Properties

Label 588.4.k.e.521.2
Level $588$
Weight $4$
Character 588.521
Analytic conductor $34.693$
Analytic rank $0$
Dimension $48$
CM no
Inner twists $8$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 588.k (of order \(6\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(34.6931230834\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 521.2
Character \(\chi\) \(=\) 588.521
Dual form 588.4.k.e.509.2

$q$-expansion

\(f(q)\) \(=\) \(q+(-5.15687 - 0.637690i) q^{3} +(-6.99365 - 12.1134i) q^{5} +(26.1867 + 6.57697i) q^{9} +O(q^{10})\) \(q+(-5.15687 - 0.637690i) q^{3} +(-6.99365 - 12.1134i) q^{5} +(26.1867 + 6.57697i) q^{9} +(-27.5333 - 15.8964i) q^{11} -31.1041i q^{13} +(28.3408 + 66.9269i) q^{15} +(61.5138 - 106.545i) q^{17} +(62.7653 - 36.2376i) q^{19} +(66.1240 - 38.1767i) q^{23} +(-35.3223 + 61.1801i) q^{25} +(-130.847 - 50.6156i) q^{27} -14.1082i q^{29} +(-267.941 - 154.696i) q^{31} +(131.849 + 99.5333i) q^{33} +(58.3602 + 101.083i) q^{37} +(-19.8347 + 160.400i) q^{39} +491.980 q^{41} +13.6538 q^{43} +(-103.471 - 363.206i) q^{45} +(43.4381 + 75.2370i) q^{47} +(-385.161 + 510.212i) q^{51} +(-388.989 - 224.583i) q^{53} +444.695i q^{55} +(-346.781 + 146.848i) q^{57} +(-128.392 + 222.381i) q^{59} +(-238.010 + 137.415i) q^{61} +(-376.775 + 217.531i) q^{65} +(-515.984 + 893.710i) q^{67} +(-365.338 + 154.706i) q^{69} -931.763i q^{71} +(-887.716 - 512.523i) q^{73} +(221.167 - 292.973i) q^{75} +(462.310 + 800.745i) q^{79} +(642.487 + 344.459i) q^{81} -991.698 q^{83} -1720.82 q^{85} +(-8.99667 + 72.7543i) q^{87} +(-125.394 - 217.188i) q^{89} +(1283.09 + 968.611i) q^{93} +(-877.917 - 506.866i) q^{95} +1059.27i q^{97} +(-616.457 - 597.359i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 64 q^{9} + O(q^{10}) \) \( 48 q + 64 q^{9} - 192 q^{15} - 456 q^{25} + 432 q^{37} - 688 q^{39} + 1248 q^{43} + 1536 q^{51} - 2720 q^{57} + 528 q^{67} - 3744 q^{79} - 3408 q^{81} + 13824 q^{85} + 5088 q^{93} - 15472 q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/588\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(295\) \(493\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −5.15687 0.637690i −0.992441 0.122723i
\(4\) 0 0
\(5\) −6.99365 12.1134i −0.625531 1.08345i −0.988438 0.151626i \(-0.951549\pi\)
0.362907 0.931826i \(-0.381784\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 26.1867 + 6.57697i 0.969878 + 0.243592i
\(10\) 0 0
\(11\) −27.5333 15.8964i −0.754692 0.435721i 0.0726950 0.997354i \(-0.476840\pi\)
−0.827387 + 0.561633i \(0.810173\pi\)
\(12\) 0 0
\(13\) 31.1041i 0.663593i −0.943351 0.331797i \(-0.892345\pi\)
0.943351 0.331797i \(-0.107655\pi\)
\(14\) 0 0
\(15\) 28.3408 + 66.9269i 0.487838 + 1.15203i
\(16\) 0 0
\(17\) 61.5138 106.545i 0.877605 1.52006i 0.0236424 0.999720i \(-0.492474\pi\)
0.853962 0.520335i \(-0.174193\pi\)
\(18\) 0 0
\(19\) 62.7653 36.2376i 0.757860 0.437551i −0.0706666 0.997500i \(-0.522513\pi\)
0.828527 + 0.559949i \(0.189179\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 66.1240 38.1767i 0.599470 0.346104i −0.169363 0.985554i \(-0.554171\pi\)
0.768833 + 0.639449i \(0.220838\pi\)
\(24\) 0 0
\(25\) −35.3223 + 61.1801i −0.282579 + 0.489441i
\(26\) 0 0
\(27\) −130.847 50.6156i −0.932652 0.360777i
\(28\) 0 0
\(29\) 14.1082i 0.0903390i −0.998979 0.0451695i \(-0.985617\pi\)
0.998979 0.0451695i \(-0.0143828\pi\)
\(30\) 0 0
\(31\) −267.941 154.696i −1.55238 0.896265i −0.997948 0.0640343i \(-0.979603\pi\)
−0.554429 0.832231i \(-0.687063\pi\)
\(32\) 0 0
\(33\) 131.849 + 99.5333i 0.695514 + 0.525046i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 58.3602 + 101.083i 0.259307 + 0.449133i 0.966056 0.258331i \(-0.0831726\pi\)
−0.706750 + 0.707464i \(0.749839\pi\)
\(38\) 0 0
\(39\) −19.8347 + 160.400i −0.0814385 + 0.658577i
\(40\) 0 0
\(41\) 491.980 1.87401 0.937004 0.349319i \(-0.113587\pi\)
0.937004 + 0.349319i \(0.113587\pi\)
\(42\) 0 0
\(43\) 13.6538 0.0484230 0.0242115 0.999707i \(-0.492292\pi\)
0.0242115 + 0.999707i \(0.492292\pi\)
\(44\) 0 0
\(45\) −103.471 363.206i −0.342769 1.20319i
\(46\) 0 0
\(47\) 43.4381 + 75.2370i 0.134811 + 0.233499i 0.925525 0.378686i \(-0.123624\pi\)
