.996131 0.0878862i \(-0.971989\pi\)
0.996131 0.0878862i \(-0.0280112\pi\)
\(282\) 0 0
\(283\) −7402.44 4273.80i −1.55487 0.897707i −0.997734 0.0672878i \(-0.978565\pi\)
−0.557140 0.830419i \(-0.688101\pi\)
\(284\) 0 0
\(285\) 1043.85 + 419.967i 0.216956 + 0.0872866i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 710.211 + 1230.12i 0.144557 + 0.250381i
\(290\) 0 0
\(291\) 44.0468 + 310.115i 0.00887308 + 0.0624716i
\(292\) 0 0
\(293\) −7266.94 −1.44894 −0.724469 0.689307i \(-0.757915\pi\)
−0.724469 + 0.689307i \(0.757915\pi\)
\(294\) 0 0
\(295\) −5598.64 −1.10497
\(296\) 0 0
\(297\) 183.521 + 18.4744i 0.0358551 + 0.00360940i
\(298\) 0 0
\(299\) −909.756 1575.74i −0.175962 0.304775i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −2266.68 + 5633.95i −0.429760 + 1.06819i
\(304\) 0 0
\(305\) −3617.82 2088.75i −0.679199 0.392136i
\(306\) 0 0
\(307\) 4124.73i 0.766811i 0.923580 + 0.383406i \(0.125249\pi\)
−0.923580 + 0.383406i \(0.874751\pi\)
\(308\) 0 0
\(309\) 74.9418 58.7278i 0.0137971 0.0108120i
\(310\) 0 0
\(311\) 1649.15 2856.41i 0.300691 0.520812i −0.675602 0.737267i \(-0.736116\pi\)
0.976293 + 0.216455i \(0.0694495\pi\)
\(312\) 0 0
\(313\) −5188.30 + 2995.47i −0.936934 + 0.540939i −0.888998 0.457912i \(-0.848598\pi\)
−0.0479358 + 0.998850i \(0.515264\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −6144.35 + 3547.44i −1.08865 + 0.628531i −0.933216 0.359316i \(-0.883010\pi\)
−0.155432 + 0.987847i \(0.549677\pi\)
\(318\) 0 0
\(319\) −198.522 + 343.850i −0.0348436 + 0.0603508i
\(320\) 0 0
\(321\) 3896.04 3053.11i 0.677431 0.530866i
\(322\) 0 0
\(323\) 1669.43i 0.287584i
\(324\) 0 0
\(325\) −1375.37 794.072i −0.234744 0.135530i
\(326\) 0 0
\(327\) 1372.90 3412.43i 0.232177 0.577088i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −4581.91 7936.10i −0.760860 1.31785i −0.942408 0.334466i \(-0.891444\pi\)
0.181548 0.983382i \(-0.441889\pi\)
\(332\) 0 0
\(333\) −5197.75 4990.08i −0.855360 0.821186i
\(334\) 0 0
\(335\) 3687.94 0.601474
\(336\) 0 0
\(337\) 1546.78 0.250025 0.125012 0.992155i \(-0.460103\pi\)
0.125012 + 0.992155i \(0.460103\pi\)
\(338\) 0 0
\(339\) 6.58567 + 46.3669i 0.00105512 + 0.00742862i
\(340\) 0 0
\(341\) 61.4486 + 106.432i 0.00975844 + 0.0169021i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 2804.35 + 1128.26i 0.437627 + 0.176068i
\(346\) 0 0
\(347\) 7966.18 + 4599.27i 1.23241 + 0.711533i 0.967532 0.252749i \(-0.0813346\pi\)
0.264879 + 0.964282i \(0.414668\pi\)
\(348\) 0 0
\(349\) 6916.38i 1.06082i 0.847742 + 0.530409i \(0.177962\pi\)
−0.847742 + 0.530409i \(0.822038\pi\)
\(350\) 0 0
\(351\) −1381.60 3066.81i −0.210098 0.466365i
\(352\) 0 0
\(353\) −1376.71 + 2384.52i −0.207577 + 0.359534i −0.950951 0.309343i \(-0.899891\pi\)
0.743374 + 0.668876i \(0.233224\pi\)
