Properties

Label 588.4.i.a.373.1
Level $588$
Weight $4$
Character 588.373
Analytic conductor $34.693$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [588,4,Mod(361,588)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(588, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("588.361");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 588.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(34.6931230834\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 84)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 373.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 588.373
Dual form 588.4.i.a.361.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.50000 - 2.59808i) q^{3} +(-7.00000 + 12.1244i) q^{5} +(-4.50000 + 7.79423i) q^{9} +O(q^{10})\) \(q+(-1.50000 - 2.59808i) q^{3} +(-7.00000 + 12.1244i) q^{5} +(-4.50000 + 7.79423i) q^{9} +(-2.00000 - 3.46410i) q^{11} +54.0000 q^{13} +42.0000 q^{15} +(7.00000 + 12.1244i) q^{17} +(-46.0000 + 79.6743i) q^{19} +(76.0000 - 131.636i) q^{23} +(-35.5000 - 61.4878i) q^{25} +27.0000 q^{27} -106.000 q^{29} +(72.0000 + 124.708i) q^{31} +(-6.00000 + 10.3923i) q^{33} +(-79.0000 + 136.832i) q^{37} +(-81.0000 - 140.296i) q^{39} -390.000 q^{41} -508.000 q^{43} +(-63.0000 - 109.119i) q^{45} +(264.000 - 457.261i) q^{47} +(21.0000 - 36.3731i) q^{51} +(-303.000 - 524.811i) q^{53} +56.0000 q^{55} +276.000 q^{57} +(182.000 + 315.233i) q^{59} +(-339.000 + 587.165i) q^{61} +(-378.000 + 654.715i) q^{65} +(-422.000 - 730.925i) q^{67} -456.000 q^{69} -8.00000 q^{71} +(211.000 + 365.463i) q^{73} +(-106.500 + 184.463i) q^{75} +(-192.000 + 332.554i) q^{79} +(-40.5000 - 70.1481i) q^{81} -548.000 q^{83} -196.000 q^{85} +(159.000 + 275.396i) q^{87} +(-597.000 + 1034.03i) q^{89} +(216.000 - 374.123i) q^{93} +(-644.000 - 1115.44i) q^{95} -1502.00 q^{97} +36.0000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 3 q^{3} - 14 q^{5} - 9 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 3 q^{3} - 14 q^{5} - 9 q^{9} - 4 q^{11} + 108 q^{13} + 84 q^{15} + 14 q^{17} - 92 q^{19} + 152 q^{23} - 71 q^{25} + 54 q^{27} - 212 q^{29} + 144 q^{31} - 12 q^{33} - 158 q^{37} - 162 q^{39} - 780 q^{41} - 1016 q^{43} - 126 q^{45} + 528 q^{47} + 42 q^{51} - 606 q^{53} + 112 q^{55} + 552 q^{57} + 364 q^{59} - 678 q^{61} - 756 q^{65} - 844 q^{67} - 912 q^{69} - 16 q^{71} + 422 q^{73} - 213 q^{75} - 384 q^{79} - 81 q^{81} - 1096 q^{83} - 392 q^{85} + 318 q^{87} - 1194 q^{89} + 432 q^{93} - 1288 q^{95} - 3004 q^{97} + 72 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/588\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(295\) \(493\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.50000 2.59808i −0.288675 0.500000i
\(4\) 0 0
\(5\) −7.00000 + 12.1244i −0.626099 + 1.08444i 0.362228 + 0.932089i \(0.382016\pi\)
−0.988327 + 0.152346i \(0.951317\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −4.50000 + 7.79423i −0.166667 + 0.288675i
\(10\) 0 0
\(11\) −2.00000 3.46410i −0.0548202 0.0949514i 0.837313 0.546724i \(-0.184125\pi\)
−0.892133 + 0.451772i \(0.850792\pi\)
\(12\) 0 0
\(13\) 54.0000 1.15207 0.576035 0.817425i \(-0.304599\pi\)
0.576035 + 0.817425i \(0.304599\pi\)
\(14\) 0 0
\(15\) 42.0000 0.722957
\(16\) 0 0
\(17\) 7.00000 + 12.1244i 0.0998676 + 0.172976i 0.911630 0.411012i \(-0.134825\pi\)
−0.811762 + 0.583988i \(0.801491\pi\)
\(18\) 0 0
\(19\) −46.0000 + 79.6743i −0.555428 + 0.962029i 0.442443 + 0.896797i \(0.354112\pi\)
−0.997870 + 0.0652319i \(0.979221\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 76.0000 131.636i 0.689004 1.19339i −0.283156 0.959074i \(-0.591381\pi\)
0.972160 0.234316i \(-0.0752852\pi\)
\(24\) 0 0
\(25\) −35.5000 61.4878i −0.284000 0.491902i
\(26\) 0 0
\(27\) 27.0000 0.192450
\(28\) 0 0
\(29\) −106.000 −0.678748 −0.339374 0.940651i \(-0.610215\pi\)
−0.339374 + 0.940651i \(0.610215\pi\)
\(30\) 0 0
\(31\) 72.0000 + 124.708i 0.417148 + 0.722521i 0.995651 0.0931587i \(-0.0296964\pi\)
−0.578503 + 0.815680i \(0.696363\pi\)
\(32\) 0 0
