Properties

Label 588.2.i.e
Level $588$
Weight $2$
Character orbit 588.i
Analytic conductor $4.695$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 588.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.69520363885\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 84)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( 1 - \zeta_{6} ) q^{3} -4 \zeta_{6} q^{5} -\zeta_{6} q^{9} +O(q^{10})\) \( q + ( 1 - \zeta_{6} ) q^{3} -4 \zeta_{6} q^{5} -\zeta_{6} q^{9} + ( -2 + 2 \zeta_{6} ) q^{11} -6 q^{13} -4 q^{15} + ( 4 - 4 \zeta_{6} ) q^{17} + 4 \zeta_{6} q^{19} -2 \zeta_{6} q^{23} + ( -11 + 11 \zeta_{6} ) q^{25} - q^{27} -2 q^{29} + 2 \zeta_{6} q^{33} -2 \zeta_{6} q^{37} + ( -6 + 6 \zeta_{6} ) q^{39} -4 q^{43} + ( -4 + 4 \zeta_{6} ) q^{45} -12 \zeta_{6} q^{47} -4 \zeta_{6} q^{51} + ( 6 - 6 \zeta_{6} ) q^{53} + 8 q^{55} + 4 q^{57} + ( 8 - 8 \zeta_{6} ) q^{59} -6 \zeta_{6} q^{61} + 24 \zeta_{6} q^{65} + ( 8 - 8 \zeta_{6} ) q^{67} -2 q^{69} + 14 q^{71} + ( 2 - 2 \zeta_{6} ) q^{73} + 11 \zeta_{6} q^{75} -12 \zeta_{6} q^{79} + ( -1 + \zeta_{6} ) q^{81} -4 q^{83} -16 q^{85} + ( -2 + 2 \zeta_{6} ) q^{87} + ( 16 - 16 \zeta_{6} ) q^{95} -2 q^{97} + 2 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q + q^{3} - 4q^{5} - q^{9} + O(q^{10}) \) \( 2q + q^{3} - 4q^{5} - q^{9} - 2q^{11} - 12q^{13} - 8q^{15} + 4q^{17} + 4q^{19} - 2q^{23} - 11q^{25} - 2q^{27} - 4q^{29} + 2q^{33} - 2q^{37} - 6q^{39} - 8q^{43} - 4q^{45} - 12q^{47} - 4q^{51} + 6q^{53} + 16q^{55} + 8q^{57} + 8q^{59} - 6q^{61} + 24q^{65} + 8q^{67} - 4q^{69} + 28q^{71} + 2q^{73} + 11q^{75} - 12q^{79} - q^{81} - 8q^{83} - 32q^{85} - 2q^{87} + 16q^{95} - 4q^{97} + 4q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/588\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(295\) \(493\)
\(\chi(n)\) \(1\) \(1\) \(-\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
361.1
0.500000 + 0.866025i
0.500000 0.866025i
0 0.500000 0.866025i 0 −2.00000 3.46410i 0 0 0 −0.500000 0.866025i 0
373.1 0 0.500000 + 0.866025i 0 −2.00000 + 3.46410i 0 0 0 −0.500000 + 0.866025i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 588.2.i.e 2
3.b odd 2 1 1764.2.k.k 2
4.b odd 2 1 2352.2.q.b 2
7.b odd 2 1 588.2.i.d 2
7.c even 3 1 84.2.a.a 1
7.c even 3 1 inner 588.2.i.e 2
7.d odd 6 1 588.2.a.d 1
7.d odd 6 1 588.2.i.d 2
21.c even 2 1 1764.2.k.a 2
21.g even 6 1 1764.2.a.k 1
21.g even 6 1 1764.2.k.a 2
21.h odd 6 1 252.2.a.a 1
21.h odd 6 1 1764.2.k.k 2
28.d even 2 1 2352.2.q.z 2
28.f even 6 1 2352.2.a.a 1
28.f even 6 1 2352.2.q.z 2
28.g odd 6 1 336.2.a.f 1
28.g odd 6 1 2352.2.q.b 2
35.j even 6 1 2100.2.a.r 1
35.l odd 12 2 2100.2.k.i 2
56.j odd 6 1 9408.2.a.bn 1
56.k odd 6 1 1344.2.a.a 1
56.m even 6 1 9408.2.a.df 1