−0.790714 + 0.612185i \(0.790291\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −385.161 + 510.212i −1.05752 + 1.40086i
\(52\) 0 0
\(53\) −388.989 224.583i −1.00815 0.582053i −0.0974977 0.995236i \(-0.531084\pi\)
−0.910648 + 0.413182i \(0.864417\pi\)
\(54\) 0 0
\(55\) 444.695i 1.09023i
\(56\) 0 0
\(57\) −346.781 + 146.848i −0.805829 + 0.341236i
\(58\) 0 0
\(59\) −128.392 + 222.381i −0.283308 + 0.490704i −0.972197 0.234162i \(-0.924765\pi\)
0.688889 + 0.724866i \(0.258099\pi\)
\(60\) 0 0
\(61\) −238.010 + 137.415i −0.499575 + 0.288430i −0.728538 0.685005i \(-0.759800\pi\)
0.228963 + 0.973435i \(0.426467\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −376.775 + 217.531i −0.718972 + 0.415098i
\(66\) 0 0
\(67\) −515.984 + 893.710i −0.940857 + 1.62961i −0.177016 + 0.984208i \(0.556644\pi\)
−0.763841 + 0.645404i \(0.776689\pi\)
\(68\) 0 0
\(69\) −365.338 + 154.706i −0.637414 + 0.269919i
\(70\) 0 0
\(71\) 931.763i 1.55746i −0.627356 0.778732i \(-0.715863\pi\)
0.627356 0.778732i \(-0.284137\pi\)
\(72\) 0 0
\(73\) −887.716 512.523i −1.42328 0.821730i −0.426700 0.904393i \(-0.640324\pi\)
−0.996578 + 0.0826631i \(0.973657\pi\)
\(74\) 0 0
\(75\) 221.167 292.973i 0.340509 0.451062i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 462.310 + 800.745i 0.658405 + 1.14039i 0.981029 + 0.193863i \(0.0621018\pi\)
−0.322624 + 0.946527i \(0.604565\pi\)
\(80\) 0 0
\(81\) 642.487 + 344.459i 0.881326 + 0.472508i
\(82\) 0 0
\(83\) −991.698 −1.31148 −0.655741 0.754986i \(-0.727644\pi\)
−0.655741 + 0.754986i \(0.727644\pi\)
\(84\) 0 0
\(85\) −1720.82 −2.19588
\(86\) 0 0
\(87\) −8.99667 + 72.7543i −0.0110867 + 0.0896561i
\(88\) 0 0
\(89\) −125.394 217.188i −0.149345 0.258673i 0.781641 0.623729i \(-0.214383\pi\)
−0.930985 + 0.365056i \(0.881050\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 1283.09 + 968.611i 1.43065 + 1.08000i
\(94\) 0 0
\(95\) −877.917 506.866i −0.948131 0.547404i
\(96\) 0 0
\(97\) 1059.27i 1.10879i 0.832252 + 0.554397i \(0.187051\pi\)
−0.832252 + 0.554397i \(0.812949\pi\)
\(98\) 0 0
\(99\) −616.457 597.359i −0.625821 0.606433i
\(100\) 0 0
\(101\) 764.116 1323.49i 0.752796 1.30388i −0.193666 0.981067i \(-0.562038\pi\)
0.946462 0.322814i \(-0.104629\pi\)
\(102\) 0 0
\(103\) −164.739 + 95.1120i −0.157594 + 0.0909870i −0.576723 0.816940i \(-0.695669\pi\)
0.419129 + 0.907927i \(0.362336\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 154.050 88.9408i 0.139183 0.0803573i −0.428792 0.903403i \(-0.641061\pi\)
0.567975 + 0.823046i \(0.307727\pi\)
\(108\) 0 0
\(109\) −96.5195 + 167.177i −0.0848156 + 0.146905i −0.905313 0.424746i \(-0.860363\pi\)
0.820497 + 0.571651i \(0.193697\pi\)
\(110\) 0 0
\(111\) −236.497 558.487i −0.202228 0.477561i
\(112\) 0 0
\(113\) 452.079i 0.376354i −0.982135 0.188177i \(-0.939742\pi\)
0.982135 0.188177i \(-0.0602579\pi\)
\(114\) 0 0
\(115\) −924.897 533.989i −0.749975 0.432998i
\(116\) 0 0
\(117\) 204.571 814.513i 0.161646 0.643605i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −160.111 277.320i −0.120294 0.208355i
\(122\) 0 0
\(123\) −2537.08 313.731i −1.85984 0.229985i
\(124\) 0 0
\(125\) −760.285 −0.544015
\(126\) 0 0
\(127\) 729.629 0.509796 0.254898 0.966968i \(-0.417958\pi\)
0.254898 + 0.966968i \(0.417958\pi\)
\(128\) 0 0
\(129\) −70.4110 8.70690i −0.0480569 0.00594264i
\(130\) 0 0
\(131\) −287.216 497.472i −0.191558 0.331789i 0.754208 0.656635i \(-0.228021\pi\)
−0.945767 + 0.324846i \(0.894687\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 301.976 + 1938.99i 0.192518 + 1.23616i
\(136\) 0 0
\(137\) 2102.50 + 1213.88i 1.31116 + 0.756998i 0.982288 0.187376i \(-0.0599984\pi\)
0.328871 + 0.944375i \(0.393332\pi\)
\(138\) 0 0
\(139\) 1453.63i 0.887014i 0.896271 + 0.443507i \(0.146266\pi\)
−0.896271 + 0.443507i \(0.853734\pi\)
\(140\) 0 0
\(141\) −176.027 415.688i −0.105136 0.248278i
\(142\) 0 0
\(143\) −494.442 + 856.398i −0.289142 + 0.500808i
\(144\) 0 0
\(145\) −170.898 + 98.6680i −0.0978779 + 0.0565098i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −1704.20 + 983.920i −0.937003 + 0.540979i −0.889020 0.457869i \(-0.848613\pi\)