\(33\) −6.00000 + 10.3923i −0.0316505 + 0.0548202i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −79.0000 + 136.832i −0.351014 + 0.607974i −0.986427 0.164198i \(-0.947496\pi\)
0.635413 + 0.772172i \(0.280830\pi\)
\(38\) 0 0
\(39\) −81.0000 140.296i −0.332574 0.576035i
\(40\) 0 0
\(41\) −390.000 −1.48556 −0.742778 0.669538i \(-0.766492\pi\)
−0.742778 + 0.669538i \(0.766492\pi\)
\(42\) 0 0
\(43\) −508.000 −1.80161 −0.900806 0.434223i \(-0.857023\pi\)
−0.900806 + 0.434223i \(0.857023\pi\)
\(44\) 0 0
\(45\) −63.0000 109.119i −0.208700 0.361478i
\(46\) 0 0
\(47\) 264.000 457.261i 0.819327 1.41912i −0.0868522 0.996221i \(-0.527681\pi\)
0.906179 0.422894i \(-0.138986\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 21.0000 36.3731i 0.0576586 0.0998676i
\(52\) 0 0
\(53\) −303.000 524.811i −0.785288 1.36016i −0.928827 0.370514i \(-0.879182\pi\)
0.143539 0.989645i \(-0.454152\pi\)
\(54\) 0 0
\(55\) 56.0000 0.137292
\(56\) 0 0
\(57\) 276.000 0.641353
\(58\) 0 0
\(59\) 182.000 + 315.233i 0.401600 + 0.695591i 0.993919 0.110112i \(-0.0351210\pi\)
−0.592319 + 0.805703i \(0.701788\pi\)
\(60\) 0 0
\(61\) −339.000 + 587.165i −0.711549 + 1.23244i 0.252726 + 0.967538i \(0.418673\pi\)
−0.964275 + 0.264902i \(0.914661\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −378.000 + 654.715i −0.721310 + 1.24935i
\(66\) 0 0
\(67\) −422.000 730.925i −0.769485 1.33279i −0.937842 0.347061i \(-0.887180\pi\)
0.168357 0.985726i \(-0.446154\pi\)
\(68\) 0 0
\(69\) −456.000 −0.795593
\(70\) 0 0
\(71\) −8.00000 −0.0133722 −0.00668609 0.999978i \(-0.502128\pi\)
−0.00668609 + 0.999978i \(0.502128\pi\)
\(72\) 0 0
\(73\) 211.000 + 365.463i 0.338297 + 0.585948i 0.984113 0.177546i \(-0.0568158\pi\)
−0.645816 + 0.763494i \(0.723482\pi\)
\(74\) 0 0
\(75\) −106.500 + 184.463i −0.163967 + 0.284000i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −192.000 + 332.554i −0.273439 + 0.473610i −0.969740 0.244139i \(-0.921495\pi\)
0.696301 + 0.717750i \(0.254828\pi\)
\(80\) 0 0
\(81\) −40.5000 70.1481i −0.0555556 0.0962250i
\(82\) 0 0
\(83\) −548.000 −0.724709 −0.362354 0.932040i \(-0.618027\pi\)
−0.362354 + 0.932040i \(0.618027\pi\)
\(84\) 0 0
\(85\) −196.000 −0.250108
\(86\) 0 0
\(87\) 159.000 + 275.396i 0.195938 + 0.339374i
\(88\) 0 0
\(89\) −597.000 + 1034.03i −0.711032 + 1.23154i 0.253438 + 0.967352i \(0.418439\pi\)
−0.964470 + 0.264192i \(0.914895\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 216.000 374.123i 0.240840 0.417148i
\(94\) 0 0
\(95\) −644.000 1115.44i −0.695505 1.20465i
\(96\) 0 0
\(97\) −1502.00 −1.57222 −0.786108 0.618089i \(-0.787907\pi\)
−0.786108 + 0.618089i \(0.787907\pi\)
\(98\) 0 0
\(99\) 36.0000 0.0365468
\(100\) 0 0
\(101\) −199.000 344.678i −0.196052 0.339572i 0.751193 0.660083i \(-0.229479\pi\)
−0.947245 + 0.320511i \(0.896145\pi\)
\(102\) 0 0
\(103\) −580.000 + 1004.59i −0.554846 + 0.961021i 0.443070 + 0.896487i \(0.353889\pi\)
−0.997916 + 0.0645337i \(0.979444\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −162.000 + 280.592i −0.146366 + 0.253513i −0.929882 0.367859i \(-0.880091\pi\)
0.783516 + 0.621372i \(0.213424\pi\)
\(108\) 0 0
\(109\) 469.000 + 812.332i 0.412129 + 0.713828i 0.995122 0.0986487i \(-0.0314520\pi\)
−0.582993 + 0.812477i \(0.698119\pi\)
\(110\) 0 0
\(111\) 474.000 0.405316
\(112\) 0 0
\(113\) −622.000 −0.517813 −0.258906 0.965902i \(-0.583362\pi\)
−0.258906 + 0.965902i \(0.583362\pi\)
\(114\) 0 0
\(115\) 1064.00 + 1842.90i 0.862770 + 1.49436i
\(116\) 0 0
\(117\) −243.000 + 420.888i −0.192012 + 0.332574i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 657.500 1138.82i 0.493989 0.855615i
\(122\) 0 0
\(123\) 585.000 + 1013.25i 0.428843 + 0.742778i
\(124\) 0 0
\(125\) −756.000 −0.540950
\(126\) 0 0
\(127\) 1200.00 0.838447 0.419224 0.907883i \(-0.362302\pi\)
0.419224 + 0.907883i \(0.362302\pi\)
\(128\) 0 0
\(129\) 762.000 + 1319.82i 0.520080 + 0.900806i
\(130\) 0 0
\(131\) 698.000 1208.97i 0.465531 0.806323i −0.533694 0.845677i \(-0.679197\pi\)
0.999225 + 0.0393543i \(0.0125301\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −189.000 + 327.358i −0.120493 + 0.208700i
