Properties

Label 588.4.i.a
Level $588$
Weight $4$
Character orbit 588.i
Analytic conductor $34.693$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 588.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(34.6931230834\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 84)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( -3 + 3 \zeta_{6} ) q^{3} -14 \zeta_{6} q^{5} -9 \zeta_{6} q^{9} +O(q^{10})\) \( q + ( -3 + 3 \zeta_{6} ) q^{3} -14 \zeta_{6} q^{5} -9 \zeta_{6} q^{9} + ( -4 + 4 \zeta_{6} ) q^{11} + 54 q^{13} + 42 q^{15} + ( 14 - 14 \zeta_{6} ) q^{17} -92 \zeta_{6} q^{19} + 152 \zeta_{6} q^{23} + ( -71 + 71 \zeta_{6} ) q^{25} + 27 q^{27} -106 q^{29} + ( 144 - 144 \zeta_{6} ) q^{31} -12 \zeta_{6} q^{33} -158 \zeta_{6} q^{37} + ( -162 + 162 \zeta_{6} ) q^{39} -390 q^{41} -508 q^{43} + ( -126 + 126 \zeta_{6} ) q^{45} + 528 \zeta_{6} q^{47} + 42 \zeta_{6} q^{51} + ( -606 + 606 \zeta_{6} ) q^{53} + 56 q^{55} + 276 q^{57} + ( 364 - 364 \zeta_{6} ) q^{59} -678 \zeta_{6} q^{61} -756 \zeta_{6} q^{65} + ( -844 + 844 \zeta_{6} ) q^{67} -456 q^{69} -8 q^{71} + ( 422 - 422 \zeta_{6} ) q^{73} -213 \zeta_{6} q^{75} -384 \zeta_{6} q^{79} + ( -81 + 81 \zeta_{6} ) q^{81} -548 q^{83} -196 q^{85} + ( 318 - 318 \zeta_{6} ) q^{87} -1194 \zeta_{6} q^{89} + 432 \zeta_{6} q^{93} + ( -1288 + 1288 \zeta_{6} ) q^{95} -1502 q^{97} + 36 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - 3q^{3} - 14q^{5} - 9q^{9} + O(q^{10}) \) \( 2q - 3q^{3} - 14q^{5} - 9q^{9} - 4q^{11} + 108q^{13} + 84q^{15} + 14q^{17} - 92q^{19} + 152q^{23} - 71q^{25} + 54q^{27} - 212q^{29} + 144q^{31} - 12q^{33} - 158q^{37} - 162q^{39} - 780q^{41} - 1016q^{43} - 126q^{45} + 528q^{47} + 42q^{51} - 606q^{53} + 112q^{55} + 552q^{57} + 364q^{59} - 678q^{61} - 756q^{65} - 844q^{67} - 912q^{69} - 16q^{71} + 422q^{73} - 213q^{75} - 384q^{79} - 81q^{81} - 1096q^{83} - 392q^{85} + 318q^{87} - 1194q^{89} + 432q^{93} - 1288q^{95} - 3004q^{97} + 72q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/588\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(295\) \(493\)
\(\chi(n)\) \(1\) \(1\) \(-\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
361.1
0.500000 + 0.866025i
0.500000 0.866025i
0 −1.50000 + 2.59808i 0 −7.00000 12.1244i 0 0 0 −4.50000 7.79423i 0
373.1 0 −1.50000 2.59808i 0 −7.00000 + 12.1244i 0 0 0 −4.50000 + 7.79423i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 588.4.i.a 2
3.b odd 2 1 1764.4.k.n 2
7.b odd 2 1 588.4.i.h 2
7.c even 3 1 84.4.a.b 1
7.c even 3 1 inner 588.4.i.a 2
7.d odd 6 1 588.4.a.a 1
7.d odd 6 1 588.4.i.h 2
21.c even 2 1 1764.4.k.c 2
21.g even 6 1 1764.4.a.l 1
21.g even 6 1 1764.4.k.c 2
21.h odd 6 1 252.4.a.a 1
21.h odd 6 1 1764.4.k.n 2
28.f even 6 1 2352.4.a.v 1
28.g odd 6 1 336.4.a.e 1
35.j even 6 1 2100.4.a.g 1
35.l odd 12 2 2100.4.k.g 2
56.k odd 6 1 1344.4.a.p 1
56.p even 6 1 1344.4.a.b 1
84.n even 6 1 1008.4.a.d 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
84.4.a.b 1 7.c even 3 1
252.4.a.a 1 21.h odd 6 1
336.4.a.e 1 28.g odd 6 1
588.4.a.a 1 7.d odd 6 1
588.4.i.a 2 1.a even 1 1 trivial
588.4.i.a 2 7.c even 3 1 inner
588.4.i.h 2 7.b odd 2 1
588.4.i.h 2 7.d odd 6 1
1008.4.a.d 1 84.n even 6 1
1344.4.a.b 1 56.p even 6 1
1344.4.a.p 1 56.k odd 6 1
1764.4.a.l 1 21.g even 6 1
1764.4.k.c 2 21.c even 2 1
1764.4.k.c 2 21.g even 6 1
1764.4.k.n 2 3.b odd 2 1
1764.4.k.n 2 21.h odd 6 1
2100.4.a.g 1 35.j even 6 1
2100.4.k.g 2 35.l odd 12 2
2352.4.a.v 1 28.f even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{2} + 14 T_{5} + 196 \) acting on \(S_{4}^{\mathrm{new}}(588, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \)
$3$ \( 9 + 3 T + T^{2} \)
$5$ \( 196 + 14 T + T^{2} \)
$7$ \( T^{2} \)
$11$ \( 16 + 4 T + T^{2} \)
$13$ \( ( -54 + T )^{2} \)
$17$ \( 196 - 14 T + T^{2} \)
$19$ \( 8464 + 92 T + T^{2} \)
$23$ \( 23104 - 152 T + T^{2} \)
$29$ \( ( 106 + T )^{2} \)
$31$ \( 20736 - 144 T + T^{2} \)
$37$ \( 24964 + 158 T + T^{2} \)
$41$ \( ( 390 + T )^{2} \)
$43$ \( ( 508 + T )^{2} \)
$47$ \( 278784 - 528 T + T^{2} \)
$53$ \( 367236 + 606 T + T^{2} \)
$59$ \( 132496 - 364 T + T^{2} \)
$61$ \( 459684 + 678 T + T^{2} \)
$67$ \( 712336 + 844 T + T^{2} \)
$71$ \( ( 8 + T )^{2} \)
$73$ \( 178084 - 422 T + T^{2} \)
$79$ \( 147456 + 384 T + T^{2} \)
$83$ \( ( 548 + T )^{2} \)
$89$ \( 1425636 + 1194 T + T^{2} \)
$97$ \( ( 1502 + T )^{2} \)
show more
show less