\(354\) 0 0
\(355\) 309.007 178.405i 0.0461982 0.0266725i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −3079.84 + 1778.15i −0.452780 + 0.261413i −0.709004 0.705205i \(-0.750855\pi\)
0.256224 + 0.966618i \(0.417522\pi\)
\(360\) 0 0
\(361\) −3030.51 + 5249.00i −0.441830 + 0.765272i
\(362\) 0 0
\(363\) −4260.40 5436.64i −0.616013 0.786087i
\(364\) 0 0
\(365\) 7382.84i 1.05873i
\(366\) 0 0
\(367\) −4788.83 2764.83i −0.681131 0.393251i 0.119150 0.992876i \(-0.461983\pi\)
−0.800281 + 0.599625i \(0.795316\pi\)
\(368\) 0 0
\(369\) 3694.58 1071.12i 0.521225 0.151112i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 566.970 + 982.020i 0.0787039 + 0.136319i 0.902691 0.430289i \(-0.141588\pi\)
−0.823987 + 0.566609i \(0.808255\pi\)
\(374\) 0 0
\(375\) 7541.60 1071.16i 1.03852 0.147506i
\(376\) 0 0
\(377\) 7240.60 0.989150
\(378\) 0 0
\(379\) 4071.36 0.551799 0.275900 0.961186i \(-0.411024\pi\)
0.275900 + 0.961186i \(0.411024\pi\)
\(380\) 0 0
\(381\) 1991.82 282.906i 0.267833 0.0380413i
\(382\) 0 0
\(383\) 7069.27 + 12244.3i 0.943140 + 1.63357i 0.759433 + 0.650586i \(0.225477\pi\)
0.183707 + 0.982981i \(0.441190\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 7381.70 2140.07i 0.969594 0.281101i
\(388\) 0 0
\(389\) −9257.16 5344.63i −1.20657 0.696615i −0.244564 0.969633i \(-0.578645\pi\)
−0.962009 + 0.273018i \(0.911978\pi\)
\(390\) 0 0
\(391\) 4485.00i 0.580093i
\(392\) 0 0
\(393\) 4524.12 + 5773.18i 0.580692 + 0.741013i
\(394\) 0 0
\(395\) 4835.51 8375.35i 0.615952 1.06686i
\(396\) 0 0
\(397\) −8778.93 + 5068.52i −1.10983 + 0.640760i −0.938785 0.344504i \(-0.888047\pi\)
−0.171043 + 0.985263i \(0.554714\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 7292.21 4210.16i 0.908119 0.524303i 0.0282934 0.999600i \(-0.490993\pi\)
0.879825 + 0.475297i \(0.157659\pi\)
\(402\) 0 0
\(403\) 1120.59 1940.92i 0.138513 0.239911i
\(404\) 0 0
\(405\) 4949.30 + 2594.53i 0.607241 + 0.318329i
\(406\) 0 0
\(407\) 350.851i 0.0427298i
\(408\) 0 0
\(409\) 8021.64 + 4631.30i 0.969792 + 0.559909i 0.899173 0.437594i \(-0.144169\pi\)
0.0706189 + 0.997503i \(0.477503\pi\)
\(410\) 0 0
\(411\) 3513.49 + 1413.56i 0.421673 + 0.169649i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −3223.83 5583.83i −0.381329 0.660480i
\(416\) 0 0
\(417\) 922.428 + 6494.42i 0.108325 + 0.762670i
\(418\) 0 0
\(419\) −883.038 −0.102958 −0.0514788 0.998674i \(-0.516393\pi\)
−0.0514788 + 0.998674i \(0.516393\pi\)
\(420\) 0 0
\(421\) 6313.53 0.730886 0.365443 0.930834i \(-0.380918\pi\)
0.365443 + 0.930834i \(0.380918\pi\)
\(422\) 0 0
\(423\) 4085.35 + 3922.12i 0.469589 + 0.450828i
\(424\) 0 0
\(425\) −1957.35 3390.22i −0.223401 0.386941i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 61.1329 151.949i 0.00688001 0.0171007i