\(136\) 0 0
\(137\) −1405.00 2433.53i −0.876184 1.51760i −0.855496 0.517810i \(-0.826747\pi\)
−0.0206885 0.999786i \(-0.506586\pi\)
\(138\) 0 0
\(139\) 4.00000 0.00244083 0.00122042 0.999999i \(-0.499612\pi\)
0.00122042 + 0.999999i \(0.499612\pi\)
\(140\) 0 0
\(141\) −1584.00 −0.946077
\(142\) 0 0
\(143\) −108.000 187.061i −0.0631567 0.109391i
\(144\) 0 0
\(145\) 742.000 1285.18i 0.424964 0.736059i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −687.000 + 1189.92i −0.377726 + 0.654241i −0.990731 0.135838i \(-0.956627\pi\)
0.613005 + 0.790079i \(0.289961\pi\)
\(150\) 0 0
\(151\) −1052.00 1822.12i −0.566957 0.981999i −0.996865 0.0791258i \(-0.974787\pi\)
0.429907 0.902873i \(-0.358546\pi\)
\(152\) 0 0
\(153\) −126.000 −0.0665784
\(154\) 0 0
\(155\) −2016.00 −1.04470
\(156\) 0 0
\(157\) −1603.00 2776.48i −0.814862 1.41138i −0.909427 0.415864i \(-0.863479\pi\)
0.0945650 0.995519i \(-0.469854\pi\)
\(158\) 0 0
\(159\) −909.000 + 1574.43i −0.453386 + 0.785288i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −166.000 + 287.520i −0.0797676 + 0.138162i −0.903150 0.429326i \(-0.858751\pi\)
0.823382 + 0.567488i \(0.192084\pi\)
\(164\) 0 0
\(165\) −84.0000 145.492i −0.0396327 0.0686458i
\(166\) 0 0
\(167\) 1496.00 0.693197 0.346599 0.938014i \(-0.387337\pi\)
0.346599 + 0.938014i \(0.387337\pi\)
\(168\) 0 0
\(169\) 719.000 0.327264
\(170\) 0 0
\(171\) −414.000 717.069i −0.185143 0.320676i
\(172\) 0 0
\(173\) 1661.00 2876.94i 0.729962 1.26433i −0.226936 0.973910i \(-0.572871\pi\)
0.956899 0.290422i \(-0.0937958\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 546.000 945.700i 0.231864 0.401600i
\(178\) 0 0
\(179\) 450.000 + 779.423i 0.187903 + 0.325457i 0.944551 0.328365i \(-0.106498\pi\)
−0.756648 + 0.653822i \(0.773164\pi\)
\(180\) 0 0
\(181\) 1902.00 0.781075 0.390537 0.920587i \(-0.372289\pi\)
0.390537 + 0.920587i \(0.372289\pi\)
\(182\) 0 0
\(183\) 2034.00 0.821626
\(184\) 0 0
\(185\) −1106.00 1915.65i −0.439539 0.761304i
\(186\) 0 0
\(187\) 28.0000 48.4974i 0.0109495 0.0189651i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −2064.00 + 3574.95i −0.781915 + 1.35432i 0.148910 + 0.988851i \(0.452424\pi\)
−0.930825 + 0.365466i \(0.880910\pi\)
\(192\) 0 0
\(193\) 671.000 + 1162.21i 0.250257 + 0.433458i 0.963597 0.267361i \(-0.0861515\pi\)
−0.713339 + 0.700819i \(0.752818\pi\)
\(194\) 0 0
\(195\) 2268.00 0.832897
\(196\) 0 0
\(197\) −3506.00 −1.26798 −0.633990 0.773341i \(-0.718584\pi\)
−0.633990 + 0.773341i \(0.718584\pi\)
\(198\) 0 0
\(199\) −340.000 588.897i −0.121115 0.209778i 0.799092 0.601208i \(-0.205314\pi\)
−0.920208 + 0.391430i \(0.871980\pi\)
\(200\) 0 0
\(201\) −1266.00 + 2192.78i −0.444262 + 0.769485i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 2730.00 4728.50i 0.930105 1.61099i
\(206\) 0 0
\(207\) 684.000 + 1184.72i 0.229668 + 0.397797i
\(208\) 0 0
\(209\) 368.000 0.121795
\(210\) 0 0
\(211\) 5372.00 1.75272 0.876360 0.481657i \(-0.159965\pi\)
0.876360 + 0.481657i \(0.159965\pi\)
\(212\) 0 0
\(213\) 12.0000 + 20.7846i 0.00386022 + 0.00668609i
\(214\) 0 0
\(215\) 3556.00 6159.17i 1.12799 1.95373i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 633.000 1096.39i 0.195316 0.338297i
\(220\) 0 0
\(221\) 378.000 + 654.715i 0.115054 + 0.199280i
\(222\) 0 0
\(223\) −1072.00 −0.321912 −0.160956 0.986962i \(-0.551458\pi\)
−0.160956 + 0.986962i \(0.551458\pi\)
\(224\) 0 0
\(225\) 639.000 0.189333
\(226\) 0 0
\(227\) 1434.00 + 2483.76i 0.419286 + 0.726225i 0.995868 0.0908148i \(-0.0289471\pi\)
−0.576582 + 0.817039i \(0.695614\pi\)
\(228\) 0 0
\(229\) −2399.00 + 4155.19i −0.692272 + 1.19905i 0.278819 + 0.960344i \(0.410057\pi\)
−0.971092 + 0.238707i \(0.923276\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 2563.00 4439.25i 0.720634 1.24817i −0.240112 0.970745i \(-0.577184\pi\)
0.960746 0.277429i \(-0.0894825\pi\)
\(234\) 0 0
\(235\) 3696.00 + 6401.66i 1.02596 + 1.77701i
\(236\) 0 0
\(237\) 1152.00 0.315740
\(238\) 0 0