−0.0479834 + 0.998848i \(0.515279\pi\)
\(150\) 0 0
\(151\) −1086.40 + 1881.71i −0.585499 + 1.01411i 0.409314 + 0.912394i \(0.365768\pi\)
−0.994813 + 0.101720i \(0.967565\pi\)
\(152\) 0 0
\(153\) 2311.59 2385.49i 1.22144 1.26049i
\(154\) 0 0
\(155\) 4327.56i 2.24257i
\(156\) 0 0
\(157\) −2857.15 1649.57i −1.45239 0.838538i −0.453773 0.891117i \(-0.649922\pi\)
−0.998617 + 0.0525797i \(0.983256\pi\)
\(158\) 0 0
\(159\) 1862.75 + 1406.20i 0.929094 + 0.701377i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −1399.63 2424.23i −0.672562 1.16491i −0.977175 0.212436i \(-0.931860\pi\)
0.304612 0.952476i \(-0.401473\pi\)
\(164\) 0 0
\(165\) 283.577 2293.23i 0.133797 1.08199i
\(166\) 0 0
\(167\) 1933.50 0.895921 0.447960 0.894053i \(-0.352151\pi\)
0.447960 + 0.894053i \(0.352151\pi\)
\(168\) 0 0
\(169\) 1229.54 0.559644
\(170\) 0 0
\(171\) 1881.95 536.137i 0.841616 0.239763i
\(172\) 0 0
\(173\) 1752.50 + 3035.43i 0.770176 + 1.33398i 0.937466 + 0.348076i \(0.113165\pi\)
−0.167290 + 0.985908i \(0.553502\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 803.910 1064.92i 0.341387 0.452226i
\(178\) 0 0
\(179\) 1598.90 + 923.127i 0.667640 + 0.385462i 0.795182 0.606371i \(-0.207375\pi\)
−0.127542 + 0.991833i \(0.540709\pi\)
\(180\) 0 0
\(181\) 369.402i 0.151699i 0.997119 + 0.0758493i \(0.0241668\pi\)
−0.997119 + 0.0758493i \(0.975833\pi\)
\(182\) 0 0
\(183\) 1315.02 556.857i 0.531196 0.224940i
\(184\) 0 0
\(185\) 816.302 1413.88i 0.324409 0.561893i
\(186\) 0 0
\(187\) −3387.36 + 1955.69i −1.32464 + 0.764782i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 206.710 119.344i 0.0783088 0.0452116i −0.460334 0.887746i \(-0.652270\pi\)
0.538643 + 0.842534i \(0.318937\pi\)
\(192\) 0 0
\(193\) 841.049 1456.74i 0.313679 0.543308i −0.665477 0.746418i \(-0.731772\pi\)
0.979156 + 0.203111i \(0.0651051\pi\)
\(194\) 0 0
\(195\) 2081.70 881.514i 0.764479 0.323726i
\(196\) 0 0
\(197\) 2988.01i 1.08065i −0.841458 0.540323i \(-0.818302\pi\)
0.841458 0.540323i \(-0.181698\pi\)
\(198\) 0 0
\(199\) 1746.98 + 1008.62i 0.622312 + 0.359292i 0.777768 0.628551i \(-0.216352\pi\)
−0.155457 + 0.987843i \(0.549685\pi\)
\(200\) 0 0
\(201\) 3230.77 4279.71i 1.13374 1.50183i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −3440.73 5959.53i −1.17225 2.03040i
\(206\) 0 0
\(207\) 1982.66 564.827i 0.665721 0.189653i
\(208\) 0 0
\(209\) −2304.18 −0.762601
\(210\) 0 0
\(211\) 4685.01 1.52858 0.764288 0.644875i \(-0.223091\pi\)
0.764288 + 0.644875i \(0.223091\pi\)
\(212\) 0 0
\(213\) −594.176 + 4804.99i −0.191137 + 1.54569i
\(214\) 0 0
\(215\) −95.4901 165.394i −0.0302901 0.0524640i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 4251.01 + 3209.10i 1.31167 + 0.990188i
\(220\) 0 0
\(221\) −3313.98 1913.33i −1.00870 0.582373i
\(222\) 0 0
\(223\) 17.2808i 0.00518927i 0.999997 + 0.00259463i \(0.000825899\pi\)
−0.999997 + 0.00259463i \(0.999174\pi\)
\(224\) 0 0
\(225\) −1327.36 + 1369.79i −0.393290 + 0.405864i
\(226\) 0 0
\(227\) −731.937 + 1267.75i −0.214011 + 0.370677i −0.952966 0.303077i \(-0.901986\pi\)
0.738956 + 0.673754i \(0.235319\pi\)
\(228\) 0 0
\(229\) −100.522 + 58.0363i −0.0290073 + 0.0167474i −0.514434 0.857530i \(-0.671998\pi\)
0.485426 + 0.874278i \(0.338664\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 3248.11 1875.30i 0.913265 0.527274i 0.0317846 0.999495i \(-0.489881\pi\)
0.881480 + 0.472221i \(0.156548\pi\)
\(234\) 0 0
\(235\) 607.582 1052.36i 0.168656 0.292122i
\(236\) 0 0
\(237\) −1873.45 4424.15i −0.513475 1.21257i
\(238\) 0 0
\(239\) 5423.48i 1.46785i 0.679232 + 0.733924i \(0.262313\pi\)
−0.679232 + 0.733924i \(0.737687\pi\)
\(240\) 0 0
\(241\) 3933.77 + 2271.16i 1.05144 + 0.607048i 0.923051 0.384677i \(-0.125687\pi\)
0.128386 + 0.991724i \(0.459020\pi\)
\(242\) 0 0
\(243\) −3093.57 2186.04i −0.816676 0.577096i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −1127.14 1952.26i −0.290356 0.502911i
\(248\) 0 0
\(249\) 5114.06 + 632.396i 1.30157 + 0.160950i
\(250\) 0 0
\(251\) −1115.63 −0.280549 −0.140275 0.990113i \(-0.544799\pi\)
−0.140275 + 0.990113i \(0.544799\pi\)
