Properties

Label 588.2.i.a.373.1
Level $588$
Weight $2$
Character 588.373
Analytic conductor $4.695$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 588.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.69520363885\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 373.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 588.373
Dual form 588.2.i.a.361.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{3} +(-1.00000 + 1.73205i) q^{5} +(-0.500000 + 0.866025i) q^{9} +O(q^{10})\) \(q+(-0.500000 - 0.866025i) q^{3} +(-1.00000 + 1.73205i) q^{5} +(-0.500000 + 0.866025i) q^{9} +(-1.00000 - 1.73205i) q^{11} -4.00000 q^{13} +2.00000 q^{15} +(-3.00000 - 5.19615i) q^{17} +(-4.00000 + 6.92820i) q^{19} +(3.00000 - 5.19615i) q^{23} +(0.500000 + 0.866025i) q^{25} +1.00000 q^{27} -10.0000 q^{29} +(-2.00000 - 3.46410i) q^{31} +(-1.00000 + 1.73205i) q^{33} +(-3.00000 + 5.19615i) q^{37} +(2.00000 + 3.46410i) q^{39} -6.00000 q^{41} +4.00000 q^{43} +(-1.00000 - 1.73205i) q^{45} +(-4.00000 + 6.92820i) q^{47} +(-3.00000 + 5.19615i) q^{51} +(-1.00000 - 1.73205i) q^{53} +4.00000 q^{55} +8.00000 q^{57} +(2.00000 + 3.46410i) q^{59} +(4.00000 - 6.92820i) q^{61} +(4.00000 - 6.92820i) q^{65} +(4.00000 + 6.92820i) q^{67} -6.00000 q^{69} -10.0000 q^{71} +(-2.00000 - 3.46410i) q^{73} +(0.500000 - 0.866025i) q^{75} +(-2.00000 + 3.46410i) q^{79} +(-0.500000 - 0.866025i) q^{81} +12.0000 q^{83} +12.0000 q^{85} +(5.00000 + 8.66025i) q^{87} +(7.00000 - 12.1244i) q^{89} +(-2.00000 + 3.46410i) q^{93} +(-8.00000 - 13.8564i) q^{95} +4.00000 q^{97} +2.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - q^{3} - 2q^{5} - q^{9} + O(q^{10}) \) \( 2q - q^{3} - 2q^{5} - q^{9} - 2q^{11} - 8q^{13} + 4q^{15} - 6q^{17} - 8q^{19} + 6q^{23} + q^{25} + 2q^{27} - 20q^{29} - 4q^{31} - 2q^{33} - 6q^{37} + 4q^{39} - 12q^{41} + 8q^{43} - 2q^{45} - 8q^{47} - 6q^{51} - 2q^{53} + 8q^{55} + 16q^{57} + 4q^{59} + 8q^{61} + 8q^{65} + 8q^{67} - 12q^{69} - 20q^{71} - 4q^{73} + q^{75} - 4q^{79} - q^{81} + 24q^{83} + 24q^{85} + 10q^{87} + 14q^{89} - 4q^{93} - 16q^{95} + 8q^{97} + 4q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/588\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(295\) \(493\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.500000 0.866025i −0.288675 0.500000i
\(4\) 0 0
\(5\) −1.00000 + 1.73205i −0.447214 + 0.774597i −0.998203 0.0599153i \(-0.980917\pi\)
0.550990 + 0.834512i \(0.314250\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) 0 0
\(11\) −1.00000 1.73205i −0.301511 0.522233i 0.674967 0.737848i \(-0.264158\pi\)
−0.976478 + 0.215615i \(0.930824\pi\)
\(12\) 0 0
\(13\) −4.00000 −1.10940 −0.554700 0.832050i \(-0.687167\pi\)
−0.554700 + 0.832050i \(0.687167\pi\)
\(14\) 0 0
\(15\) 2.00000 0.516398
\(16\) 0 0
\(17\) −3.00000 5.19615i −0.727607 1.26025i −0.957892 0.287129i \(-0.907299\pi\)
0.230285 0.973123i \(-0.426034\pi\)
\(18\) 0 0
\(19\) −4.00000 + 6.92820i −0.917663 + 1.58944i −0.114708 + 0.993399i \(0.536593\pi\)
−0.802955 + 0.596040i \(0.796740\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 3.00000 5.19615i 0.625543 1.08347i −0.362892 0.931831i \(-0.618211\pi\)
0.988436 0.151642i \(-0.0484560\pi\)
\(24\) 0 0
\(25\) 0.500000 + 0.866025i 0.100000 + 0.173205i
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) −10.0000 −1.85695 −0.928477 0.371391i \(-0.878881\pi\)
−0.928477 + 0.371391i \(0.878881\pi\)
\(30\) 0 0
\(31\) −2.00000 3.46410i −0.359211 0.622171i 0.628619 0.777714i \(-0.283621\pi\)
−0.987829 + 0.155543i \(0.950287\pi\)
\(32\) 0 0
\(33\) −1.00000 + 1.73205i −0.174078 + 0.301511i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −3.00000 + 5.19615i −0.493197 + 0.854242i −0.999969 0.00783774i \(-0.997505\pi\)
0.506772 + 0.862080i \(0.330838\pi\)
\(38\) 0 0
\(39\) 2.00000 + 3.46410i 0.320256 + 0.554700i
\(40\) 0 0
\(41\) −6.00000 −0.937043 −0.468521 0.883452i \(-0.655213\pi\)
−0.468521 + 0.883452i \(0.655213\pi\)
\(42\) 0 0