\(430\) 0 0
\(431\) 6291.22 + 3632.24i 0.703103 + 0.405937i 0.808502 0.588493i \(-0.200279\pi\)
−0.105399 + 0.994430i \(0.533612\pi\)
\(432\) 0 0
\(433\) 4242.72i 0.470883i −0.971889 0.235441i \(-0.924346\pi\)
0.971889 0.235441i \(-0.0756536\pi\)
\(434\) 0 0
\(435\) −9468.13 + 7419.66i −1.04359 + 0.817806i
\(436\) 0 0
\(437\) 1071.90 1856.59i 0.117337 0.203233i
\(438\) 0 0
\(439\) 9430.55 5444.73i 1.02528 0.591943i 0.109648 0.993971i \(-0.465028\pi\)
0.915628 + 0.402028i \(0.131694\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 13925.6 8039.92i 1.49351 0.862276i 0.493534 0.869727i \(-0.335705\pi\)
0.999972 + 0.00745048i \(0.00237158\pi\)
\(444\) 0 0
\(445\) 4914.86 8512.78i 0.523565 0.906842i
\(446\) 0 0
\(447\) 3860.81 3025.51i 0.408524 0.320138i
\(448\) 0 0
\(449\) 13638.3i 1.43348i 0.697341 + 0.716740i \(0.254366\pi\)
−0.697341 + 0.716740i \(0.745634\pi\)
\(450\) 0 0
\(451\) 162.213 + 93.6538i 0.0169364 + 0.00977824i
\(452\) 0 0
\(453\) −596.465 + 1482.55i −0.0618640 + 0.153766i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −939.399 1627.09i −0.0961559 0.166547i 0.813935 0.580957i \(-0.197321\pi\)
−0.910090 + 0.414410i \(0.863988\pi\)
\(458\) 0 0
\(459\) 830.451 8249.53i 0.0844490 0.838900i
\(460\) 0 0
\(461\) 2579.48 0.260604 0.130302 0.991474i \(-0.458405\pi\)
0.130302 + 0.991474i \(0.458405\pi\)
\(462\) 0 0
\(463\) 6099.88 0.612280 0.306140 0.951986i \(-0.400962\pi\)
0.306140 + 0.951986i \(0.400962\pi\)
\(464\) 0 0
\(465\) 523.585 + 3686.34i 0.0522165 + 0.367635i
\(466\) 0 0
\(467\) −9526.74 16500.8i −0.943993 1.63504i −0.757755 0.652540i \(-0.773704\pi\)
−0.186239 0.982505i \(-0.559630\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −8986.73 3615.58i −0.879165 0.353710i
\(472\) 0 0
\(473\) 324.099 + 187.119i 0.0315054 + 0.0181897i
\(474\) 0 0
\(475\) 1871.20i 0.180751i
\(476\) 0 0
\(477\) 16504.4 + 4063.73i 1.58425 + 0.390074i
\(478\) 0 0
\(479\) −8990.07 + 15571.3i −0.857551 + 1.48532i 0.0167077 + 0.999860i \(0.494682\pi\)
−0.874258 + 0.485461i \(0.838652\pi\)
\(480\) 0 0
\(481\) −5541.01 + 3199.10i −0.525256 + 0.303257i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −400.172 + 231.039i −0.0374657 + 0.0216308i
\(486\) 0 0
\(487\) 6157.30 10664.8i 0.572924 0.992333i −0.423340 0.905971i \(-0.639142\pi\)
0.996264 0.0863623i \(-0.0275243\pi\)
\(488\) 0 0
\(489\) −10388.3 13256.4i −0.960688 1.22592i
\(490\) 0 0
\(491\) 6650.90i 0.611305i −0.952143 0.305653i \(-0.901125\pi\)
0.952143 0.305653i \(-0.0988747\pi\)
\(492\) 0 0
\(493\) 15456.6 + 8923.85i 1.41203 + 0.815233i
\(494\) 0 0
\(495\) 75.7669 + 261.341i 0.00687973 + 0.0237301i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −6376.49 11044.4i −0.572046 0.990813i −0.996356 0.0852957i \(-0.972816\pi\)