\(252\) 0 0
\(253\) −2427.49 −0.603220
\(254\) 0 0
\(255\) 8874.07 + 1097.35i 2.17928 + 0.269486i
\(256\) 0 0
\(257\) −3189.65 5524.63i −0.774182 1.34092i −0.935253 0.353979i \(-0.884828\pi\)
0.161071 0.986943i \(-0.448505\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 92.7894 369.448i 0.0220058 0.0876178i
\(262\) 0 0
\(263\) 624.597 + 360.611i 0.146442 + 0.0845485i 0.571431 0.820650i \(-0.306389\pi\)
−0.424989 + 0.905199i \(0.639722\pi\)
\(264\) 0 0
\(265\) 6282.62i 1.45637i
\(266\) 0 0
\(267\) 508.140 + 1199.97i 0.116471 + 0.275046i
\(268\) 0 0
\(269\) −2373.32 + 4110.72i −0.537933 + 0.931728i 0.461082 + 0.887358i \(0.347461\pi\)
−0.999015 + 0.0443703i \(0.985872\pi\)
\(270\) 0 0
\(271\) −7124.62 + 4113.40i −1.59701 + 0.922034i −0.604951 + 0.796263i \(0.706807\pi\)
−0.992059 + 0.125772i \(0.959859\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1945.08 1122.99i 0.426519 0.246251i
\(276\) 0 0
\(277\) 2551.88 4419.99i 0.553529 0.958741i −0.444487 0.895785i \(-0.646614\pi\)
0.998016 0.0629556i \(-0.0200526\pi\)
\(278\) 0 0
\(279\) −5999.07 5813.22i −1.28729 1.24741i
\(280\) 0 0
\(281\) 6818.51i 1.44754i −0.690042 0.723769i \(-0.742408\pi\)
0.690042 0.723769i \(-0.257592\pi\)
\(282\) 0 0
\(283\) 2317.66 + 1338.10i 0.486822 + 0.281067i 0.723255 0.690581i \(-0.242645\pi\)
−0.236433 + 0.971648i \(0.575978\pi\)
\(284\) 0 0
\(285\) 4204.09 + 3173.68i 0.873784 + 0.659624i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −5111.38 8853.18i −1.04038 1.80199i
\(290\) 0 0
\(291\) 675.489 5462.55i 0.136075 1.10041i
\(292\) 0 0
\(293\) 1743.71 0.347674 0.173837 0.984774i \(-0.444383\pi\)
0.173837 + 0.984774i \(0.444383\pi\)
\(294\) 0 0
\(295\) 3591.71 0.708872
\(296\) 0 0
\(297\) 2798.06 + 3473.62i 0.546666 + 0.678652i
\(298\) 0 0
\(299\) −1187.45 2056.73i −0.229673 0.397804i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −4784.43 + 6337.79i −0.907123 + 1.20164i
\(304\) 0 0
\(305\) 3329.12 + 1922.07i 0.625000 + 0.360844i
\(306\) 0 0
\(307\) 1503.17i 0.279448i 0.990191 + 0.139724i \(0.0446215\pi\)
−0.990191 + 0.139724i \(0.955378\pi\)
\(308\) 0 0
\(309\) 910.189 385.428i 0.167569 0.0709587i
\(310\) 0 0
\(311\) −4370.72 + 7570.31i −0.796916 + 1.38030i 0.124699 + 0.992195i \(0.460204\pi\)
−0.921615 + 0.388105i \(0.873130\pi\)
\(312\) 0 0
\(313\) 3230.92 1865.37i 0.583458 0.336860i −0.179048 0.983840i \(-0.557302\pi\)
0.762507 + 0.646980i \(0.223968\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 4312.95 2490.08i 0.764163 0.441190i −0.0666256 0.997778i \(-0.521223\pi\)
0.830788 + 0.556589i \(0.187890\pi\)
\(318\) 0 0
\(319\) −224.269 + 388.446i −0.0393626 + 0.0681781i
\(320\) 0 0
\(321\) −851.133 + 360.421i −0.147993 + 0.0626689i
\(322\) 0 0
\(323\) 8916.43i 1.53599i
\(324\) 0 0
\(325\) 1902.95 + 1098.67i 0.324790 + 0.187517i
\(326\) 0 0
\(327\) 604.346 800.560i 0.102203 0.135386i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −3097.27 5364.63i −0.514324 0.890836i −0.999862 0.0166199i \(-0.994709\pi\)
0.485538 0.874216i \(-0.338624\pi\)
\(332\) 0 0
\(333\) 863.442 + 3030.86i 0.142091 + 0.498769i
\(334\) 0 0
\(335\) 14434.4 2.35414
\(336\) 0 0
\(337\) −2866.79 −0.463395 −0.231697 0.972788i \(-0.574428\pi\)
−0.231697 + 0.972788i \(0.574428\pi\)
\(338\) 0 0
\(339\) −288.286 + 2331.31i −0.0461875 + 0.373509i
\(340\) 0 0
\(341\) 4918.21 + 8518.59i 0.781044 + 1.35281i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 4429.06 + 3343.51i 0.691166 + 0.521764i
\(346\) 0 0
\(347\) 1253.66 + 723.803i 0.193949 + 0.111976i 0.593830 0.804591i \(-0.297615\pi\)
−0.399881 + 0.916567i \(0.630949\pi\)
\(348\) 0 0
\(349\) 5343.79i 0.819618i 0.912171 + 0.409809i \(0.134405\pi\)
−0.912171 + 0.409809i \(0.865595\pi\)
\(350\) 0 0
\(351\) −1574.35 + 4069.89i −0.239409 + 0.618902i
\(352\) 0 0
\(353\) 2201.40 3812.93i 0.331922 0.574906i −0.650966 0.759107i \(-0.725636\pi\)
0.982889 + 0.184200i \(0.0589695\pi\)
\(354\) 0 0
\(355\) −11286.8 + 6516.43i −1.68744 + 0.974243i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −4640.81 + 2679.37i −0.682263 + 0.393905i −0.800707 0.599056i \(-0.795543\pi\)