\(43\) 4.00000 0.609994 0.304997 0.952353i \(-0.401344\pi\)
0.304997 + 0.952353i \(0.401344\pi\)
\(44\) 0 0
\(45\) −1.00000 1.73205i −0.149071 0.258199i
\(46\) 0 0
\(47\) −4.00000 + 6.92820i −0.583460 + 1.01058i 0.411606 + 0.911362i \(0.364968\pi\)
−0.995066 + 0.0992202i \(0.968365\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −3.00000 + 5.19615i −0.420084 + 0.727607i
\(52\) 0 0
\(53\) −1.00000 1.73205i −0.137361 0.237915i 0.789136 0.614218i \(-0.210529\pi\)
−0.926497 + 0.376303i \(0.877195\pi\)
\(54\) 0 0
\(55\) 4.00000 0.539360
\(56\) 0 0
\(57\) 8.00000 1.05963
\(58\) 0 0
\(59\) 2.00000 + 3.46410i 0.260378 + 0.450988i 0.966342 0.257260i \(-0.0828195\pi\)
−0.705965 + 0.708247i \(0.749486\pi\)
\(60\) 0 0
\(61\) 4.00000 6.92820i 0.512148 0.887066i −0.487753 0.872982i \(-0.662183\pi\)
0.999901 0.0140840i \(-0.00448323\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 4.00000 6.92820i 0.496139 0.859338i
\(66\) 0 0
\(67\) 4.00000 + 6.92820i 0.488678 + 0.846415i 0.999915 0.0130248i \(-0.00414604\pi\)
−0.511237 + 0.859440i \(0.670813\pi\)
\(68\) 0 0
\(69\) −6.00000 −0.722315
\(70\) 0 0
\(71\) −10.0000 −1.18678 −0.593391 0.804914i \(-0.702211\pi\)
−0.593391 + 0.804914i \(0.702211\pi\)
\(72\) 0 0
\(73\) −2.00000 3.46410i −0.234082 0.405442i 0.724923 0.688830i \(-0.241875\pi\)
−0.959006 + 0.283387i \(0.908542\pi\)
\(74\) 0 0
\(75\) 0.500000 0.866025i 0.0577350 0.100000i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −2.00000 + 3.46410i −0.225018 + 0.389742i −0.956325 0.292306i \(-0.905577\pi\)
0.731307 + 0.682048i \(0.238911\pi\)
\(80\) 0 0
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 0 0
\(83\) 12.0000 1.31717 0.658586 0.752506i \(-0.271155\pi\)
0.658586 + 0.752506i \(0.271155\pi\)
\(84\) 0 0
\(85\) 12.0000 1.30158
\(86\) 0 0
\(87\) 5.00000 + 8.66025i 0.536056 + 0.928477i
\(88\) 0 0
\(89\) 7.00000 12.1244i 0.741999 1.28518i −0.209585 0.977790i \(-0.567211\pi\)
0.951584 0.307389i \(-0.0994552\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −2.00000 + 3.46410i −0.207390 + 0.359211i
\(94\) 0 0
\(95\) −8.00000 13.8564i −0.820783 1.42164i
\(96\) 0 0
\(97\) 4.00000 0.406138 0.203069 0.979164i \(-0.434908\pi\)
0.203069 + 0.979164i \(0.434908\pi\)
\(98\) 0 0
\(99\) 2.00000 0.201008
\(100\) 0 0
\(101\) 5.00000 + 8.66025i 0.497519 + 0.861727i 0.999996 0.00286291i \(-0.000911295\pi\)
−0.502477 + 0.864590i \(0.667578\pi\)
\(102\) 0 0
\(103\) 2.00000 3.46410i 0.197066 0.341328i −0.750510 0.660859i \(-0.770192\pi\)
0.947576 + 0.319531i \(0.103525\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 7.00000 12.1244i 0.676716 1.17211i −0.299249 0.954175i \(-0.596736\pi\)
0.975964 0.217931i \(-0.0699306\pi\)
\(108\) 0 0
\(109\) −5.00000 8.66025i −0.478913 0.829502i 0.520794 0.853682i \(-0.325636\pi\)
−0.999708 + 0.0241802i \(0.992302\pi\)
\(110\) 0 0
\(111\) 6.00000 0.569495
\(112\) 0 0
\(113\) −14.0000 −1.31701 −0.658505 0.752577i \(-0.728811\pi\)
−0.658505 + 0.752577i \(0.728811\pi\)
\(114\) 0 0
\(115\) 6.00000 + 10.3923i 0.559503 + 0.969087i
\(116\) 0 0
\(117\) 2.00000 3.46410i 0.184900 0.320256i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 3.50000 6.06218i 0.318182 0.551107i
\(122\) 0 0
\(123\) 3.00000 + 5.19615i 0.270501 + 0.468521i
\(124\) 0 0
\(125\) −12.0000 −1.07331
\(126\) 0 0
\(127\) −4.00000 −0.354943 −0.177471 0.984126i \(-0.556792\pi\)
−0.177471 + 0.984126i \(0.556792\pi\)
\(128\) 0 0
\(129\) −2.00000 3.46410i −0.176090 0.304997i
\(130\) 0 0
\(131\) 6.00000 10.3923i 0.524222 0.907980i −0.475380 0.879781i \(-0.657689\pi\)
0.999602 0.0281993i \(-0.00897729\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −1.00000 + 1.73205i −0.0860663 + 0.149071i
\(136\) 0 0
\(137\) 5.00000 + 8.66025i 0.427179 + 0.739895i 0.996621 0.0821359i \(-0.0261741\pi\)
−0.569442 + 0.822031i \(0.692841\pi\)
\(138\) 0 0
\(139\) 12.0000 1.01783 0.508913 0.860818i \(-0.330047\pi\)
0.508913 + 0.860818i \(0.330047\pi\)
\(140\) 0 0
\(141\) 8.00000 0.673722
\(142\) 0 0