0.424310 0.905517i \(-0.360517\pi\)
\(500\) 0 0
\(501\) 10397.7 1476.83i 0.927217 0.131696i
\(502\) 0 0
\(503\) 7044.47 0.624448 0.312224 0.950009i \(-0.398926\pi\)
0.312224 + 0.950009i \(0.398926\pi\)
\(504\) 0 0
\(505\) −8958.76 −0.789425
\(506\) 0 0
\(507\) 8345.35 1185.32i 0.731025 0.103830i
\(508\) 0 0
\(509\) 2386.47 + 4133.49i 0.207816 + 0.359948i 0.951026 0.309110i \(-0.100031\pi\)
−0.743210 + 0.669058i \(0.766698\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 2315.38 3216.46i 0.199272 0.276823i
\(514\) 0 0
\(515\) 121.640 + 70.2289i 0.0104080 + 0.00600904i
\(516\) 0 0
\(517\) 275.763i 0.0234585i
\(518\) 0 0
\(519\) −2245.43 2865.36i −0.189910 0.242342i
\(520\) 0 0
\(521\) −7491.53 + 12975.7i −0.629961 + 1.09113i 0.357597 + 0.933876i \(0.383596\pi\)
−0.987559 + 0.157249i \(0.949737\pi\)
\(522\) 0 0
\(523\) 4638.56 2678.07i 0.387820 0.223908i −0.293395 0.955991i \(-0.594785\pi\)
0.681215 + 0.732083i \(0.261452\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 4784.27 2762.20i 0.395458 0.228318i
\(528\) 0 0
\(529\) −3203.79 + 5549.12i −0.263318 + 0.456080i
\(530\) 0 0
\(531\) −4714.68 + 19148.2i −0.385310 + 1.56490i
\(532\) 0 0
\(533\) 3415.79i 0.277588i
\(534\) 0 0
\(535\) 6323.76 + 3651.03i 0.511028 + 0.295042i
\(536\) 0 0
\(537\) −13831.6 5564.78i −1.11150 0.447184i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 4.18626 + 7.25082i 0.000332683 + 0.000576224i 0.866192 0.499712i \(-0.166561\pi\)
−0.865859 + 0.500288i \(0.833227\pi\)
\(542\) 0 0
\(543\) 1442.63 + 10157.0i 0.114014 + 0.802721i
\(544\) 0 0
\(545\) 5426.23 0.426485
\(546\) 0 0
\(547\) 10274.7 0.803137 0.401568 0.915829i \(-0.368465\pi\)
0.401568 + 0.915829i \(0.368465\pi\)
\(548\) 0 0
\(549\) −10190.4 + 10614.5i −0.792198 + 0.825166i
\(550\) 0 0
\(551\) 4265.55 + 7388.15i 0.329798 + 0.571226i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 3967.46 9861.33i 0.303440 0.754217i
\(556\) 0 0
\(557\) 13316.1 + 7688.05i 1.01296 + 0.584835i 0.912058 0.410061i \(-0.134493\pi\)
0.100906 + 0.994896i \(0.467826\pi\)
\(558\) 0 0
\(559\) 6824.68i 0.516375i
\(560\) 0 0
\(561\) 317.775 249.023i 0.0239152 0.0187411i
\(562\) 0 0
\(563\) −9229.97 + 15986.8i −0.690936 + 1.19674i 0.280596 + 0.959826i \(0.409468\pi\)
−0.971532 + 0.236910i \(0.923865\pi\)
\(564\) 0 0
\(565\) −59.8318 + 34.5439i −0.00445512 + 0.00257217i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −3033.11 + 1751.17i −0.223471 + 0.129021i −0.607556 0.794277i \(-0.707850\pi\)
0.384086 + 0.923297i \(0.374517\pi\)
\(570\) 0 0
\(571\) 5593.74 9688.63i 0.409966 0.710082i −0.584920 0.811091i \(-0.698874\pi\)
0.994885 + 0.101009i \(0.0322072\pi\)
\(572\) 0 0
\(573\) −4448.64 + 3486.15i −0.324336 + 0.254164i
\(574\) 0 0
\(575\) 5027.06i 0.364596i
\(576\) 0 0
