Defining parameters
Level: | \( N \) | \(=\) | \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 588.j (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 84 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Sturm bound: | \(336\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(588, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 480 | 336 | 144 |
Cusp forms | 416 | 304 | 112 |
Eisenstein series | 64 | 32 | 32 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(588, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{3}^{\mathrm{old}}(588, [\chi])\) into lower level spaces
\( S_{3}^{\mathrm{old}}(588, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(84, [\chi])\)\(^{\oplus 2}\)