Properties

Label 588.3.j
Level $588$
Weight $3$
Character orbit 588.j
Rep. character $\chi_{588}(215,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $304$
Sturm bound $336$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 588.j (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 84 \)
Character field: \(\Q(\zeta_{6})\)
Sturm bound: \(336\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(588, [\chi])\).

Total New Old
Modular forms 480 336 144
Cusp forms 416 304 112
Eisenstein series 64 32 32

Trace form

\( 304 q + 2 q^{4} + 2 q^{9} + 6 q^{10} - 12 q^{12} + 18 q^{16} + 10 q^{18} + 140 q^{22} + 30 q^{24} - 604 q^{25} + 86 q^{30} + 6 q^{33} + 180 q^{36} + 44 q^{37} - 114 q^{40} + 126 q^{45} - 192 q^{46} - 288 q^{52}+ \cdots + 498 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(588, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{3}^{\mathrm{old}}(588, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(588, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(84, [\chi])\)\(^{\oplus 2}\)