\(143\) 4.00000 + 6.92820i 0.334497 + 0.579365i
\(144\) 0 0
\(145\) 10.0000 17.3205i 0.830455 1.43839i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −1.00000 + 1.73205i −0.0819232 + 0.141895i −0.904076 0.427372i \(-0.859440\pi\)
0.822153 + 0.569267i \(0.192773\pi\)
\(150\) 0 0
\(151\) 4.00000 + 6.92820i 0.325515 + 0.563809i 0.981617 0.190864i \(-0.0611289\pi\)
−0.656101 + 0.754673i \(0.727796\pi\)
\(152\) 0 0
\(153\) 6.00000 0.485071
\(154\) 0 0
\(155\) 8.00000 0.642575
\(156\) 0 0
\(157\) 8.00000 + 13.8564i 0.638470 + 1.10586i 0.985769 + 0.168107i \(0.0537655\pi\)
−0.347299 + 0.937754i \(0.612901\pi\)
\(158\) 0 0
\(159\) −1.00000 + 1.73205i −0.0793052 + 0.137361i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −12.0000 + 20.7846i −0.939913 + 1.62798i −0.174282 + 0.984696i \(0.555760\pi\)
−0.765631 + 0.643280i \(0.777573\pi\)
\(164\) 0 0
\(165\) −2.00000 3.46410i −0.155700 0.269680i
\(166\) 0 0
\(167\) 16.0000 1.23812 0.619059 0.785345i \(-0.287514\pi\)
0.619059 + 0.785345i \(0.287514\pi\)
\(168\) 0 0
\(169\) 3.00000 0.230769
\(170\) 0 0
\(171\) −4.00000 6.92820i −0.305888 0.529813i
\(172\) 0 0
\(173\) 1.00000 1.73205i 0.0760286 0.131685i −0.825505 0.564396i \(-0.809109\pi\)
0.901533 + 0.432710i \(0.142443\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 2.00000 3.46410i 0.150329 0.260378i
\(178\) 0 0
\(179\) −3.00000 5.19615i −0.224231 0.388379i 0.731858 0.681457i \(-0.238654\pi\)
−0.956088 + 0.293079i \(0.905320\pi\)
\(180\) 0 0
\(181\) −20.0000 −1.48659 −0.743294 0.668965i \(-0.766738\pi\)
−0.743294 + 0.668965i \(0.766738\pi\)
\(182\) 0 0
\(183\) −8.00000 −0.591377
\(184\) 0 0
\(185\) −6.00000 10.3923i −0.441129 0.764057i
\(186\) 0 0
\(187\) −6.00000 + 10.3923i −0.438763 + 0.759961i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −3.00000 + 5.19615i −0.217072 + 0.375980i −0.953912 0.300088i \(-0.902984\pi\)
0.736839 + 0.676068i \(0.236317\pi\)
\(192\) 0 0
\(193\) 5.00000 + 8.66025i 0.359908 + 0.623379i 0.987945 0.154805i \(-0.0494748\pi\)
−0.628037 + 0.778183i \(0.716141\pi\)
\(194\) 0 0
\(195\) −8.00000 −0.572892
\(196\) 0 0
\(197\) −6.00000 −0.427482 −0.213741 0.976890i \(-0.568565\pi\)
−0.213741 + 0.976890i \(0.568565\pi\)
\(198\) 0 0
\(199\) 4.00000 + 6.92820i 0.283552 + 0.491127i 0.972257 0.233915i \(-0.0751537\pi\)
−0.688705 + 0.725042i \(0.741820\pi\)
\(200\) 0 0
\(201\) 4.00000 6.92820i 0.282138 0.488678i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 6.00000 10.3923i 0.419058 0.725830i
\(206\) 0 0
\(207\) 3.00000 + 5.19615i 0.208514 + 0.361158i
\(208\) 0 0
\(209\) 16.0000 1.10674
\(210\) 0 0
\(211\) −4.00000 −0.275371 −0.137686 0.990476i \(-0.543966\pi\)
−0.137686 + 0.990476i \(0.543966\pi\)
\(212\) 0 0
\(213\) 5.00000 + 8.66025i 0.342594 + 0.593391i
\(214\) 0 0
\(215\) −4.00000 + 6.92820i −0.272798 + 0.472500i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −2.00000 + 3.46410i −0.135147 + 0.234082i
\(220\) 0 0
\(221\) 12.0000 + 20.7846i 0.807207 + 1.39812i
\(222\) 0 0
\(223\) −8.00000 −0.535720 −0.267860 0.963458i \(-0.586316\pi\)
−0.267860 + 0.963458i \(0.586316\pi\)
\(224\) 0 0
\(225\) −1.00000 −0.0666667
\(226\) 0 0
\(227\) −2.00000 3.46410i −0.132745 0.229920i 0.791989 0.610535i \(-0.209046\pi\)
−0.924734 + 0.380615i \(0.875712\pi\)
\(228\) 0 0
\(229\) −10.0000 + 17.3205i −0.660819 + 1.14457i 0.319582 + 0.947559i \(0.396457\pi\)
−0.980401 + 0.197013i \(0.936876\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −7.00000 + 12.1244i −0.458585 + 0.794293i −0.998886 0.0471787i \(-0.984977\pi\)
0.540301 + 0.841472i \(0.318310\pi\)
\(234\) 0 0
\(235\) −8.00000 13.8564i −0.521862 0.903892i
\(236\) 0 0
\(237\) 4.00000 0.259828
\(238\) 0 0
\(239\) 18.0000 1.16432 0.582162 0.813073i \(-0.302207\pi\)
0.582162 + 0.813073i \(0.302207\pi\)
\(240\) 0 0
\(241\) −14.0000 24.2487i −0.901819 1.56200i −0.825131 0.564942i \(-0.808899\pi\)
−0.0766885 0.997055i \(-0.524435\pi\)
\(242\) 0 0