0.118444 + 0.992961i \(0.462209\pi\)
\(360\) 0 0
\(361\) −803.178 + 1391.14i −0.117098 + 0.202820i
\(362\) 0 0
\(363\) 648.828 + 1532.21i 0.0938144 + 0.221543i
\(364\) 0 0
\(365\) 14337.6i 2.05607i
\(366\) 0 0
\(367\) −7217.32 4166.92i −1.02654 0.592674i −0.110550 0.993871i \(-0.535261\pi\)
−0.915992 + 0.401196i \(0.868595\pi\)
\(368\) 0 0
\(369\) 12883.3 + 3235.74i 1.81756 + 0.456493i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −3597.98 6231.89i −0.499454 0.865080i 0.500546 0.865710i \(-0.333133\pi\)
−1.00000 0.000630094i \(0.999799\pi\)
\(374\) 0 0
\(375\) 3920.69 + 484.826i 0.539903 + 0.0667635i
\(376\) 0 0
\(377\) −438.823 −0.0599483
\(378\) 0 0
\(379\) 12312.1 1.66869 0.834343 0.551245i \(-0.185847\pi\)
0.834343 + 0.551245i \(0.185847\pi\)
\(380\) 0 0
\(381\) −3762.61 465.277i −0.505943 0.0625640i
\(382\) 0 0
\(383\) −5365.18 9292.76i −0.715791 1.23979i −0.962654 0.270736i \(-0.912733\pi\)
0.246863 0.969050i \(-0.420600\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 357.549 + 89.8008i 0.0469644 + 0.0117954i
\(388\) 0 0
\(389\) −8674.30 5008.11i −1.13060 0.652754i −0.186516 0.982452i \(-0.559720\pi\)
−0.944086 + 0.329698i \(0.893053\pi\)
\(390\) 0 0
\(391\) 9393.58i 1.21497i
\(392\) 0 0
\(393\) 1163.90 + 2748.56i 0.149392 + 0.352790i
\(394\) 0 0
\(395\) 6466.47 11200.3i 0.823705 1.42670i
\(396\) 0 0
\(397\) 3240.86 1871.11i 0.409708 0.236545i −0.280956 0.959721i \(-0.590652\pi\)
0.690664 + 0.723176i \(0.257318\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −8343.83 + 4817.31i −1.03908 + 0.599913i −0.919572 0.392920i \(-0.871465\pi\)
−0.119507 + 0.992833i \(0.538131\pi\)
\(402\) 0 0
\(403\) −4811.67 + 8334.06i −0.594756 + 1.03015i
\(404\) 0 0
\(405\) −320.779 10191.7i −0.0393571 1.25044i
\(406\) 0 0
\(407\) 3710.86i 0.451942i
\(408\) 0 0
\(409\) −4547.71 2625.62i −0.549803 0.317429i 0.199239 0.979951i \(-0.436153\pi\)
−0.749043 + 0.662522i \(0.769486\pi\)
\(410\) 0 0
\(411\) −10068.3 7600.57i −1.20835 0.912186i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 6935.59 + 12012.8i 0.820373 + 1.42093i
\(416\) 0 0
\(417\) 926.963 7496.17i 0.108858 0.880309i
\(418\) 0 0
\(419\) −11867.1 −1.38364 −0.691819 0.722071i \(-0.743191\pi\)
−0.691819 + 0.722071i \(0.743191\pi\)
\(420\) 0 0
\(421\) −8108.04 −0.938626 −0.469313 0.883032i \(-0.655498\pi\)
−0.469313 + 0.883032i \(0.655498\pi\)
\(422\) 0 0
\(423\) 642.669 + 2255.90i 0.0738715 + 0.259304i
\(424\) 0 0
\(425\) 4345.62 + 7526.83i 0.495985 + 0.859071i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 3095.89 4101.04i 0.348417 0.461538i
\(430\) 0 0
\(431\) 390.334 + 225.360i 0.0436235 + 0.0251860i 0.521653 0.853158i \(-0.325316\pi\)
−0.478030 + 0.878344i \(0.658649\pi\)
\(432\) 0 0
\(433\) 8133.13i 0.902664i 0.892356 + 0.451332i \(0.149051\pi\)
−0.892356 + 0.451332i \(0.850949\pi\)
\(434\) 0 0
\(435\) 944.219 399.838i 0.104073 0.0440708i
\(436\) 0 0
\(437\) 2766.86 4792.35i 0.302876 0.524597i
\(438\) 0 0
\(439\) 8016.30 4628.21i 0.871520 0.503172i 0.00366672 0.999993i \(-0.498833\pi\)
0.867853 + 0.496821i \(0.165500\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 8854.31 5112.04i 0.949618 0.548262i 0.0566558 0.998394i \(-0.481956\pi\)
0.892962 + 0.450132i \(0.148623\pi\)
\(444\) 0 0
\(445\) −1753.92 + 3037.87i −0.186840 + 0.323616i
\(446\) 0 0
\(447\) 9415.78 3987.20i 0.996311 0.421897i
\(448\) 0 0
\(449\) 2896.50i 0.304442i 0.988346 + 0.152221i \(0.0486425\pi\)
−0.988346 + 0.152221i \(0.951357\pi\)
\(450\) 0 0
\(451\) −13545.8 7820.69i −1.41430 0.816545i
\(452\) 0 0
\(453\) 6802.40 9010.94i 0.705529 0.934594i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 3995.15 + 6919.80i 0.408939 + 0.708303i 0.994771 0.102129i \(-0.0325655\pi\)
−0.585832 + 0.810432i \(0.699232\pi\)
\(458\) 0 0
\(459\) −13441.8 + 10827.6i −1.36690 + 1.10106i
\(460\) 0 0
\(461\) −4639.50 −0.468727 −0.234363 0.972149i \(-0.575301\pi\)
−0.234363 + 0.972149i \(0.575301\pi\)
\(462\) 0 0
\(463\) 4926.63 0.494514 0.247257 0.968950i \(-0.420471\pi\)
0.247257 + 0.968950i \(0.420471\pi\)
\(464\) 0 0
\(465\) 2759.64 22316.7i 0.275216 2.22562i
