Properties

Label 588.4.i.d
Level $588$
Weight $4$
Character orbit 588.i
Analytic conductor $34.693$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 588.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(34.6931230834\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 12)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( -3 + 3 \zeta_{6} ) q^{3} + 18 \zeta_{6} q^{5} -9 \zeta_{6} q^{9} +O(q^{10})\) \( q + ( -3 + 3 \zeta_{6} ) q^{3} + 18 \zeta_{6} q^{5} -9 \zeta_{6} q^{9} + ( -36 + 36 \zeta_{6} ) q^{11} -10 q^{13} -54 q^{15} + ( -18 + 18 \zeta_{6} ) q^{17} + 100 \zeta_{6} q^{19} -72 \zeta_{6} q^{23} + ( -199 + 199 \zeta_{6} ) q^{25} + 27 q^{27} -234 q^{29} + ( 16 - 16 \zeta_{6} ) q^{31} -108 \zeta_{6} q^{33} + 226 \zeta_{6} q^{37} + ( 30 - 30 \zeta_{6} ) q^{39} + 90 q^{41} + 452 q^{43} + ( 162 - 162 \zeta_{6} ) q^{45} -432 \zeta_{6} q^{47} -54 \zeta_{6} q^{51} + ( -414 + 414 \zeta_{6} ) q^{53} -648 q^{55} -300 q^{57} + ( 684 - 684 \zeta_{6} ) q^{59} -422 \zeta_{6} q^{61} -180 \zeta_{6} q^{65} + ( -332 + 332 \zeta_{6} ) q^{67} + 216 q^{69} -360 q^{71} + ( -26 + 26 \zeta_{6} ) q^{73} -597 \zeta_{6} q^{75} -512 \zeta_{6} q^{79} + ( -81 + 81 \zeta_{6} ) q^{81} -1188 q^{83} -324 q^{85} + ( 702 - 702 \zeta_{6} ) q^{87} + 630 \zeta_{6} q^{89} + 48 \zeta_{6} q^{93} + ( -1800 + 1800 \zeta_{6} ) q^{95} -1054 q^{97} + 324 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - 3q^{3} + 18q^{5} - 9q^{9} + O(q^{10}) \) \( 2q - 3q^{3} + 18q^{5} - 9q^{9} - 36q^{11} - 20q^{13} - 108q^{15} - 18q^{17} + 100q^{19} - 72q^{23} - 199q^{25} + 54q^{27} - 468q^{29} + 16q^{31} - 108q^{33} + 226q^{37} + 30q^{39} + 180q^{41} + 904q^{43} + 162q^{45} - 432q^{47} - 54q^{51} - 414q^{53} - 1296q^{55} - 600q^{57} + 684q^{59} - 422q^{61} - 180q^{65} - 332q^{67} + 432q^{69} - 720q^{71} - 26q^{73} - 597q^{75} - 512q^{79} - 81q^{81} - 2376q^{83} - 648q^{85} + 702q^{87} + 630q^{89} + 48q^{93} - 1800q^{95} - 2108q^{97} + 648q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/588\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(295\) \(493\)
\(\chi(n)\) \(1\) \(1\) \(-\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
361.1
0.500000 + 0.866025i
0.500000 0.866025i
0 −1.50000 + 2.59808i 0 9.00000 + 15.5885i 0 0 0 −4.50000 7.79423i 0
373.1 0 −1.50000 2.59808i 0 9.00000 15.5885i 0 0 0 −4.50000 + 7.79423i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 588.4.i.d 2
3.b odd 2 1 1764.4.k.b 2
7.b odd 2 1 588.4.i.e 2
7.c even 3 1 12.4.a.a 1
7.c even 3 1 inner 588.4.i.d 2
7.d odd 6 1 588.4.a.c 1
7.d odd 6 1 588.4.i.e 2