\(243\) −0.500000 + 0.866025i −0.0320750 + 0.0555556i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 16.0000 27.7128i 1.01806 1.76332i
\(248\) 0 0
\(249\) −6.00000 10.3923i −0.380235 0.658586i
\(250\) 0 0
\(251\) −28.0000 −1.76734 −0.883672 0.468106i \(-0.844936\pi\)
−0.883672 + 0.468106i \(0.844936\pi\)
\(252\) 0 0
\(253\) −12.0000 −0.754434
\(254\) 0 0
\(255\) −6.00000 10.3923i −0.375735 0.650791i
\(256\) 0 0
\(257\) −5.00000 + 8.66025i −0.311891 + 0.540212i −0.978772 0.204953i \(-0.934296\pi\)
0.666880 + 0.745165i \(0.267629\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 5.00000 8.66025i 0.309492 0.536056i
\(262\) 0 0
\(263\) −13.0000 22.5167i −0.801614 1.38844i −0.918553 0.395298i \(-0.870641\pi\)
0.116939 0.993139i \(-0.462692\pi\)
\(264\) 0 0
\(265\) 4.00000 0.245718
\(266\) 0 0
\(267\) −14.0000 −0.856786
\(268\) 0 0
\(269\) −1.00000 1.73205i −0.0609711 0.105605i 0.833929 0.551872i \(-0.186086\pi\)
−0.894900 + 0.446267i \(0.852753\pi\)
\(270\) 0 0
\(271\) 2.00000 3.46410i 0.121491 0.210429i −0.798865 0.601511i \(-0.794566\pi\)
0.920356 + 0.391082i \(0.127899\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1.00000 1.73205i 0.0603023 0.104447i
\(276\) 0 0
\(277\) −5.00000 8.66025i −0.300421 0.520344i 0.675810 0.737075i \(-0.263794\pi\)
−0.976231 + 0.216731i \(0.930460\pi\)
\(278\) 0 0
\(279\) 4.00000 0.239474
\(280\) 0 0
\(281\) 6.00000 0.357930 0.178965 0.983855i \(-0.442725\pi\)
0.178965 + 0.983855i \(0.442725\pi\)
\(282\) 0 0
\(283\) −8.00000 13.8564i −0.475551 0.823678i 0.524057 0.851683i \(-0.324418\pi\)
−0.999608 + 0.0280052i \(0.991084\pi\)
\(284\) 0 0
\(285\) −8.00000 + 13.8564i −0.473879 + 0.820783i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −9.50000 + 16.4545i −0.558824 + 0.967911i
\(290\) 0 0
\(291\) −2.00000 3.46410i −0.117242 0.203069i
\(292\) 0 0
\(293\) −18.0000 −1.05157 −0.525786 0.850617i \(-0.676229\pi\)
−0.525786 + 0.850617i \(0.676229\pi\)
\(294\) 0 0
\(295\) −8.00000 −0.465778
\(296\) 0 0
\(297\) −1.00000 1.73205i −0.0580259 0.100504i
\(298\) 0 0
\(299\) −12.0000 + 20.7846i −0.693978 + 1.20201i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 5.00000 8.66025i 0.287242 0.497519i
\(304\) 0 0
\(305\) 8.00000 + 13.8564i 0.458079 + 0.793416i
\(306\) 0 0
\(307\) 16.0000 0.913168 0.456584 0.889680i \(-0.349073\pi\)
0.456584 + 0.889680i \(0.349073\pi\)
\(308\) 0 0
\(309\) −4.00000 −0.227552
\(310\) 0 0
\(311\) −8.00000 13.8564i −0.453638 0.785725i 0.544970 0.838455i \(-0.316541\pi\)
−0.998609 + 0.0527306i \(0.983208\pi\)
\(312\) 0 0
\(313\) −12.0000 + 20.7846i −0.678280 + 1.17482i 0.297218 + 0.954810i \(0.403941\pi\)
−0.975499 + 0.220006i \(0.929392\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −9.00000 + 15.5885i −0.505490 + 0.875535i 0.494489 + 0.869184i \(0.335355\pi\)
−0.999980 + 0.00635137i \(0.997978\pi\)
\(318\) 0 0
\(319\) 10.0000 + 17.3205i 0.559893 + 0.969762i
\(320\) 0 0
\(321\) −14.0000 −0.781404
\(322\) 0 0
\(323\) 48.0000 2.67079
\(324\) 0 0
\(325\) −2.00000 3.46410i −0.110940 0.192154i
\(326\) 0 0
\(327\) −5.00000 + 8.66025i −0.276501 + 0.478913i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 2.00000 3.46410i 0.109930 0.190404i −0.805812 0.592172i \(-0.798271\pi\)
0.915742 + 0.401768i \(0.131604\pi\)
\(332\) 0 0
\(333\) −3.00000 5.19615i −0.164399 0.284747i
\(334\) 0 0
\(335\) −16.0000 −0.874173
\(336\) 0 0
\(337\) 14.0000 0.762629 0.381314 0.924445i \(-0.375472\pi\)
0.381314 + 0.924445i \(0.375472\pi\)
\(338\) 0 0
\(339\) 7.00000 + 12.1244i 0.380188 + 0.658505i
\(340\) 0 0
\(341\) −4.00000 + 6.92820i −0.216612 + 0.375183i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 6.00000 10.3923i 0.323029 0.559503i
\(346\) 0 0
\(347\) 9.00000 + 15.5885i 0.483145 + 0.836832i 0.999813 0.0193540i \(-0.00616095\pi\)
−0.516667 + 0.856186i \(0.672828\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(350\) 0 0
\(351\) −4.00000 −0.213504
\(352\) 0 0
\(353\) −3.00000 5.19615i −0.159674 0.276563i 0.775077 0.631867i \(-0.217711\pi\)
