Properties

Label 588.2.y
Level $588$
Weight $2$
Character orbit 588.y
Rep. character $\chi_{588}(25,\cdot)$
Character field $\Q(\zeta_{21})$
Dimension $108$
Newform subspaces $2$
Sturm bound $224$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 588.y (of order \(21\) and degree \(12\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 49 \)
Character field: \(\Q(\zeta_{21})\)
Newform subspaces: \( 2 \)
Sturm bound: \(224\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(588, [\chi])\).

Total New Old
Modular forms 1416 108 1308
Cusp forms 1272 108 1164
Eisenstein series 144 0 144

Trace form

\( 108 q - q^{3} - 2 q^{5} - q^{7} + 9 q^{9} - 12 q^{11} + 6 q^{13} + 10 q^{15} - 6 q^{17} + 27 q^{19} + 4 q^{21} + 4 q^{23} + 7 q^{25} + 2 q^{27} + 3 q^{31} - 2 q^{33} + 18 q^{35} - 4 q^{37} + 24 q^{39}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(588, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
588.2.y.a 588.y 49.g $48$ $4.695$ None 588.2.y.a \(0\) \(4\) \(0\) \(0\) $\mathrm{SU}(2)[C_{21}]$
588.2.y.b 588.y 49.g $60$ $4.695$ None 588.2.y.b \(0\) \(-5\) \(-2\) \(-1\) $\mathrm{SU}(2)[C_{21}]$

Decomposition of \(S_{2}^{\mathrm{old}}(588, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(588, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(49, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(98, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(147, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(196, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(294, [\chi])\)\(^{\oplus 2}\)