\(466\) 0 0
\(467\) 3404.64 + 5897.01i 0.337362 + 0.584328i 0.983936 0.178523i \(-0.0571320\pi\)
−0.646574 + 0.762852i \(0.723799\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 13682.0 + 10328.6i 1.33850 + 1.01044i
\(472\) 0 0
\(473\) −375.935 217.046i −0.0365444 0.0210989i
\(474\) 0 0
\(475\) 5119.98i 0.494570i
\(476\) 0 0
\(477\) −8709.26 8439.45i −0.835995 0.810097i
\(478\) 0 0
\(479\) −1116.45 + 1933.75i −0.106497 + 0.184458i −0.914349 0.404927i \(-0.867297\pi\)
0.807852 + 0.589386i \(0.200630\pi\)
\(480\) 0 0
\(481\) 3144.09 1815.24i 0.298042 0.172074i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 12831.4 7408.20i 1.20133 0.693586i
\(486\) 0 0
\(487\) 60.8391 105.376i 0.00566095 0.00980505i −0.863181 0.504895i \(-0.831531\pi\)
0.868842 + 0.495089i \(0.164865\pi\)
\(488\) 0 0
\(489\) 5671.82 + 13394.0i 0.524516 + 1.23865i
\(490\) 0 0
\(491\) 9638.92i 0.885944i 0.896535 + 0.442972i \(0.146076\pi\)
−0.896535 + 0.442972i \(0.853924\pi\)
\(492\) 0 0
\(493\) −1503.16 867.849i −0.137320 0.0792819i
\(494\) 0 0
\(495\) −2924.74 + 11645.1i −0.265571 + 1.05739i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 1875.57 + 3248.58i 0.168261 + 0.291436i 0.937808 0.347153i \(-0.112852\pi\)
−0.769548 + 0.638589i \(0.779518\pi\)
\(500\) 0 0
\(501\) −9970.82 1232.97i −0.889148 0.109951i
\(502\) 0 0
\(503\) −13881.9 −1.23054 −0.615272 0.788315i \(-0.710954\pi\)
−0.615272 + 0.788315i \(0.710954\pi\)
\(504\) 0 0
\(505\) −21375.9 −1.88359
\(506\) 0 0
\(507\) −6340.57 784.064i −0.555413 0.0686814i
\(508\) 0 0
\(509\) −3096.63 5363.52i −0.269658 0.467061i 0.699116 0.715009i \(-0.253577\pi\)
−0.968773 + 0.247948i \(0.920244\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −10046.9 + 1564.69i −0.864678 + 0.134664i
\(514\) 0 0
\(515\) 2304.25 + 1330.36i 0.197160 + 0.113830i
\(516\) 0 0
\(517\) 2762.03i 0.234959i
\(518\) 0 0
\(519\) −7101.78 16770.9i −0.600643 1.41842i
\(520\) 0 0
\(521\) −2256.61 + 3908.57i −0.189758 + 0.328671i −0.945170 0.326580i \(-0.894104\pi\)
0.755411 + 0.655251i \(0.227437\pi\)
\(522\) 0 0
\(523\) −537.821 + 310.511i −0.0449661 + 0.0259612i −0.522315 0.852753i \(-0.674931\pi\)
0.477348 + 0.878714i \(0.341598\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −32964.2 + 19031.9i −2.72475 + 1.57313i
\(528\) 0 0
\(529\) −3168.58 + 5488.13i −0.260424 + 0.451067i
\(530\) 0 0
\(531\) −4824.75 + 4979.00i −0.394306 + 0.406912i
\(532\) 0 0
\(533\) 15302.6i 1.24358i
\(534\) 0 0
\(535\) −2154.74 1244.04i −0.174127 0.100532i
\(536\) 0 0
\(537\) −7656.67 5780.06i −0.615288 0.464484i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 5101.80 + 8836.58i 0.405441 + 0.702244i 0.994373 0.105938i \(-0.0337846\pi\)
−0.588932 + 0.808183i \(0.700451\pi\)
\(542\) 0 0
\(543\) 235.564 1904.96i 0.0186170 0.150552i
\(544\) 0 0
\(545\) 2700.10 0.212219
\(546\) 0 0
\(547\) −6359.52 −0.497100 −0.248550 0.968619i \(-0.579954\pi\)
−0.248550 + 0.968619i \(0.579954\pi\)
\(548\) 0 0
\(549\) −7136.48 + 2033.07i −0.554786 + 0.158049i
\(550\) 0 0
\(551\) −511.247 885.507i −0.0395279 0.0684643i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −5111.18 + 6770.63i −0.390914 + 0.517833i
\(556\) 0 0
\(557\) 18905.0 + 10914.8i 1.43812 + 0.830298i 0.997719 0.0675048i \(-0.0215038\pi\)
0.440399 + 0.897802i \(0.354837\pi\)
\(558\) 0 0
\(559\) 424.689i 0.0321332i
\(560\) 0 0
\(561\) 18715.3 7925.17i 1.40849 0.596436i
\(562\) 0 0
\(563\) 312.001 540.401i 0.0233557 0.0404533i −0.854111 0.520090i \(-0.825898\pi\)
0.877467 + 0.479637i \(0.159232\pi\)
\(564\) 0 0
\(565\) −5476.19 + 3161.68i −0.407761 + 0.235421i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −12198.4 + 7042.74i −0.898739 + 0.518887i −0.876791 0.480872i \(-0.840320\pi\)
−0.0219483 + 0.999759i \(0.506987\pi\)
\(570\) 0 0
\(571\) −4105.50 + 7110.94i −0.300893 + 0.521162i −0.976338 0.216248i \(-0.930618\pi\)
0.675445 + 0.737410i \(0.263951\pi\)
\(572\) 0 0
\(573\) −1142.08 + 483.625i −0.0832654 + 0.0352595i
\(574\) 0 0
\(575\) 5393.96i 0.391207i
\(576\) 0 0
\(577\) −9649.07 5570.89i −0.696180 0.401940i 0.109743 0.993960i \(-0.464997\pi\)