−0.934751 + 0.355303i \(0.884378\pi\)
\(354\) 0 0
\(355\) 10.0000 17.3205i 0.530745 0.919277i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −11.0000 + 19.0526i −0.580558 + 1.00556i 0.414855 + 0.909887i \(0.363832\pi\)
−0.995413 + 0.0956683i \(0.969501\pi\)
\(360\) 0 0
\(361\) −22.5000 38.9711i −1.18421 2.05111i
\(362\) 0 0
\(363\) −7.00000 −0.367405
\(364\) 0 0
\(365\) 8.00000 0.418739
\(366\) 0 0
\(367\) −8.00000 13.8564i −0.417597 0.723299i 0.578101 0.815966i \(-0.303794\pi\)
−0.995697 + 0.0926670i \(0.970461\pi\)
\(368\) 0 0
\(369\) 3.00000 5.19615i 0.156174 0.270501i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 13.0000 22.5167i 0.673114 1.16587i −0.303902 0.952703i \(-0.598289\pi\)
0.977016 0.213165i \(-0.0683772\pi\)
\(374\) 0 0
\(375\) 6.00000 + 10.3923i 0.309839 + 0.536656i
\(376\) 0 0
\(377\) 40.0000 2.06010
\(378\) 0 0
\(379\) −36.0000 −1.84920 −0.924598 0.380945i \(-0.875599\pi\)
−0.924598 + 0.380945i \(0.875599\pi\)
\(380\) 0 0
\(381\) 2.00000 + 3.46410i 0.102463 + 0.177471i
\(382\) 0 0
\(383\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −2.00000 + 3.46410i −0.101666 + 0.176090i
\(388\) 0 0
\(389\) 9.00000 + 15.5885i 0.456318 + 0.790366i 0.998763 0.0497253i \(-0.0158346\pi\)
−0.542445 + 0.840091i \(0.682501\pi\)
\(390\) 0 0
\(391\) −36.0000 −1.82060
\(392\) 0 0
\(393\) −12.0000 −0.605320
\(394\) 0 0
\(395\) −4.00000 6.92820i −0.201262 0.348596i
\(396\) 0 0
\(397\) −16.0000 + 27.7128i −0.803017 + 1.39087i 0.114605 + 0.993411i \(0.463440\pi\)
−0.917622 + 0.397455i \(0.869893\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −15.0000 + 25.9808i −0.749064 + 1.29742i 0.199207 + 0.979957i \(0.436163\pi\)
−0.948272 + 0.317460i \(0.897170\pi\)
\(402\) 0 0
\(403\) 8.00000 + 13.8564i 0.398508 + 0.690237i
\(404\) 0 0
\(405\) 2.00000 0.0993808
\(406\) 0 0
\(407\) 12.0000 0.594818
\(408\) 0 0
\(409\) −6.00000 10.3923i −0.296681 0.513866i 0.678694 0.734422i \(-0.262546\pi\)
−0.975375 + 0.220555i \(0.929213\pi\)
\(410\) 0 0
\(411\) 5.00000 8.66025i 0.246632 0.427179i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −12.0000 + 20.7846i −0.589057 + 1.02028i
\(416\) 0 0
\(417\) −6.00000 10.3923i −0.293821 0.508913i
\(418\) 0 0
\(419\) −4.00000 −0.195413 −0.0977064 0.995215i \(-0.531151\pi\)
−0.0977064 + 0.995215i \(0.531151\pi\)
\(420\) 0 0
\(421\) −6.00000 −0.292422 −0.146211 0.989253i \(-0.546708\pi\)
−0.146211 + 0.989253i \(0.546708\pi\)
\(422\) 0 0
\(423\) −4.00000 6.92820i −0.194487 0.336861i
\(424\) 0 0
\(425\) 3.00000 5.19615i 0.145521 0.252050i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 4.00000 6.92820i 0.193122 0.334497i
\(430\) 0 0
\(431\) 1.00000 + 1.73205i 0.0481683 + 0.0834300i 0.889104 0.457705i \(-0.151328\pi\)
−0.840936 + 0.541135i \(0.817995\pi\)
\(432\) 0 0
\(433\) 32.0000 1.53782 0.768911 0.639356i \(-0.220799\pi\)
0.768911 + 0.639356i \(0.220799\pi\)
\(434\) 0 0
\(435\) −20.0000 −0.958927
\(436\) 0 0
\(437\) 24.0000 + 41.5692i 1.14808 + 1.98853i
\(438\) 0 0
\(439\) 12.0000 20.7846i 0.572729 0.991995i −0.423556 0.905870i \(-0.639218\pi\)
0.996284 0.0861252i \(-0.0274485\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 9.00000 15.5885i 0.427603 0.740630i −0.569057 0.822298i \(-0.692691\pi\)
0.996660 + 0.0816684i \(0.0260248\pi\)
\(444\) 0 0
\(445\) 14.0000 + 24.2487i 0.663664 + 1.14950i
\(446\) 0 0
\(447\) 2.00000 0.0945968
\(448\) 0 0
\(449\) −6.00000 −0.283158 −0.141579 0.989927i \(-0.545218\pi\)
−0.141579 + 0.989927i \(0.545218\pi\)
\(450\) 0 0
\(451\) 6.00000 + 10.3923i 0.282529 + 0.489355i
\(452\) 0 0
\(453\) 4.00000 6.92820i 0.187936 0.325515i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 11.0000 19.0526i 0.514558 0.891241i −0.485299 0.874348i \(-0.661289\pi\)
0.999857 0.0168929i \(-0.00537742\pi\)
\(458\) 0 0
\(459\) −3.00000 5.19615i −0.140028 0.242536i
\(460\) 0 0
\(461\) −18.0000 −0.838344 −0.419172 0.907907i \(-0.637680\pi\)
−0.419172 + 0.907907i \(0.637680\pi\)
\(462\) 0 0