\(239\) −528.000 −0.142902 −0.0714508 0.997444i \(-0.522763\pi\)
−0.0714508 + 0.997444i \(0.522763\pi\)
\(240\) 0 0
\(241\) 407.000 + 704.945i 0.108785 + 0.188421i 0.915278 0.402822i \(-0.131971\pi\)
−0.806493 + 0.591243i \(0.798637\pi\)
\(242\) 0 0
\(243\) −121.500 + 210.444i −0.0320750 + 0.0555556i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −2484.00 + 4302.41i −0.639891 + 1.10832i
\(248\) 0 0
\(249\) 822.000 + 1423.75i 0.209205 + 0.362354i
\(250\) 0 0
\(251\) −1932.00 −0.485844 −0.242922 0.970046i \(-0.578106\pi\)
−0.242922 + 0.970046i \(0.578106\pi\)
\(252\) 0 0
\(253\) −608.000 −0.151086
\(254\) 0 0
\(255\) 294.000 + 509.223i 0.0722000 + 0.125054i
\(256\) 0 0
\(257\) 1647.00 2852.69i 0.399755 0.692396i −0.593940 0.804509i \(-0.702429\pi\)
0.993695 + 0.112113i \(0.0357619\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 477.000 826.188i 0.113125 0.195938i
\(262\) 0 0
\(263\) 3540.00 + 6131.46i 0.829984 + 1.43757i 0.898050 + 0.439893i \(0.144984\pi\)
−0.0680662 + 0.997681i \(0.521683\pi\)
\(264\) 0 0
\(265\) 8484.00 1.96667
\(266\) 0 0
\(267\) 3582.00 0.821029
\(268\) 0 0
\(269\) −3907.00 6767.12i −0.885554 1.53382i −0.845078 0.534644i \(-0.820446\pi\)
−0.0404764 0.999180i \(-0.512888\pi\)
\(270\) 0 0
\(271\) −1584.00 + 2743.57i −0.355060 + 0.614981i −0.987128 0.159931i \(-0.948873\pi\)
0.632069 + 0.774912i \(0.282206\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −142.000 + 245.951i −0.0311379 + 0.0539324i
\(276\) 0 0
\(277\) 3929.00 + 6805.23i 0.852241 + 1.47612i 0.879181 + 0.476488i \(0.158090\pi\)
−0.0269403 + 0.999637i \(0.508576\pi\)
\(278\) 0 0
\(279\) −1296.00 −0.278099
\(280\) 0 0
\(281\) 6730.00 1.42875 0.714374 0.699764i \(-0.246712\pi\)
0.714374 + 0.699764i \(0.246712\pi\)
\(282\) 0 0
\(283\) 1510.00 + 2615.40i 0.317174 + 0.549361i 0.979897 0.199503i \(-0.0639328\pi\)
−0.662723 + 0.748864i \(0.730599\pi\)
\(284\) 0 0
\(285\) −1932.00 + 3346.32i −0.401550 + 0.695505i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 2358.50 4085.04i 0.480053 0.831476i
\(290\) 0 0
\(291\) 2253.00 + 3902.31i 0.453860 + 0.786108i
\(292\) 0 0
\(293\) −6834.00 −1.36262 −0.681308 0.731997i \(-0.738589\pi\)
−0.681308 + 0.731997i \(0.738589\pi\)
\(294\) 0 0
\(295\) −5096.00 −1.00576
\(296\) 0 0
\(297\) −54.0000 93.5307i −0.0105502 0.0182734i
\(298\) 0 0
\(299\) 4104.00 7108.34i 0.793781 1.37487i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −597.000 + 1034.03i −0.113191 + 0.196052i
\(304\) 0 0
\(305\) −4746.00 8220.31i −0.891001 1.54326i
\(306\) 0 0
\(307\) 2332.00 0.433532 0.216766 0.976224i \(-0.430449\pi\)
0.216766 + 0.976224i \(0.430449\pi\)
\(308\) 0 0
\(309\) 3480.00 0.640681
\(310\) 0 0
\(311\) −4420.00 7655.66i −0.805901 1.39586i −0.915681 0.401906i \(-0.868348\pi\)
0.109780 0.993956i \(-0.464985\pi\)
\(312\) 0 0
\(313\) 523.000 905.863i 0.0944464 0.163586i −0.814931 0.579558i \(-0.803225\pi\)
0.909377 + 0.415972i \(0.136559\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −3771.00 + 6531.56i −0.668140 + 1.15725i 0.310283 + 0.950644i \(0.399576\pi\)
−0.978424 + 0.206609i \(0.933757\pi\)
\(318\) 0 0
\(319\) 212.000 + 367.195i 0.0372092 + 0.0644482i
\(320\) 0 0
\(321\) 972.000 0.169009
\(322\) 0 0
\(323\) −1288.00 −0.221877
\(324\) 0 0
\(325\) −1917.00 3320.34i −0.327188 0.566706i
\(326\) 0 0
\(327\) 1407.00 2437.00i 0.237943 0.412129i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −1378.00 + 2386.77i −0.228827 + 0.396340i −0.957461 0.288564i \(-0.906822\pi\)
0.728634 + 0.684904i \(0.240156\pi\)
\(332\) 0 0
\(333\) −711.000 1231.49i −0.117005 0.202658i
\(334\) 0 0
\(335\) 11816.0 1.92710
\(336\) 0 0
\(337\) 3954.00 0.639134 0.319567 0.947564i \(-0.396463\pi\)
0.319567 + 0.947564i \(0.396463\pi\)
\(338\) 0 0
\(339\) 933.000 + 1616.00i 0.149480 + 0.258906i
\(340\) 0 0
\(341\) 288.000 498.831i 0.0457363 0.0792176i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 3192.00 5528.71i 0.498120 0.862770i
\(346\) 0 0
\(347\) −3450.00 5975.58i −0.533734 0.924454i −0.999223 0.0394010i \(-0.987455\pi\)
0.465489 0.885053i \(-0.345878\pi\)