−0.805923 + 0.592020i \(0.798331\pi\)
\(578\) 0 0
\(579\) −5266.13 + 6975.89i −0.377984 + 0.500705i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 7140.10 + 12367.0i 0.507226 + 0.878541i
\(584\) 0 0
\(585\) −11297.2 + 3218.38i −0.798429 + 0.227459i
\(586\) 0 0
\(587\) −5198.19 −0.365507 −0.182753 0.983159i \(-0.558501\pi\)
−0.182753 + 0.983159i \(0.558501\pi\)
\(588\) 0 0
\(589\) −22423.2 −1.56865
\(590\) 0 0
\(591\) −1905.43 + 15408.8i −0.132621 + 1.07248i
\(592\) 0 0
\(593\) 5485.15 + 9500.55i 0.379845 + 0.657910i 0.991039 0.133570i \(-0.0426441\pi\)
−0.611195 + 0.791480i \(0.709311\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −8365.76 6315.35i −0.573514 0.432948i
\(598\) 0 0
\(599\) −22359.1 12909.0i −1.52515 0.880547i −0.999555 0.0298138i \(-0.990509\pi\)
−0.525597 0.850734i \(-0.676158\pi\)
\(600\) 0 0
\(601\) 11968.5i 0.812323i 0.913801 + 0.406162i \(0.133133\pi\)
−0.913801 + 0.406162i \(0.866867\pi\)
\(602\) 0 0
\(603\) −19389.8 + 20009.7i −1.30948 + 1.35134i
\(604\) 0 0
\(605\) −2239.52 + 3878.96i −0.150495 + 0.260665i
\(606\) 0 0
\(607\) 5412.72 3125.04i 0.361937 0.208964i −0.307993 0.951389i \(-0.599657\pi\)
0.669930 + 0.742424i \(0.266324\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 2340.18 1351.10i 0.154948 0.0894594i
\(612\) 0 0
\(613\) −2469.83 + 4277.87i −0.162733 + 0.281862i −0.935848 0.352404i \(-0.885364\pi\)
0.773115 + 0.634266i \(0.218698\pi\)
\(614\) 0 0
\(615\) 13943.1 + 32926.7i 0.914212 + 2.15891i
\(616\) 0 0
\(617\) 14836.2i 0.968042i −0.875056 0.484021i \(-0.839176\pi\)
0.875056 0.484021i \(-0.160824\pi\)
\(618\) 0 0
\(619\) 10534.4 + 6082.04i 0.684028 + 0.394924i 0.801371 0.598168i \(-0.204104\pi\)
−0.117343 + 0.993091i \(0.537438\pi\)
\(620\) 0 0
\(621\) −10584.5 + 1648.42i −0.683964 + 0.106520i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 9732.46 + 16857.1i 0.622877 + 1.07886i
\(626\) 0 0
\(627\) 11882.4 + 1469.35i 0.756837 + 0.0935891i
\(628\) 0 0
\(629\) 14359.8 0.910276
\(630\) 0 0
\(631\) 8372.13 0.528192 0.264096 0.964496i \(-0.414926\pi\)
0.264096 + 0.964496i \(0.414926\pi\)
\(632\) 0 0
\(633\) −24160.0 2987.58i −1.51702 0.187592i
\(634\) 0 0
\(635\) −5102.77 8838.26i −0.318893 0.552340i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 6128.18 24399.8i 0.379385 1.51055i
\(640\) 0 0
\(641\) 12972.5 + 7489.69i 0.799351 + 0.461505i 0.843244 0.537531i \(-0.180643\pi\)
−0.0438933 + 0.999036i \(0.513976\pi\)
\(642\) 0 0
\(643\) 4861.62i 0.298170i −0.988824 0.149085i \(-0.952367\pi\)
0.988824 0.149085i \(-0.0476329\pi\)
\(644\) 0 0
\(645\) 386.960 + 913.807i 0.0236226 + 0.0557847i
\(646\) 0 0
\(647\) 13592.4 23542.8i 0.825925 1.43054i −0.0752852 0.997162i \(-0.523987\pi\)
0.901210 0.433382i \(-0.142680\pi\)
\(648\) 0 0
\(649\) 7070.10 4081.92i 0.427620 0.246887i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 3755.80 2168.41i 0.225078 0.129949i −0.383222 0.923656i \(-0.625185\pi\)
0.608299 + 0.793708i \(0.291852\pi\)
\(654\) 0 0
\(655\) −4017.37 + 6958.30i −0.239652 + 0.415089i
\(656\) 0 0
\(657\) −19875.5 19259.8i −1.18024 1.14368i
\(658\) 0 0
\(659\) 15562.8i 0.919939i −0.887935 0.459969i \(-0.847860\pi\)
0.887935 0.459969i \(-0.152140\pi\)
\(660\) 0 0
\(661\) 12267.0 + 7082.34i 0.721830 + 0.416749i 0.815426 0.578861i \(-0.196503\pi\)
−0.0935956 + 0.995610i \(0.529836\pi\)
\(662\) 0 0
\(663\) 15869.7 + 11980.1i 0.929603 + 0.701761i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −538.606 932.892i −0.0312667 0.0541555i
\(668\) 0 0
\(669\) 11.0198 89.1148i 0.000636845 0.00515004i
\(670\) 0 0
\(671\) 8737.62 0.502700
\(672\) 0 0
\(673\) 21045.6 1.20542 0.602710 0.797960i \(-0.294087\pi\)
0.602710 + 0.797960i \(0.294087\pi\)
\(674\) 0 0
\(675\) 7718.51 6217.40i 0.440127 0.354530i
\(676\) 0 0
\(677\) −9037.10 15652.7i −0.513034 0.888601i −0.999886 0.0151166i \(-0.995188\pi\)
0.486852 0.873485i \(-0.338145\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 4582.94 6070.89i 0.257884 0.341611i
\(682\) 0 0
\(683\) −21428.1 12371.5i −1.20047 0.693092i −0.239811 0.970820i \(-0.577086\pi\)