\(463\) −4.00000 −0.185896 −0.0929479 0.995671i \(-0.529629\pi\)
−0.0929479 + 0.995671i \(0.529629\pi\)
\(464\) 0 0
\(465\) −4.00000 6.92820i −0.185496 0.321288i
\(466\) 0 0
\(467\) 10.0000 17.3205i 0.462745 0.801498i −0.536352 0.843995i \(-0.680198\pi\)
0.999097 + 0.0424970i \(0.0135313\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 8.00000 13.8564i 0.368621 0.638470i
\(472\) 0 0
\(473\) −4.00000 6.92820i −0.183920 0.318559i
\(474\) 0 0
\(475\) −8.00000 −0.367065
\(476\) 0 0
\(477\) 2.00000 0.0915737
\(478\) 0 0
\(479\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(480\) 0 0
\(481\) 12.0000 20.7846i 0.547153 0.947697i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −4.00000 + 6.92820i −0.181631 + 0.314594i
\(486\) 0 0
\(487\) −8.00000 13.8564i −0.362515 0.627894i 0.625859 0.779936i \(-0.284748\pi\)
−0.988374 + 0.152042i \(0.951415\pi\)
\(488\) 0 0
\(489\) 24.0000 1.08532
\(490\) 0 0
\(491\) 6.00000 0.270776 0.135388 0.990793i \(-0.456772\pi\)
0.135388 + 0.990793i \(0.456772\pi\)
\(492\) 0 0
\(493\) 30.0000 + 51.9615i 1.35113 + 2.34023i
\(494\) 0 0
\(495\) −2.00000 + 3.46410i −0.0898933 + 0.155700i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 18.0000 31.1769i 0.805791 1.39567i −0.109965 0.993935i \(-0.535074\pi\)
0.915756 0.401735i \(-0.131593\pi\)
\(500\) 0 0
\(501\) −8.00000 13.8564i −0.357414 0.619059i
\(502\) 0 0
\(503\) 16.0000 0.713405 0.356702 0.934218i \(-0.383901\pi\)
0.356702 + 0.934218i \(0.383901\pi\)
\(504\) 0 0
\(505\) −20.0000 −0.889988
\(506\) 0 0
\(507\) −1.50000 2.59808i −0.0666173 0.115385i
\(508\) 0 0
\(509\) −5.00000 + 8.66025i −0.221621 + 0.383859i −0.955300 0.295637i \(-0.904468\pi\)
0.733679 + 0.679496i \(0.237801\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −4.00000 + 6.92820i −0.176604 + 0.305888i
\(514\) 0 0
\(515\) 4.00000 + 6.92820i 0.176261 + 0.305293i
\(516\) 0 0
\(517\) 16.0000 0.703679
\(518\) 0 0
\(519\) −2.00000 −0.0877903
\(520\) 0 0
\(521\) −11.0000 19.0526i −0.481919 0.834708i 0.517866 0.855462i \(-0.326727\pi\)
−0.999785 + 0.0207541i \(0.993393\pi\)
\(522\) 0 0
\(523\) 2.00000 3.46410i 0.0874539 0.151475i −0.818980 0.573822i \(-0.805460\pi\)
0.906434 + 0.422347i \(0.138794\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −12.0000 + 20.7846i −0.522728 + 0.905392i
\(528\) 0 0
\(529\) −6.50000 11.2583i −0.282609 0.489493i
\(530\) 0 0
\(531\) −4.00000 −0.173585
\(532\) 0 0
\(533\) 24.0000 1.03956
\(534\) 0 0
\(535\) 14.0000 + 24.2487i 0.605273 + 1.04836i
\(536\) 0 0
\(537\) −3.00000 + 5.19615i −0.129460 + 0.224231i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −17.0000 + 29.4449i −0.730887 + 1.26593i 0.225617 + 0.974216i \(0.427560\pi\)
−0.956504 + 0.291718i \(0.905773\pi\)
\(542\) 0 0
\(543\) 10.0000 + 17.3205i 0.429141 + 0.743294i
\(544\) 0 0
\(545\) 20.0000 0.856706
\(546\) 0 0
\(547\) 16.0000 0.684111 0.342055 0.939680i \(-0.388877\pi\)
0.342055 + 0.939680i \(0.388877\pi\)
\(548\) 0 0
\(549\) 4.00000 + 6.92820i 0.170716 + 0.295689i
\(550\) 0 0
\(551\) 40.0000 69.2820i 1.70406 2.95151i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −6.00000 + 10.3923i −0.254686 + 0.441129i
\(556\) 0 0
\(557\) 3.00000 + 5.19615i 0.127114 + 0.220168i 0.922557 0.385860i \(-0.126095\pi\)
−0.795443 + 0.606028i \(0.792762\pi\)
\(558\) 0 0
\(559\) −16.0000 −0.676728
\(560\) 0 0
\(561\) 12.0000 0.506640
\(562\) 0 0
\(563\) −2.00000 3.46410i −0.0842900 0.145994i 0.820798 0.571218i \(-0.193529\pi\)
−0.905088 + 0.425223i \(0.860196\pi\)
\(564\) 0 0
\(565\) 14.0000 24.2487i 0.588984 1.02015i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −3.00000 + 5.19615i −0.125767 + 0.217834i −0.922032 0.387113i \(-0.873472\pi\)
0.796266 + 0.604947i \(0.206806\pi\)
\(570\) 0 0
\(571\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(572\) 0 0
\(573\) 6.00000 0.250654
\(574\) 0 0
\(575\) 6.00000 0.250217
\(576\) 0 0
\(577\) 4.00000 + 6.92820i 0.166522 + 0.288425i 0.937195 0.348806i \(-0.113413\pi\)