\(348\) 0 0
\(349\) −2426.00 −0.372094 −0.186047 0.982541i \(-0.559568\pi\)
−0.186047 + 0.982541i \(0.559568\pi\)
\(350\) 0 0
\(351\) 1458.00 0.221716
\(352\) 0 0
\(353\) 735.000 + 1273.06i 0.110822 + 0.191949i 0.916102 0.400946i \(-0.131318\pi\)
−0.805280 + 0.592895i \(0.797985\pi\)
\(354\) 0 0
\(355\) 56.0000 96.9948i 0.00837231 0.0145013i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −3436.00 + 5951.33i −0.505140 + 0.874928i 0.494843 + 0.868983i \(0.335226\pi\)
−0.999982 + 0.00594499i \(0.998108\pi\)
\(360\) 0 0
\(361\) −802.500 1389.97i −0.117000 0.202649i
\(362\) 0 0
\(363\) −3945.00 −0.570410
\(364\) 0 0
\(365\) −5908.00 −0.847230
\(366\) 0 0
\(367\) 3536.00 + 6124.53i 0.502937 + 0.871112i 0.999994 + 0.00339411i \(0.00108038\pi\)
−0.497058 + 0.867717i \(0.665586\pi\)
\(368\) 0 0
\(369\) 1755.00 3039.75i 0.247593 0.428843i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 409.000 708.409i 0.0567754 0.0983378i −0.836241 0.548362i \(-0.815251\pi\)
0.893016 + 0.450025i \(0.148585\pi\)
\(374\) 0 0
\(375\) 1134.00 + 1964.15i 0.156159 + 0.270475i
\(376\) 0 0
\(377\) −5724.00 −0.781966
\(378\) 0 0
\(379\) −5132.00 −0.695549 −0.347775 0.937578i \(-0.613063\pi\)
−0.347775 + 0.937578i \(0.613063\pi\)
\(380\) 0 0
\(381\) −1800.00 3117.69i −0.242039 0.419224i
\(382\) 0 0
\(383\) 4288.00 7427.03i 0.572080 0.990871i −0.424272 0.905535i \(-0.639470\pi\)
0.996352 0.0853367i \(-0.0271966\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 2286.00 3959.47i 0.300269 0.520080i
\(388\) 0 0
\(389\) 1865.00 + 3230.27i 0.243083 + 0.421032i 0.961591 0.274487i \(-0.0885080\pi\)
−0.718508 + 0.695519i \(0.755175\pi\)
\(390\) 0 0
\(391\) 2128.00 0.275237
\(392\) 0 0
\(393\) −4188.00 −0.537549
\(394\) 0 0
\(395\) −2688.00 4655.75i −0.342400 0.593054i
\(396\) 0 0
\(397\) −3339.00 + 5783.32i −0.422115 + 0.731124i −0.996146 0.0877090i \(-0.972045\pi\)
0.574031 + 0.818833i \(0.305379\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 1527.00 2644.84i 0.190161 0.329369i −0.755142 0.655561i \(-0.772432\pi\)
0.945304 + 0.326192i \(0.105766\pi\)
\(402\) 0 0
\(403\) 3888.00 + 6734.21i 0.480583 + 0.832395i
\(404\) 0 0
\(405\) 1134.00 0.139133
\(406\) 0 0
\(407\) 632.000 0.0769707
\(408\) 0 0
\(409\) −133.000 230.363i −0.0160793 0.0278501i 0.857874 0.513860i \(-0.171785\pi\)
−0.873953 + 0.486010i \(0.838452\pi\)
\(410\) 0 0
\(411\) −4215.00 + 7300.59i −0.505865 + 0.876184i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 3836.00 6644.15i 0.453739 0.785900i
\(416\) 0 0
\(417\) −6.00000 10.3923i −0.000704607 0.00122042i
\(418\) 0 0
\(419\) 8844.00 1.03116 0.515582 0.856840i \(-0.327576\pi\)
0.515582 + 0.856840i \(0.327576\pi\)
\(420\) 0 0
\(421\) −4482.00 −0.518858 −0.259429 0.965762i \(-0.583534\pi\)
−0.259429 + 0.965762i \(0.583534\pi\)
\(422\) 0 0
\(423\) 2376.00 + 4115.35i 0.273109 + 0.473039i
\(424\) 0 0
\(425\) 497.000 860.829i 0.0567248 0.0982502i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −324.000 + 561.184i −0.0364636 + 0.0631567i
\(430\) 0 0
\(431\) −4968.00 8604.83i −0.555221 0.961671i −0.997886 0.0649838i \(-0.979300\pi\)
0.442666 0.896687i \(-0.354033\pi\)
\(432\) 0 0
\(433\) −11758.0 −1.30497 −0.652487 0.757800i \(-0.726274\pi\)
−0.652487 + 0.757800i \(0.726274\pi\)
\(434\) 0 0
\(435\) −4452.00 −0.490706
\(436\) 0 0
\(437\) 6992.00 + 12110.5i 0.765384 + 1.32568i
\(438\) 0 0
\(439\) 2052.00 3554.17i 0.223090 0.386404i −0.732655 0.680601i \(-0.761719\pi\)
0.955745 + 0.294197i \(0.0950522\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −4874.00 + 8442.02i −0.522733 + 0.905400i 0.476917 + 0.878948i \(0.341754\pi\)
−0.999650 + 0.0264519i \(0.991579\pi\)
\(444\) 0 0
\(445\) −8358.00 14476.5i −0.890353 1.54214i
\(446\) 0 0
\(447\) 4122.00 0.436161
\(448\) 0 0
\(449\) −478.000 −0.0502410 −0.0251205 0.999684i \(-0.507997\pi\)
−0.0251205 + 0.999684i \(0.507997\pi\)
\(450\) 0 0
\(451\) 780.000 + 1351.00i 0.0814385 + 0.141056i
\(452\) 0 0