−0.960660 + 0.277727i \(0.910419\pi\)
\(684\) 0 0
\(685\) 33957.8i 1.89410i
\(686\) 0 0
\(687\) 555.388 235.184i 0.0308433 0.0130609i
\(688\) 0 0
\(689\) −6985.44 + 12099.1i −0.386247 + 0.668999i
\(690\) 0 0
\(691\) 20190.9 11657.2i 1.11158 0.641769i 0.172339 0.985038i \(-0.444868\pi\)
0.939237 + 0.343269i \(0.111534\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 17608.3 10166.2i 0.961038 0.554855i
\(696\) 0 0
\(697\) 30263.5 52418.0i 1.64464 2.84860i
\(698\) 0 0
\(699\) −17945.9 + 7599.38i −0.971070 + 0.411209i
\(700\) 0 0
\(701\) 901.167i 0.0485544i 0.999705 + 0.0242772i \(0.00772843\pi\)
−0.999705 + 0.0242772i \(0.992272\pi\)
\(702\) 0 0
\(703\) 7325.99 + 4229.66i 0.393037 + 0.226920i
\(704\) 0 0
\(705\) −3804.30 + 5039.45i −0.203232 + 0.269215i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 2917.65 + 5053.52i 0.154548 + 0.267685i 0.932894 0.360150i \(-0.117274\pi\)
−0.778346 + 0.627835i \(0.783941\pi\)
\(710\) 0 0
\(711\) 6839.90 + 24009.5i 0.360783 + 1.26642i
\(712\) 0 0
\(713\) −23623.1 −1.24080
\(714\) 0 0
\(715\) 13831.8 0.723469
\(716\) 0 0
\(717\) 3458.50 27968.2i 0.180139 1.45675i
\(718\) 0 0
\(719\) 9234.41 + 15994.5i 0.478978 + 0.829615i 0.999709 0.0241060i \(-0.00767394\pi\)
−0.520731 + 0.853721i \(0.674341\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −18837.7 14220.6i −0.968991 0.731495i
\(724\) 0 0
\(725\) 863.142 + 498.335i 0.0442156 + 0.0255279i
\(726\) 0 0
\(727\) 32300.3i 1.64780i −0.566735 0.823900i \(-0.691794\pi\)
0.566735 0.823900i \(-0.308206\pi\)
\(728\) 0 0
\(729\) 14559.1 + 13245.9i 0.739680 + 0.672959i
\(730\) 0 0
\(731\) 839.898 1454.75i 0.0424962 0.0736056i
\(732\) 0 0
\(733\) −5189.33 + 2996.06i −0.261490 + 0.150971i −0.625014 0.780613i \(-0.714907\pi\)
0.363524 + 0.931585i \(0.381573\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 28413.5 16404.5i 1.42011 0.819903i
\(738\) 0 0
\(739\) 653.898 1132.58i 0.0325494 0.0563772i −0.849292 0.527924i \(-0.822971\pi\)
0.881841 + 0.471546i \(0.156304\pi\)
\(740\) 0 0
\(741\) 4567.56 + 10786.3i 0.226442 + 0.534743i
\(742\) 0 0
\(743\) 30175.4i 1.48995i 0.667095 + 0.744973i \(0.267538\pi\)
−0.667095 + 0.744973i \(0.732462\pi\)
\(744\) 0 0
\(745\) 23837.2 + 13762.4i 1.17225 + 0.676798i
\(746\) 0 0
\(747\) −25969.3 6522.37i −1.27198 0.319466i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −536.353 928.990i −0.0260610 0.0451389i 0.852701 0.522400i \(-0.174963\pi\)
−0.878762 + 0.477261i \(0.841630\pi\)
\(752\) 0 0
\(753\) 5753.16 + 711.425i 0.278428 + 0.0344300i
\(754\) 0 0
\(755\) 30391.7 1.46499
\(756\) 0 0
\(757\) −7773.72 −0.373237 −0.186619 0.982432i \(-0.559753\pi\)
−0.186619 + 0.982432i \(0.559753\pi\)
\(758\) 0 0
\(759\) 12518.2 + 1547.98i 0.598660 + 0.0740293i
\(760\) 0 0
\(761\) −10431.8 18068.4i −0.496916 0.860683i 0.503078 0.864241i \(-0.332201\pi\)
−0.999994 + 0.00355768i \(0.998868\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −45062.7 11317.8i −2.12973 0.534897i
\(766\) 0 0
\(767\) 6916.95 + 3993.50i 0.325628 + 0.188001i
\(768\) 0 0
\(769\) 1423.15i 0.0667364i −0.999443 0.0333682i \(-0.989377\pi\)
0.999443 0.0333682i \(-0.0106234\pi\)
\(770\) 0 0
\(771\) 12925.6 + 30523.8i 0.603767 + 1.42580i
\(772\) 0 0
\(773\) −2664.15 + 4614.44i −0.123962 + 0.214709i −0.921327 0.388789i \(-0.872893\pi\)
0.797365 + 0.603498i \(0.206227\pi\)
\(774\) 0 0
\(775\) 18928.6 10928.4i 0.877337 0.506531i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 30879.3 17828.1i 1.42024 0.819974i
\(780\) 0 0
\(781\) −14811.7 + 25654.5i −0.678621 + 1.17541i
\(782\) 0 0
\(783\) −714.096 + 1846.02i −0.0325922 + 0.0842548i
\(784\) 0 0
\(785\) 46146.2i 2.09813i
\(786\) 0 0
\(787\) −9982.43 5763.36i −0.452141 0.261044i 0.256593 0.966520i \(-0.417400\pi\)
−0.708734 + 0.705476i \(0.750733\pi\)
\(788\) 0 0
\(789\) −2991.01 2257.93i −0.134959 0.101881i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 4274.17 + 7403.09i 0.191400 + 0.331515i
\(794\) 0 0
\(795\) 4006.36 32398.7i 0.178731 1.44536i
\(796\) 0 0
\(797\) 42557.4 1.89142 0.945709 0.325013i \(-0.105369\pi\)
0.945709 + 0.325013i \(0.105369\pi\)
\(798\) 0 0