21.c even 2 1 1764.4.k.o 2
21.g even 6 1 1764.4.a.b 1
21.g even 6 1 1764.4.k.o 2
21.h odd 6 1 36.4.a.a 1
21.h odd 6 1 1764.4.k.b 2
28.f even 6 1 2352.4.a.bk 1
28.g odd 6 1 48.4.a.a 1
35.j even 6 1 300.4.a.b 1
35.l odd 12 2 300.4.d.e 2
56.k odd 6 1 192.4.a.l 1
56.p even 6 1 192.4.a.f 1
63.g even 3 1 324.4.e.h 2
63.h even 3 1 324.4.e.h 2
63.j odd 6 1 324.4.e.a 2
63.n odd 6 1 324.4.e.a 2
77.h odd 6 1 1452.4.a.d 1
84.n even 6 1 144.4.a.g 1
91.r even 6 1 2028.4.a.c 1
91.z odd 12 2 2028.4.b.c 2
105.o odd 6 1 900.4.a.g 1
105.x even 12 2 900.4.d.c 2
112.u odd 12 2 768.4.d.j 2
112.w even 12 2 768.4.d.g 2
140.p odd 6 1 1200.4.a.be 1
140.w even 12 2 1200.4.f.d 2
168.s odd 6 1 576.4.a.b 1
168.v even 6 1 576.4.a.a 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
12.4.a.a 1 7.c even 3 1
36.4.a.a 1 21.h odd 6 1
48.4.a.a 1 28.g odd 6 1
144.4.a.g 1 84.n even 6 1
192.4.a.f 1 56.p even 6 1
192.4.a.l 1 56.k odd 6 1
300.4.a.b 1 35.j even 6 1
300.4.d.e 2 35.l odd 12 2
324.4.e.a 2 63.j odd 6 1
324.4.e.a 2 63.n odd 6 1
324.4.e.h 2 63.g even 3 1
324.4.e.h 2 63.h even 3 1
576.4.a.a 1 168.v even 6 1
576.4.a.b 1 168.s odd 6 1
588.4.a.c 1 7.d odd 6 1
588.4.i.d 2 1.a even 1 1 trivial
588.4.i.d 2 7.c even 3 1 inner
588.4.i.e 2 7.b odd 2 1
588.4.i.e 2 7.d odd 6 1
768.4.d.g 2 112.w even 12 2
768.4.d.j 2 112.u odd 12 2
900.4.a.g 1 105.o odd 6 1
900.4.d.c 2 105.x even 12 2
1200.4.a.be 1 140.p odd 6 1
1200.4.f.d 2 140.w even 12 2
1452.4.a.d 1 77.h odd 6 1
1764.4.a.b 1 21.g even 6 1
1764.4.k.b 2 3.b odd 2 1
1764.4.k.b 2 21.h odd 6 1
1764.4.k.o 2 21.c even 2 1
1764.4.k.o 2 21.g even 6 1
2028.4.a.c 1 91.r even 6 1
2028.4.b.c 2 91.z odd 12 2
2352.4.a.bk 1 28.f even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{2} - 18 T_{5} + 324 \) acting on \(S_{4}^{\mathrm{new}}(588, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \)
$3$ \( 9 + 3 T + T^{2} \)
$5$ \( 324 - 18 T + T^{2} \)
$7$ \( T^{2} \)
$11$ \( 1296 + 36 T + T^{2} \)
$13$ \( ( 10 + T )^{2} \)
$17$ \( 324 + 18 T + T^{2} \)
$19$ \( 10000 - 100 T + T^{2} \)
$23$ \( 5184 + 72 T + T^{2} \)
$29$ \( ( 234 + T )^{2} \)
$31$ \( 256 - 16 T + T^{2} \)
$37$ \( 51076 - 226 T + T^{2} \)
$41$ \( ( -90 + T )^{2} \)
$43$ \( ( -452 + T )^{2} \)
$47$ \( 186624 + 432 T + T^{2} \)
$53$ \( 171396 + 414 T + T^{2} \)
$59$ \( 467856 - 684 T + T^{2} \)
$61$ \( 178084 + 422 T + T^{2} \)
$67$ \( 110224 + 332 T + T^{2} \)
$71$ \( ( 360 + T )^{2} \)
$73$ \( 676 + 26 T + T^{2} \)
$79$ \( 262144 + 512 T + T^{2} \)
$83$ \( ( 1188 + T )^{2} \)
$89$ \( 396900 - 630 T + T^{2} \)
$97$ \( ( 1054 + T )^{2} \)
show more
show less