\(577\) 8346.61 + 4818.92i 0.602208 + 0.347685i 0.769910 0.638153i \(-0.220301\pi\)
−0.167702 + 0.985838i \(0.553635\pi\)
\(578\) 0 0
\(579\) −7437.90 + 18487.3i −0.533867 + 1.32696i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 413.825 + 716.765i 0.0293977 + 0.0509183i
\(584\) 0 0
\(585\) 3436.52 3579.53i 0.242876 0.252983i
\(586\) 0 0
\(587\) −3998.01 −0.281117 −0.140559 0.990072i \(-0.544890\pi\)
−0.140559 + 0.990072i \(0.544890\pi\)
\(588\) 0 0
\(589\) 2640.63 0.184729
\(590\) 0 0
\(591\) 1194.86 + 8412.50i 0.0831641 + 0.585523i
\(592\) 0 0
\(593\) −5716.00 9900.41i −0.395832 0.685600i 0.597375 0.801962i \(-0.296210\pi\)
−0.993207 + 0.116361i \(0.962877\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −20789.8 8364.25i −1.42524 0.573411i
\(598\) 0 0
\(599\) 700.491 + 404.428i 0.0477818 + 0.0275868i 0.523701 0.851902i \(-0.324551\pi\)
−0.475919 + 0.879489i \(0.657884\pi\)
\(600\) 0 0
\(601\) 6813.76i 0.462461i −0.972899 0.231231i \(-0.925725\pi\)
0.972899 0.231231i \(-0.0742752\pi\)
\(602\) 0 0
\(603\) 3105.66 12613.3i 0.209738 0.851830i
\(604\) 0 0
\(605\) 5094.74 8824.35i 0.342365 0.592993i
\(606\) 0 0
\(607\) −2799.03 + 1616.02i −0.187165 + 0.108060i −0.590655 0.806924i \(-0.701130\pi\)
0.403490 + 0.914984i \(0.367797\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 4355.15 2514.44i 0.288364 0.166487i
\(612\) 0 0
\(613\) 6607.92 11445.2i 0.435385 0.754110i −0.561942 0.827177i \(-0.689945\pi\)
0.997327 + 0.0730673i \(0.0232788\pi\)
\(614\) 0 0
\(615\) 3500.26 + 4466.64i 0.229503 + 0.292866i
\(616\) 0 0
\(617\) 23412.7i 1.52765i −0.645422 0.763826i \(-0.723319\pi\)
0.645422 0.763826i \(-0.276681\pi\)
\(618\) 0 0
\(619\) 9042.06 + 5220.44i 0.587126 + 0.338977i 0.763960 0.645263i \(-0.223252\pi\)
−0.176834 + 0.984241i \(0.556586\pi\)
\(620\) 0 0
\(621\) 6220.38 8641.16i 0.401957 0.558386i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 1478.55 + 2560.92i 0.0946271 + 0.163899i
\(626\) 0 0
\(627\) 191.060 27.1370i 0.0121694 0.00172846i
\(628\) 0 0
\(629\) −15771.3 −0.999747
\(630\) 0 0
\(631\) −1116.76 −0.0704556 −0.0352278 0.999379i \(-0.511216\pi\)
−0.0352278 + 0.999379i \(0.511216\pi\)
\(632\) 0 0
\(633\) −14829.0 + 2106.22i −0.931123 + 0.132251i
\(634\) 0 0
\(635\) 1483.93 + 2570.25i 0.0927372 + 0.160626i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −349.953 1207.08i −0.0216650 0.0747285i
\(640\) 0 0
\(641\) 1197.94 + 691.630i 0.0738155 + 0.0426174i 0.536453 0.843930i \(-0.319764\pi\)
−0.462638 + 0.886547i \(0.653097\pi\)
\(642\) 0 0
\(643\) 13841.5i 0.848918i −0.905447 0.424459i \(-0.860464\pi\)
0.905447 0.424459i \(-0.139536\pi\)
\(644\) 0 0
\(645\) 6993.46 + 8924.27i 0.426926 + 0.544795i
\(646\) 0 0
\(647\) −1188.54 + 2058.62i −0.0722201 + 0.125089i −0.899874 0.436150i \(-0.856342\pi\)
