[N,k,chi] = [588,2,Mod(55,588)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(588, base_ring=CyclotomicField(14))
chi = DirichletCharacter(H, H._module([7, 0, 9]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("588.55");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
This newform subspace can be constructed as the kernel of the linear operator
\( T_{11}^{168} - 162 T_{11}^{166} + 168 T_{11}^{165} + 15627 T_{11}^{164} - 33768 T_{11}^{163} - 1126194 T_{11}^{162} + 3686760 T_{11}^{161} + 66139323 T_{11}^{160} - 288456056 T_{11}^{159} - 3324030176 T_{11}^{158} + \cdots + 89\!\cdots\!56 \)
acting on \(S_{2}^{\mathrm{new}}(588, [\chi])\).