−0.770673 + 0.637231i \(0.780080\pi\)
\(578\) 0 0
\(579\) 5.00000 8.66025i 0.207793 0.359908i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −2.00000 + 3.46410i −0.0828315 + 0.143468i
\(584\) 0 0
\(585\) 4.00000 + 6.92820i 0.165380 + 0.286446i
\(586\) 0 0
\(587\) −4.00000 −0.165098 −0.0825488 0.996587i \(-0.526306\pi\)
−0.0825488 + 0.996587i \(0.526306\pi\)
\(588\) 0 0
\(589\) 32.0000 1.31854
\(590\) 0 0
\(591\) 3.00000 + 5.19615i 0.123404 + 0.213741i
\(592\) 0 0
\(593\) −3.00000 + 5.19615i −0.123195 + 0.213380i −0.921026 0.389501i \(-0.872647\pi\)
0.797831 + 0.602881i \(0.205981\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 4.00000 6.92820i 0.163709 0.283552i
\(598\) 0 0
\(599\) −15.0000 25.9808i −0.612883 1.06155i −0.990752 0.135686i \(-0.956676\pi\)
0.377869 0.925859i \(-0.376657\pi\)
\(600\) 0 0
\(601\) 8.00000 0.326327 0.163163 0.986599i \(-0.447830\pi\)
0.163163 + 0.986599i \(0.447830\pi\)
\(602\) 0 0
\(603\) −8.00000 −0.325785
\(604\) 0 0
\(605\) 7.00000 + 12.1244i 0.284590 + 0.492925i
\(606\) 0 0
\(607\) −12.0000 + 20.7846i −0.487065 + 0.843621i −0.999889 0.0148722i \(-0.995266\pi\)
0.512824 + 0.858494i \(0.328599\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 16.0000 27.7128i 0.647291 1.12114i
\(612\) 0 0
\(613\) −13.0000 22.5167i −0.525065 0.909439i −0.999574 0.0291886i \(-0.990708\pi\)
0.474509 0.880251i \(-0.342626\pi\)
\(614\) 0 0
\(615\) −12.0000 −0.483887
\(616\) 0 0
\(617\) −2.00000 −0.0805170 −0.0402585 0.999189i \(-0.512818\pi\)
−0.0402585 + 0.999189i \(0.512818\pi\)
\(618\) 0 0
\(619\) −2.00000 3.46410i −0.0803868 0.139234i 0.823029 0.567999i \(-0.192282\pi\)
−0.903416 + 0.428765i \(0.858949\pi\)
\(620\) 0 0
\(621\) 3.00000 5.19615i 0.120386 0.208514i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 9.50000 16.4545i 0.380000 0.658179i
\(626\) 0 0
\(627\) −8.00000 13.8564i −0.319489 0.553372i
\(628\) 0 0
\(629\) 36.0000 1.43541
\(630\) 0 0
\(631\) 12.0000 0.477712 0.238856 0.971055i \(-0.423228\pi\)
0.238856 + 0.971055i \(0.423228\pi\)
\(632\) 0 0
\(633\) 2.00000 + 3.46410i 0.0794929 + 0.137686i
\(634\) 0 0
\(635\) 4.00000 6.92820i 0.158735 0.274937i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 5.00000 8.66025i 0.197797 0.342594i
\(640\) 0 0
\(641\) 13.0000 + 22.5167i 0.513469 + 0.889355i 0.999878 + 0.0156233i \(0.00497325\pi\)
−0.486409 + 0.873731i \(0.661693\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(644\) 0 0
\(645\) 8.00000 0.315000
\(646\) 0 0
\(647\) 24.0000 + 41.5692i 0.943537 + 1.63425i 0.758654 + 0.651494i \(0.225858\pi\)
0.184884 + 0.982760i \(0.440809\pi\)
\(648\) 0 0
\(649\) 4.00000 6.92820i 0.157014 0.271956i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 17.0000 29.4449i 0.665261 1.15227i −0.313953 0.949439i \(-0.601653\pi\)
0.979214 0.202828i \(-0.0650132\pi\)
\(654\) 0 0
\(655\) 12.0000 + 20.7846i 0.468879 + 0.812122i
\(656\) 0 0
\(657\) 4.00000 0.156055
\(658\) 0 0
\(659\) −14.0000 −0.545363 −0.272681 0.962104i \(-0.587910\pi\)
−0.272681 + 0.962104i \(0.587910\pi\)
\(660\) 0 0
\(661\) −4.00000 6.92820i −0.155582 0.269476i 0.777689 0.628649i \(-0.216392\pi\)
−0.933271 + 0.359174i \(0.883059\pi\)
\(662\) 0 0
\(663\) 12.0000 20.7846i 0.466041 0.807207i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −30.0000 + 51.9615i −1.16160 + 2.01196i
\(668\) 0 0
\(669\) 4.00000 + 6.92820i 0.154649 + 0.267860i
\(670\) 0 0
\(671\) −16.0000 −0.617673
\(672\) 0 0
\(673\) −22.0000 −0.848038 −0.424019 0.905653i \(-0.639381\pi\)
−0.424019 + 0.905653i \(0.639381\pi\)
\(674\) 0 0
\(675\) 0.500000 + 0.866025i 0.0192450 + 0.0333333i
\(676\) 0 0
\(677\) −15.0000 + 25.9808i −0.576497 + 0.998522i 0.419380 + 0.907811i \(0.362247\pi\)
−0.995877 + 0.0907112i \(0.971086\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −2.00000 + 3.46410i −0.0766402 + 0.132745i
\(682\) 0 0
\(683\) −11.0000 19.0526i −0.420903 0.729026i 0.575125 0.818066i \(-0.304953\pi\)
−0.996028 + 0.0890398i \(0.971620\pi\)