0.827654 + 0.561239i \(0.189675\pi\)
\(648\) 0 0
\(649\) −831.581 + 480.113i −0.0502964 + 0.0290387i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −4812.62 + 2778.57i −0.288411 + 0.166514i −0.637225 0.770678i \(-0.719918\pi\)
0.348814 + 0.937192i \(0.386584\pi\)
\(654\) 0 0
\(655\) −5410.12 + 9370.60i −0.322734 + 0.558992i
\(656\) 0 0
\(657\) 25250.4 + 6217.17i 1.49941 + 0.369185i
\(658\) 0 0
\(659\) 32145.5i 1.90017i 0.311991 + 0.950085i \(0.399004\pi\)
−0.311991 + 0.950085i \(0.600996\pi\)
\(660\) 0 0
\(661\) −602.813 348.034i −0.0354715 0.0204795i 0.482159 0.876084i \(-0.339853\pi\)
−0.517631 + 0.855604i \(0.673186\pi\)
\(662\) 0 0
\(663\) −6830.34 2748.01i −0.400103 0.160971i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 11459.6 + 19848.6i 0.665243 + 1.15223i
\(668\) 0 0
\(669\) 2468.65 + 17380.7i 0.142666 + 1.00445i
\(670\) 0 0
\(671\) −716.485 −0.0412215
\(672\) 0 0
\(673\) −12403.6 −0.710436 −0.355218 0.934783i \(-0.615593\pi\)
−0.355218 + 0.934783i \(0.615593\pi\)
\(674\) 0 0
\(675\) 930.819 9246.57i 0.0530774 0.527260i
\(676\) 0 0
\(677\) −9752.83 16892.4i −0.553666 0.958977i −0.998006 0.0631191i \(-0.979895\pi\)
0.444340 0.895858i \(-0.353438\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 9847.94 24477.6i 0.554146 1.37736i
\(682\) 0 0
\(683\) −25452.0 14694.7i −1.42591 0.823247i −0.429111 0.903252i \(-0.641173\pi\)
−0.996795 + 0.0800044i \(0.974507\pi\)
\(684\) 0 0
\(685\) 5586.92i 0.311628i
\(686\) 0 0
\(687\) −17875.0 + 14007.6i −0.992682 + 0.777911i
\(688\) 0 0
\(689\) 7546.62 13071.1i 0.417276 0.722743i
\(690\) 0 0
\(691\) 27416.6 15829.0i 1.50937 0.871436i 0.509432 0.860511i \(-0.329856\pi\)
0.999940 0.0109252i \(-0.00347768\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −8380.40 + 4838.43i −0.457391 + 0.264075i
\(696\) 0 0
\(697\) 4209.87 7291.72i 0.228781 0.396260i
\(698\) 0 0
\(699\) −15752.7 + 12344.5i −0.852392 + 0.667973i
\(700\) 0 0
\(701\) 5372.77i 0.289482i 0.989470 + 0.144741i \(0.0462349\pi\)
−0.989470 + 0.144741i \(0.953765\pi\)
\(702\) 0 0
\(703\) −6528.59 3769.28i −0.350257 0.202221i
\(704\) 0 0
\(705\) −3118.36 + 7750.85i −0.166587 + 0.414062i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 16713.7 + 28949.0i 0.885328 + 1.53343i 0.845337 + 0.534233i \(0.179400\pi\)
0.0399911 + 0.999200i \(0.487267\pi\)
\(710\) 0 0
\(711\) −24572.9 23591.1i −1.29614 1.24435i
\(712\) 0 0
\(713\) 7094.18 0.372621
\(714\) 0 0
\(715\) 241.620 0.0126379
\(716\) 0 0
\(717\) −5164.40 36360.4i −0.268993 1.89387i
\(718\) 0 0
\(719\) 13795.7 + 23894.9i 0.715567 + 1.23940i 0.962740 + 0.270428i \(0.0871651\pi\)
−0.247173 + 0.968971i \(0.579502\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −14676.5 5904.73i −0.754947 0.303734i