\(453\) −3156.00 + 5466.35i −0.327333 + 0.566957i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 5587.00 9676.97i 0.571879 0.990524i −0.424494 0.905431i \(-0.639548\pi\)
0.996373 0.0850931i \(-0.0271188\pi\)
\(458\) 0 0
\(459\) 189.000 + 327.358i 0.0192195 + 0.0332892i
\(460\) 0 0
\(461\) −11674.0 −1.17942 −0.589710 0.807615i \(-0.700758\pi\)
−0.589710 + 0.807615i \(0.700758\pi\)
\(462\) 0 0
\(463\) 10528.0 1.05676 0.528378 0.849009i \(-0.322801\pi\)
0.528378 + 0.849009i \(0.322801\pi\)
\(464\) 0 0
\(465\) 3024.00 + 5237.72i 0.301580 + 0.522352i
\(466\) 0 0
\(467\) −8302.00 + 14379.5i −0.822635 + 1.42485i 0.0810777 + 0.996708i \(0.474164\pi\)
−0.903713 + 0.428139i \(0.859170\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −4809.00 + 8329.43i −0.470461 + 0.814862i
\(472\) 0 0
\(473\) 1016.00 + 1759.76i 0.0987648 + 0.171066i
\(474\) 0 0
\(475\) 6532.00 0.630966
\(476\) 0 0
\(477\) 5454.00 0.523525
\(478\) 0 0
\(479\) 4288.00 + 7427.03i 0.409027 + 0.708455i 0.994781 0.102034i \(-0.0325350\pi\)
−0.585754 + 0.810489i \(0.699202\pi\)
\(480\) 0 0
\(481\) −4266.00 + 7388.93i −0.404393 + 0.700429i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 10514.0 18210.8i 0.984363 1.70497i
\(486\) 0 0
\(487\) −4852.00 8403.91i −0.451468 0.781966i 0.547009 0.837127i \(-0.315766\pi\)
−0.998478 + 0.0551605i \(0.982433\pi\)
\(488\) 0 0
\(489\) 996.000 0.0921077
\(490\) 0 0
\(491\) −4092.00 −0.376109 −0.188054 0.982159i \(-0.560218\pi\)
−0.188054 + 0.982159i \(0.560218\pi\)
\(492\) 0 0
\(493\) −742.000 1285.18i −0.0677850 0.117407i
\(494\) 0 0
\(495\) −252.000 + 436.477i −0.0228819 + 0.0396327i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −8942.00 + 15488.0i −0.802202 + 1.38945i 0.115961 + 0.993254i \(0.463005\pi\)
−0.918164 + 0.396201i \(0.870328\pi\)
\(500\) 0 0
\(501\) −2244.00 3886.72i −0.200109 0.346599i
\(502\) 0 0
\(503\) −7704.00 −0.682911 −0.341456 0.939898i \(-0.610920\pi\)
−0.341456 + 0.939898i \(0.610920\pi\)
\(504\) 0 0
\(505\) 5572.00 0.490992
\(506\) 0 0
\(507\) −1078.50 1868.02i −0.0944731 0.163632i
\(508\) 0 0
\(509\) −7179.00 + 12434.4i −0.625154 + 1.08280i 0.363357 + 0.931650i \(0.381631\pi\)
−0.988511 + 0.151149i \(0.951703\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −1242.00 + 2151.21i −0.106892 + 0.185143i
\(514\) 0 0
\(515\) −8120.00 14064.3i −0.694777 1.20339i
\(516\) 0 0
\(517\) −2112.00 −0.179663
\(518\) 0 0
\(519\) −9966.00 −0.842888
\(520\) 0 0
\(521\) −2541.00 4401.14i −0.213672 0.370091i 0.739189 0.673498i \(-0.235209\pi\)
−0.952861 + 0.303407i \(0.901876\pi\)
\(522\) 0 0
\(523\) 878.000 1520.74i 0.0734078 0.127146i −0.826985 0.562224i \(-0.809946\pi\)
0.900393 + 0.435078i \(0.143279\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −1008.00 + 1745.91i −0.0833191 + 0.144313i
\(528\) 0 0
\(529\) −5468.50 9471.72i −0.449453 0.778476i
\(530\) 0 0
\(531\) −3276.00 −0.267733
\(532\) 0 0
\(533\) −21060.0 −1.71146
\(534\) 0 0
\(535\) −2268.00 3928.29i −0.183279 0.317448i
\(536\) 0 0
\(537\) 1350.00 2338.27i 0.108486 0.187903i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −8115.00 + 14055.6i −0.644900 + 1.11700i 0.339424 + 0.940633i \(0.389768\pi\)
−0.984325 + 0.176367i \(0.943566\pi\)
\(542\) 0 0
\(543\) −2853.00 4941.54i −0.225477 0.390537i
\(544\) 0 0
\(545\) −13132.0 −1.03213
\(546\) 0 0
\(547\) 17676.0 1.38167 0.690833 0.723014i \(-0.257244\pi\)
0.690833 + 0.723014i \(0.257244\pi\)
\(548\) 0 0
\(549\) −3051.00 5284.49i −0.237183 0.410813i
\(550\) 0 0
\(551\) 4876.00 8445.48i 0.376996 0.652976i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −3318.00 + 5746.94i −0.253768 + 0.439539i
\(556\) 0 0
\(557\) 6125.00 + 10608.8i 0.465933 + 0.807019i 0.999243 0.0389004i \(-0.0123855\pi\)
−0.533310 + 0.845920i \(0.679052\pi\)
\(558\) 0 0
\(559\) −27432.0 −2.07558
\(560\) 0 0
\(561\) −168.000 −0.0126434
\(562\) 0 0
\(563\) 5026.00 + 8705.29i 0.376236 + 0.651659i 0.990511 0.137432i \(-0.0438850\pi\)
−0.614276 + 0.789092i \(0.710552\pi\)
\(564\) 0 0
\(565\) 4354.00 7541.35i 0.324202 0.561534i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −12837.0 + 22234.3i −0.945791 + 1.63816i −0.191631 + 0.981467i \(0.561378\pi\)