\(684\) 0 0
\(685\) −20.0000 −0.764161
\(686\) 0 0
\(687\) 20.0000 0.763048
\(688\) 0 0
\(689\) 4.00000 + 6.92820i 0.152388 + 0.263944i
\(690\) 0 0
\(691\) 10.0000 17.3205i 0.380418 0.658903i −0.610704 0.791859i \(-0.709113\pi\)
0.991122 + 0.132956i \(0.0424468\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −12.0000 + 20.7846i −0.455186 + 0.788405i
\(696\) 0 0
\(697\) 18.0000 + 31.1769i 0.681799 + 1.18091i
\(698\) 0 0
\(699\) 14.0000 0.529529
\(700\) 0 0
\(701\) −50.0000 −1.88847 −0.944237 0.329267i \(-0.893198\pi\)
−0.944237 + 0.329267i \(0.893198\pi\)
\(702\) 0 0
\(703\) −24.0000 41.5692i −0.905177 1.56781i
\(704\) 0 0
\(705\) −8.00000 + 13.8564i −0.301297 + 0.521862i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 7.00000 12.1244i 0.262891 0.455340i −0.704118 0.710083i \(-0.748658\pi\)
0.967009 + 0.254743i \(0.0819909\pi\)
\(710\) 0 0
\(711\) −2.00000 3.46410i −0.0750059 0.129914i
\(712\) 0 0
\(713\) −24.0000 −0.898807
\(714\) 0 0
\(715\) −16.0000 −0.598366
\(716\) 0 0
\(717\) −9.00000 15.5885i −0.336111 0.582162i
\(718\) 0 0
\(719\) −24.0000 + 41.5692i −0.895049 + 1.55027i −0.0613050 + 0.998119i \(0.519526\pi\)
−0.833744 + 0.552151i \(0.813807\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −14.0000 + 24.2487i −0.520666 + 0.901819i
\(724\) 0 0
\(725\) −5.00000 8.66025i −0.185695 0.321634i
\(726\) 0 0
\(727\) 44.0000 1.63187 0.815935 0.578144i \(-0.196223\pi\)
0.815935 + 0.578144i \(0.196223\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −12.0000 20.7846i −0.443836 0.768747i
\(732\) 0 0
\(733\) −2.00000 + 3.46410i −0.0738717 + 0.127950i −0.900595 0.434659i \(-0.856869\pi\)
0.826723 + 0.562609i \(0.190202\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 8.00000 13.8564i 0.294684 0.510407i
\(738\) 0 0
\(739\) −20.0000 34.6410i −0.735712 1.27429i −0.954410 0.298498i \(-0.903514\pi\)
0.218698 0.975793i \(-0.429819\pi\)
\(740\) 0 0
\(741\) −32.0000 −1.17555
\(742\) 0 0
\(743\) −18.0000 −0.660356 −0.330178 0.943919i \(-0.607109\pi\)
−0.330178 + 0.943919i \(0.607109\pi\)
\(744\) 0 0
\(745\) −2.00000 3.46410i −0.0732743 0.126915i
\(746\) 0 0
\(747\) −6.00000 + 10.3923i −0.219529 + 0.380235i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 24.0000 41.5692i 0.875772 1.51688i 0.0198348 0.999803i \(-0.493686\pi\)
0.855938 0.517079i \(-0.172981\pi\)
\(752\) 0 0
\(753\) 14.0000 + 24.2487i 0.510188 + 0.883672i
\(754\) 0 0
\(755\) −16.0000 −0.582300
\(756\) 0 0
\(757\) −14.0000 −0.508839 −0.254419 0.967094i \(-0.581884\pi\)
−0.254419 + 0.967094i \(0.581884\pi\)
\(758\) 0 0
\(759\) 6.00000 + 10.3923i 0.217786 + 0.377217i
\(760\) 0 0
\(761\) 11.0000 19.0526i 0.398750 0.690655i −0.594822 0.803857i \(-0.702778\pi\)
0.993572 + 0.113203i \(0.0361109\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −6.00000 + 10.3923i −0.216930 + 0.375735i
\(766\) 0 0
\(767\) −8.00000 13.8564i −0.288863 0.500326i
\(768\) 0 0
\(769\) 32.0000 1.15395 0.576975 0.816762i \(-0.304233\pi\)
0.576975 + 0.816762i \(0.304233\pi\)
\(770\) 0 0
\(771\) 10.0000 0.360141
\(772\) 0 0
\(773\) −3.00000 5.19615i −0.107903 0.186893i 0.807018 0.590527i \(-0.201080\pi\)
−0.914920 + 0.403634i \(0.867747\pi\)
\(774\) 0 0
\(775\) 2.00000 3.46410i 0.0718421 0.124434i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 24.0000 41.5692i 0.859889 1.48937i
\(780\) 0 0
\(781\) 10.0000 + 17.3205i 0.357828 + 0.619777i
\(782\) 0 0
\(783\) −10.0000 −0.357371
\(784\) 0 0
\(785\) −32.0000 −1.14213
\(786\) 0 0
\(787\) −2.00000 3.46410i −0.0712923 0.123482i 0.828176 0.560469i \(-0.189379\pi\)
−0.899468 + 0.436987i \(0.856046\pi\)
\(788\) 0 0
\(789\) −13.0000 + 22.5167i −0.462812 + 0.801614i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −16.0000 + 27.7128i −0.568177 + 0.984111i
\(794\) 0 0
\(795\) −2.00000 3.46410i −0.0709327 0.122859i
\(796\) 0 0
\(797\) 6.00000 0.212531 0.106265 0.994338i \(-0.466111\pi\)
0.106265 + 0.994338i \(0.466111\pi\)
\(798\) 0 0
\(799\) 48.0000 1.69812