56.p even 6 1 1344.2.a.k 1
63.g even 3 1 2268.2.j.a 2
63.h even 3 1 2268.2.j.a 2
63.j odd 6 1 2268.2.j.n 2
63.n odd 6 1 2268.2.j.n 2
84.j odd 6 1 7056.2.a.cd 1
84.n even 6 1 1008.2.a.a 1
105.o odd 6 1 6300.2.a.w 1
105.x even 12 2 6300.2.k.g 2
112.u odd 12 2 5376.2.c.p 2
112.w even 12 2 5376.2.c.q 2
140.p odd 6 1 8400.2.a.e 1
168.s odd 6 1 4032.2.a.bm 1
168.v even 6 1 4032.2.a.bn 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
84.2.a.a 1 7.c even 3 1
252.2.a.a 1 21.h odd 6 1
336.2.a.f 1 28.g odd 6 1
588.2.a.d 1 7.d odd 6 1
588.2.i.d 2 7.b odd 2 1
588.2.i.d 2 7.d odd 6 1
588.2.i.e 2 1.a even 1 1 trivial
588.2.i.e 2 7.c even 3 1 inner
1008.2.a.a 1 84.n even 6 1
1344.2.a.a 1 56.k odd 6 1
1344.2.a.k 1 56.p even 6 1
1764.2.a.k 1 21.g even 6 1
1764.2.k.a 2 21.c even 2 1
1764.2.k.a 2 21.g even 6 1
1764.2.k.k 2 3.b odd 2 1
1764.2.k.k 2 21.h odd 6 1
2100.2.a.r 1 35.j even 6 1
2100.2.k.i 2 35.l odd 12 2
2268.2.j.a 2 63.g even 3 1
2268.2.j.a 2 63.h even 3 1
2268.2.j.n 2 63.j odd 6 1
2268.2.j.n 2 63.n odd 6 1
2352.2.a.a 1 28.f even 6 1
2352.2.q.b 2 4.b odd 2 1
2352.2.q.b 2 28.g odd 6 1
2352.2.q.z 2 28.d even 2 1
2352.2.q.z 2 28.f even 6 1
4032.2.a.bm 1 168.s odd 6 1
4032.2.a.bn 1 168.v even 6 1
5376.2.c.p 2 112.u odd 12 2
5376.2.c.q 2 112.w even 12 2
6300.2.a.w 1 105.o odd 6 1
6300.2.k.g 2 105.x even 12 2
7056.2.a.cd 1 84.j odd 6 1
8400.2.a.e 1 140.p odd 6 1
9408.2.a.bn 1 56.j odd 6 1
9408.2.a.df 1 56.m even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(588, [\chi])\):

\( T_{5}^{2} + 4 T_{5} + 16 \)
\( T_{13} + 6 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ 1
$3$ \( 1 - T + T^{2} \)
$5$ \( 1 + 4 T + 11 T^{2} + 20 T^{3} + 25 T^{4} \)
$7$ 1
$11$ \( 1 + 2 T - 7 T^{2} + 22 T^{3} + 121 T^{4} \)
$13$ \( ( 1 + 6 T + 13 T^{2} )^{2} \)
$17$ \( 1 - 4 T - T^{2} - 68 T^{3} + 289 T^{4} \)
$19$ \( 1 - 4 T - 3 T^{2} - 76 T^{3} + 361 T^{4} \)
$23$ \( 1 + 2 T - 19 T^{2} + 46 T^{3} + 529 T^{4} \)
$29$ \( ( 1 + 2 T + 29 T^{2} )^{2} \)
$31$ \( 1 - 31 T^{2} + 961 T^{4} \)
$37$ \( 1 + 2 T - 33 T^{2} + 74 T^{3} + 1369 T^{4} \)
$41$ \( ( 1 + 41 T^{2} )^{2} \)
$43$ \( ( 1 + 4 T + 43 T^{2} )^{2} \)
$47$ \( 1 + 12 T + 97 T^{2} + 564 T^{3} + 2209 T^{4} \)
$53$ \( 1 - 6 T - 17 T^{2} - 318 T^{3} + 2809 T^{4} \)
$59$ \( 1 - 8 T + 5 T^{2} - 472 T^{3} + 3481 T^{4} \)
$61$ \( 1 + 6 T - 25 T^{2} + 366 T^{3} + 3721 T^{4} \)
$67$ \( 1 - 8 T - 3 T^{2} - 536 T^{3} + 4489 T^{4} \)
$71$ \( ( 1 - 14 T + 71 T^{2} )^{2} \)
$73$ \( 1 - 2 T - 69 T^{2} - 146 T^{3} + 5329 T^{4} \)
$79$ \( 1 + 12 T + 65 T^{2} + 948 T^{3} + 6241 T^{4} \)
$83$ \( ( 1 + 4 T + 83 T^{2} )^{2} \)
$89$ \( 1 - 89 T^{2} + 7921 T^{4} \)
$97$ \( ( 1 + 2 T + 97 T^{2} )^{2} \)
show more
show less