\(724\) 0 0
\(725\) 17324.6 + 10002.4i 0.887477 + 0.512385i
\(726\) 0 0
\(727\) 16801.8i 0.857143i −0.903508 0.428572i \(-0.859017\pi\)
0.903508 0.428572i \(-0.140983\pi\)
\(728\) 0 0
\(729\) 13041.5 14742.4i 0.662578 0.748993i
\(730\) 0 0
\(731\) 8411.25 14568.7i 0.425583 0.737131i
\(732\) 0 0
\(733\) 14820.4 8556.57i 0.746800 0.431165i −0.0777364 0.996974i \(-0.524769\pi\)
0.824537 + 0.565809i \(0.191436\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 547.780 316.261i 0.0273782 0.0158068i
\(738\) 0 0
\(739\) −9855.83 + 17070.8i −0.490599 + 0.849742i −0.999941 0.0108215i \(-0.996555\pi\)
0.509342 + 0.860564i \(0.329889\pi\)
\(740\) 0 0
\(741\) −2170.69 2769.99i −0.107614 0.137325i
\(742\) 0 0
\(743\) 17443.3i 0.861283i 0.902523 + 0.430642i \(0.141713\pi\)
−0.902523 + 0.430642i \(0.858287\pi\)
\(744\) 0 0
\(745\) 6266.59 + 3618.02i 0.308175 + 0.177925i
\(746\) 0 0
\(747\) −21812.3 + 6323.75i −1.06837 + 0.309737i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 9793.78 + 16963.3i 0.475872 + 0.824235i 0.999618 0.0276399i \(-0.00879916\pi\)
−0.523746 + 0.851875i \(0.675466\pi\)
\(752\) 0 0
\(753\) −27982.5 + 3974.47i −1.35424 + 0.192348i
\(754\) 0 0
\(755\) −2357.45 −0.113638
\(756\) 0 0
\(757\) −4635.88 −0.222581 −0.111291 0.993788i \(-0.535498\pi\)
−0.111291 + 0.993788i \(0.535498\pi\)
\(758\) 0 0
\(759\) 513.291 72.9047i 0.0245472 0.00348653i
\(760\) 0 0
\(761\) 9585.45 + 16602.5i 0.456600 + 0.790854i 0.998779 0.0494092i \(-0.0157338\pi\)
−0.542179 + 0.840263i \(0.682400\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 11747.6 3405.83i 0.555211 0.160965i
\(766\) 0 0
\(767\) 15164.9 + 8755.47i 0.713916 + 0.412180i
\(768\) 0 0
\(769\) 22223.5i 1.04213i −0.853517 0.521065i \(-0.825535\pi\)
0.853517 0.521065i \(-0.174465\pi\)
\(770\) 0 0
\(771\) −7303.52 9319.93i −0.341154 0.435342i
\(772\) 0 0
\(773\) 10497.8 18182.7i 0.488460 0.846037i −0.511452 0.859312i \(-0.670892\pi\)
0.999912 + 0.0132746i \(0.00422555\pi\)
\(774\) 0 0
\(775\) 5362.50 3096.04i 0.248551 0.143501i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 3485.40 2012.30i 0.160305 0.0925520i
\(780\) 0 0
\(781\) 30.5983 52.9979i 0.00140191 0.00242819i
\(782\) 0 0
\(783\) 17403.1 + 38630.5i 0.794299 + 1.76315i
\(784\) 0 0
\(785\) 14290.1i 0.649728i
\(786\) 0 0
\(787\) −20245.5 11688.7i −0.916994 0.529427i −0.0343191 0.999411i \(-0.510926\pi\)
−0.882675 + 0.469984i \(0.844260\pi\)
\(788\) 0 0
\(789\) 5588.49 + 2248.39i 0.252162 + 0.101451i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 6533.01 + 11315.5i 0.292552 + 0.506715i
\(794\) 0 0
\(795\) 3526.08 + 24825.6i 0.157305 + 1.10752i
\(796\) 0 0
\(797\) 5445.93 0.242039 0.121019 0.992650i \(-0.461384\pi\)
0.121019 + 0.992650i \(0.461384\pi\)
\(798\) 0 0