Newspace parameters
Level: | \( N \) | \(=\) | \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 588.e (of order \(2\), degree \(1\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(4.69520363885\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
491.1 | −1.29871 | − | 0.559784i | −1.60392 | − | 0.653796i | 1.37328 | + | 1.45399i | 3.97283i | 1.71704 | + | 1.74694i | 0 | −0.969574 | − | 2.65705i | 2.14510 | + | 2.09727i | 2.22392 | − | 5.15954i | ||||
491.2 | −1.29871 | − | 0.559784i | 1.60392 | + | 0.653796i | 1.37328 | + | 1.45399i | − | 3.97283i | −1.71704 | − | 1.74694i | 0 | −0.969574 | − | 2.65705i | 2.14510 | + | 2.09727i | −2.22392 | + | 5.15954i | |||
491.3 | −1.29871 | + | 0.559784i | −1.60392 | + | 0.653796i | 1.37328 | − | 1.45399i | − | 3.97283i | 1.71704 | − | 1.74694i | 0 | −0.969574 | + | 2.65705i | 2.14510 | − | 2.09727i | 2.22392 | + | 5.15954i | |||
491.4 | −1.29871 | + | 0.559784i | 1.60392 | − | 0.653796i | 1.37328 | − | 1.45399i | 3.97283i | −1.71704 | + | 1.74694i | 0 | −0.969574 | + | 2.65705i | 2.14510 | − | 2.09727i | −2.22392 | − | 5.15954i | ||||
491.5 | −1.05533 | − | 0.941421i | −0.406768 | − | 1.68361i | 0.227452 | + | 1.98702i | 1.25365i | −1.15571 | + | 2.15971i | 0 | 1.63059 | − | 2.31110i | −2.66908 | + | 1.36968i | 1.18022 | − | 1.32302i | ||||
491.6 | −1.05533 | − | 0.941421i | 0.406768 | + | 1.68361i | 0.227452 | + | 1.98702i | − | 1.25365i | 1.15571 | − | 2.15971i | 0 | 1.63059 | − | 2.31110i | −2.66908 | + | 1.36968i | −1.18022 | + | 1.32302i | |||
491.7 | −1.05533 | + | 0.941421i | −0.406768 | + | 1.68361i | 0.227452 | − | 1.98702i | − | 1.25365i | −1.15571 | − | 2.15971i | 0 | 1.63059 | + | 2.31110i | −2.66908 | − | 1.36968i | 1.18022 | + | 1.32302i | |||
491.8 | −1.05533 | + | 0.941421i | 0.406768 | − | 1.68361i | 0.227452 | − | 1.98702i | 1.25365i | 1.15571 | + | 2.15971i | 0 | 1.63059 | + | 2.31110i | −2.66908 | − | 1.36968i | −1.18022 | − | 1.32302i | ||||
491.9 | −0.446802 | − | 1.34178i | −1.32740 | + | 1.11266i | −1.60074 | + | 1.19902i | − | 0.803124i | 2.08603 | + | 1.28394i | 0 | 2.32403 | + | 1.61211i | 0.523976 | − | 2.95389i | −1.07761 | + | 0.358837i | |||
491.10 | −0.446802 | − | 1.34178i | 1.32740 | − | 1.11266i | −1.60074 | + | 1.19902i | 0.803124i | −2.08603 | − | 1.28394i | 0 | 2.32403 | + | 1.61211i | 0.523976 | − | 2.95389i | 1.07761 | − | 0.358837i | ||||
491.11 | −0.446802 | + | 1.34178i | −1.32740 | − | 1.11266i | −1.60074 | − | 1.19902i | 0.803124i | 2.08603 | − | 1.28394i | 0 | 2.32403 | − | 1.61211i | 0.523976 | + | 2.95389i | −1.07761 | − | 0.358837i | ||||
491.12 | −0.446802 | + | 1.34178i | 1.32740 | + | 1.11266i | −1.60074 | − | 1.19902i | − | 0.803124i | −2.08603 | + | 1.28394i | 0 | 2.32403 | − | 1.61211i | 0.523976 | + | 2.95389i | 1.07761 | + | 0.358837i | |||
