Defining parameters
Level: | \( N \) | \(=\) | \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 588.t (of order \(14\) and degree \(6\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 147 \) |
Character field: | \(\Q(\zeta_{14})\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(224\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(588, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 708 | 108 | 600 |
Cusp forms | 636 | 108 | 528 |
Eisenstein series | 72 | 0 | 72 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(588, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
588.2.t.a | $12$ | $4.695$ | \(\Q(\zeta_{21})\) | \(\Q(\sqrt{-3}) \) | \(0\) | \(0\) | \(0\) | \(-4\) | \(q+\beta_{11} q^{3}+(-\beta_{10}-2\beta_{5})q^{7}-3\beta_1 q^{9}+\cdots\) |
588.2.t.b | $96$ | $4.695$ | None | \(0\) | \(0\) | \(0\) | \(0\) |
Decomposition of \(S_{2}^{\mathrm{old}}(588, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(588, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(147, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(294, [\chi])\)\(^{\oplus 2}\)