−0.754160 + 0.656691i \(0.771956\pi\)
\(570\) 0 0
\(571\) −1866.00 3232.01i −0.136759 0.236874i 0.789509 0.613739i \(-0.210335\pi\)
−0.926268 + 0.376865i \(0.877002\pi\)
\(572\) 0 0
\(573\) 12384.0 0.902878
\(574\) 0 0
\(575\) −10792.0 −0.782709
\(576\) 0 0
\(577\) 607.000 + 1051.35i 0.0437950 + 0.0758552i 0.887092 0.461593i \(-0.152722\pi\)
−0.843297 + 0.537448i \(0.819388\pi\)
\(578\) 0 0
\(579\) 2013.00 3486.62i 0.144486 0.250257i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −1212.00 + 2099.25i −0.0860993 + 0.149128i
\(584\) 0 0
\(585\) −3402.00 5892.44i −0.240437 0.416448i
\(586\) 0 0
\(587\) 7108.00 0.499793 0.249897 0.968273i \(-0.419603\pi\)
0.249897 + 0.968273i \(0.419603\pi\)
\(588\) 0 0
\(589\) −13248.0 −0.926782
\(590\) 0 0
\(591\) 5259.00 + 9108.86i 0.366034 + 0.633990i
\(592\) 0 0
\(593\) −3081.00 + 5336.45i −0.213358 + 0.369548i −0.952763 0.303713i \(-0.901774\pi\)
0.739405 + 0.673261i \(0.235107\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −1020.00 + 1766.69i −0.0699260 + 0.121115i
\(598\) 0 0
\(599\) −1236.00 2140.81i −0.0843098 0.146029i 0.820787 0.571234i \(-0.193535\pi\)
−0.905097 + 0.425205i \(0.860202\pi\)
\(600\) 0 0
\(601\) −13750.0 −0.933235 −0.466617 0.884459i \(-0.654528\pi\)
−0.466617 + 0.884459i \(0.654528\pi\)
\(602\) 0 0
\(603\) 7596.00 0.512990
\(604\) 0 0
\(605\) 9205.00 + 15943.5i 0.618573 + 1.07140i
\(606\) 0 0
\(607\) 5688.00 9851.90i 0.380344 0.658775i −0.610767 0.791810i \(-0.709139\pi\)
0.991111 + 0.133035i \(0.0424723\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 14256.0 24692.1i 0.943921 1.63492i
\(612\) 0 0
\(613\) −10191.0 17651.3i −0.671469 1.16302i −0.977488 0.210993i \(-0.932330\pi\)
0.306018 0.952026i \(-0.401003\pi\)
\(614\) 0 0
\(615\) −16380.0 −1.07399
\(616\) 0 0
\(617\) 21178.0 1.38184 0.690919 0.722932i \(-0.257206\pi\)
0.690919 + 0.722932i \(0.257206\pi\)
\(618\) 0 0
\(619\) 2350.00 + 4070.32i 0.152592 + 0.264297i 0.932180 0.361996i \(-0.117905\pi\)
−0.779588 + 0.626293i \(0.784571\pi\)
\(620\) 0 0
\(621\) 2052.00 3554.17i 0.132599 0.229668i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 9729.50 16852.0i 0.622688 1.07853i
\(626\) 0 0
\(627\) −552.000 956.092i −0.0351591 0.0608973i
\(628\) 0 0
\(629\) −2212.00 −0.140220
\(630\) 0 0
\(631\) −21736.0 −1.37131 −0.685655 0.727927i \(-0.740484\pi\)
−0.685655 + 0.727927i \(0.740484\pi\)
\(632\) 0 0
\(633\) −8058.00 13956.9i −0.505966 0.876360i
\(634\) 0 0
\(635\) −8400.00 + 14549.2i −0.524951 + 0.909242i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 36.0000 62.3538i 0.00222870 0.00386022i
\(640\) 0 0
\(641\) 6511.00 + 11277.4i 0.401200 + 0.694898i 0.993871 0.110546i \(-0.0352600\pi\)
−0.592671 + 0.805444i \(0.701927\pi\)
\(642\) 0 0
\(643\) 3308.00 0.202885 0.101442 0.994841i \(-0.467654\pi\)
0.101442 + 0.994841i \(0.467654\pi\)
\(644\) 0 0
\(645\) −21336.0 −1.30249
\(646\) 0 0
\(647\) 6900.00 + 11951.2i 0.419269 + 0.726195i 0.995866 0.0908335i \(-0.0289531\pi\)
−0.576597 + 0.817029i \(0.695620\pi\)
\(648\) 0 0
\(649\) 728.000 1260.93i 0.0440316 0.0762649i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 1341.00 2322.68i 0.0803635 0.139194i −0.823043 0.567980i \(-0.807725\pi\)
0.903406 + 0.428786i \(0.141059\pi\)
\(654\) 0 0
\(655\) 9772.00 + 16925.6i 0.582937 + 1.00968i
\(656\) 0 0
\(657\) −3798.00 −0.225531
\(658\) 0 0
\(659\) 23836.0 1.40898 0.704491 0.709713i \(-0.251175\pi\)
0.704491 + 0.709713i \(0.251175\pi\)
\(660\) 0 0
\(661\) 5641.00 + 9770.50i 0.331936 + 0.574929i 0.982891 0.184186i \(-0.0589650\pi\)
−0.650956 + 0.759116i \(0.725632\pi\)
\(662\) 0 0
\(663\) 1134.00 1964.15i 0.0664267 0.115054i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −8056.00 + 13953.4i −0.467661 + 0.810012i
\(668\) 0 0
\(669\) 1608.00 + 2785.14i 0.0929281 + 0.160956i
\(670\) 0 0
\(671\) 2712.00 0.156029
\(672\) 0 0
\(673\) −13726.0 −0.786179 −0.393089 0.919500i \(-0.628594\pi\)
−0.393089 + 0.919500i \(0.628594\pi\)
\(674\) 0 0
\(675\) −958.500 1660.17i −0.0546558 0.0946667i
\(676\) 0 0
\(677\) −2487.00 + 4307.61i −0.141186 + 0.244542i −0.927944 0.372721i \(-0.878425\pi\)
0.786757 + 0.617263i \(0.211758\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 4302.00 7451.28i 0.242075 0.419286i
\(682\) 0 0
\(683\) 4494.00 + 7783.84i 0.251769 + 0.436076i 0.964013 0.265855i \(-0.0856544\pi\)
−0.712244 + 0.701932i \(0.752321\pi\)
\(684\) 0 0
\(685\) 39340.0 2.19431
\(686\) 0 0
\(687\) 14394.0 0.799367
\(688\) 0 0
\(689\) −16362.0 28339.8i −0.904706 1.56700i
\(690\) 0 0
\(691\) −5086.00 + 8809.21i −0.280001 + 0.484976i −0.971385 0.237512i \(-0.923668\pi\)
0.691384 + 0.722488i \(0.257001\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −28.0000 + 48.4974i −0.00152820 + 0.00264692i
\(696\) 0 0
\(697\) −2730.00 4728.50i −0.148359 0.256965i
\(698\) 0 0
\(699\) −15378.0 −0.832116
\(700\) 0 0
\(701\) 27446.0 1.47877 0.739387 0.673280i \(-0.235115\pi\)
0.739387 + 0.673280i \(0.235115\pi\)
\(702\) 0 0
\(703\) −7268.00 12588.5i −0.389926 0.675371i
\(704\) 0 0
\(705\) 11088.0 19205.0i 0.592338 1.02596i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −1999.00 + 3462.37i −0.105887 + 0.183402i −0.914100 0.405488i \(-0.867102\pi\)
0.808213 + 0.588890i \(0.200435\pi\)
\(710\) 0 0
\(711\) −1728.00 2992.98i −0.0911464 0.157870i
\(712\) 0 0
\(713\) 21888.0 1.14967
\(714\) 0 0
\(715\) 3024.00 0.158169
\(716\) 0 0
\(717\) 792.000 + 1371.78i 0.0412521 + 0.0714508i
\(718\) 0 0
\(719\) −12936.0 + 22405.8i −0.670976 + 1.16216i 0.306652 + 0.951822i \(0.400791\pi\)
−0.977628 + 0.210342i \(0.932542\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 1221.00 2114.83i 0.0628070 0.108785i
\(724\) 0 0
\(725\) 3763.00 + 6517.71i 0.192765 + 0.333878i
\(726\) 0 0
\(727\) 12088.0 0.616670 0.308335 0.951278i \(-0.400228\pi\)
0.308335 + 0.951278i \(0.400228\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) −3556.00 6159.17i −0.179923 0.311635i
\(732\) 0 0
\(733\) −3987.00 + 6905.69i −0.200905 + 0.347977i −0.948820 0.315817i \(-0.897722\pi\)
0.747915 + 0.663794i \(0.231055\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −1688.00 + 2923.70i −0.0843667 + 0.146127i
\(738\) 0 0
\(739\) 15882.0 + 27508.4i 0.790567 + 1.36930i 0.925616 + 0.378463i \(0.123547\pi\)
−0.135050 + 0.990839i \(0.543119\pi\)
\(740\) 0 0
\(741\) 14904.0 0.738883
\(742\) 0 0
\(743\) 888.000 0.0438460 0.0219230 0.999760i \(-0.493021\pi\)
0.0219230 + 0.999760i \(0.493021\pi\)
\(744\) 0 0
\(745\) −9618.00 16658.9i −0.472988 0.819240i
\(746\) 0 0
\(747\) 2466.00 4271.24i 0.120785 0.209205i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 17328.0 30013.0i 0.841954 1.45831i −0.0462858 0.998928i \(-0.514738\pi\)
0.888240 0.459379i \(-0.151928\pi\)
\(752\) 0 0
\(753\) 2898.00 + 5019.48i 0.140251 + 0.242922i
\(754\) 0 0
\(755\) 29456.0 1.41989
\(756\) 0 0
\(757\) −22866.0 −1.09786 −0.548929 0.835869i \(-0.684964\pi\)
−0.548929 + 0.835869i \(0.684964\pi\)
\(758\) 0 0
\(759\) 912.000 + 1579.63i 0.0436146 + 0.0755428i
\(760\) 0 0
\(761\) −11285.0 + 19546.2i −0.537557 + 0.931076i 0.461478 + 0.887152i \(0.347319\pi\)
−0.999035 + 0.0439244i \(0.986014\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 882.000 1527.67i 0.0416847 0.0722000i
\(766\) 0 0
\(767\) 9828.00 + 17022.6i 0.462671 + 0.801369i
\(768\) 0 0
\(769\) −1790.00 −0.0839389 −0.0419695 0.999119i \(-0.513363\pi\)
−0.0419695 + 0.999119i \(0.513363\pi\)
\(770\) 0 0
\(771\) −9882.00 −0.461597
\(772\) 0 0
\(773\) −1495.00 2589.42i −0.0695620 0.120485i 0.829147 0.559031i \(-0.188827\pi\)
−0.898709 + 0.438546i \(0.855493\pi\)
\(774\) 0 0
\(775\) 5112.00 8854.24i 0.236940 0.410392i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 17940.0 31073.0i 0.825118 1.42915i
\(780\) 0 0
\(781\) 16.0000 + 27.7128i 0.000733067 + 0.00126971i
\(782\) 0 0
\(783\) −2862.00 −0.130625
\(784\) 0 0
\(785\) 44884.0 2.04074
\(786\) 0 0
\(787\) 15378.0 + 26635.5i 0.696527 + 1.20642i 0.969663 + 0.244444i \(0.0786056\pi\)
−0.273137 + 0.961975i \(0.588061\pi\)
\(788\) 0 0