491.13 | 0.446802 | − | 1.34178i | −1.32740 | + | 1.11266i | −1.60074 | − | 1.19902i | 0.803124i | 0.899858 | + | 2.27821i | 0 | −2.32403 | + | 1.61211i | 0.523976 | − | 2.95389i | 1.07761 | + | 0.358837i | ||||
491.14 | 0.446802 | − | 1.34178i | 1.32740 | − | 1.11266i | −1.60074 | − | 1.19902i | − | 0.803124i | −0.899858 | − | 2.27821i | 0 | −2.32403 | + | 1.61211i | 0.523976 | − | 2.95389i | −1.07761 | − | 0.358837i | |||
491.15 | 0.446802 | + | 1.34178i | −1.32740 | − | 1.11266i | −1.60074 | + | 1.19902i | − | 0.803124i | 0.899858 | − | 2.27821i | 0 | −2.32403 | − | 1.61211i | 0.523976 | + | 2.95389i | 1.07761 | − | 0.358837i | |||
491.16 | 0.446802 | + | 1.34178i | 1.32740 | + | 1.11266i | −1.60074 | + | 1.19902i | 0.803124i | −0.899858 | + | 2.27821i | 0 | −2.32403 | − | 1.61211i | 0.523976 | + | 2.95389i | −1.07761 | + | 0.358837i | ||||
491.17 | 1.05533 | − | 0.941421i | −0.406768 | − | 1.68361i | 0.227452 | − | 1.98702i | − | 1.25365i | −2.01426 | − | 1.39383i | 0 | −1.63059 | − | 2.31110i | −2.66908 | + | 1.36968i | −1.18022 | − | 1.32302i | |||
491.18 | 1.05533 | − | 0.941421i | 0.406768 | + | 1.68361i | 0.227452 | − | 1.98702i | 1.25365i | 2.01426 | + | 1.39383i | 0 | −1.63059 | − | 2.31110i | −2.66908 | + | 1.36968i | 1.18022 | + | 1.32302i | ||||
491.19 | 1.05533 | + | 0.941421i | −0.406768 | + | 1.68361i | 0.227452 | + | 1.98702i | 1.25365i | −2.01426 | + | 1.39383i | 0 | −1.63059 | + | 2.31110i | −2.66908 | − | 1.36968i | −1.18022 | + | 1.32302i | ||||
491.20 | 1.05533 | + | 0.941421i | 0.406768 | − | 1.68361i | 0.227452 | + | 1.98702i | − | 1.25365i | 2.01426 | − | 1.39383i | 0 | −1.63059 | + | 2.31110i | −2.66908 | − | 1.36968i | 1.18022 | − | 1.32302i | |||
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
4.b | odd | 2 | 1 | inner |
7.b | odd | 2 | 1 | inner |
12.b | even | 2 | 1 | inner |
21.c | even | 2 | 1 | inner |
28.d | even | 2 | 1 | inner |
84.h | odd | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 588.2.e.f | ✓ | 24 |
3.b | odd | 2 | 1 | inner | 588.2.e.f | ✓ | 24 |
4.b | odd | 2 | 1 | inner | 588.2.e.f | ✓ | 24 |
7.b | odd | 2 | 1 | inner | 588.2.e.f | ✓ | 24 |
7.c | even | 3 | 1 | 588.2.n.d | 24 | ||
7.c | even | 3 | 1 | 588.2.n.h | 24 | ||
7.d | odd | 6 | 1 | 588.2.n.d | 24 | ||
7.d | odd | 6 | 1 | 588.2.n.h | 24 | ||
12.b | even | 2 | 1 | inner | 588.2.e.f | ✓ | 24 |
21.c | even | 2 | 1 | inner | 588.2.e.f | ✓ | 24 |
21.g | even | 6 | 1 | 588.2.n.d | 24 | ||
21.g | even | 6 | 1 | 588.2.n.h | 24 | ||
21.h | odd | 6 | 1 | 588.2.n.d | 24 | ||
21.h | odd | 6 | 1 | 588.2.n.h | 24 | ||
28.d | even | 2 | 1 | inner | 588.2.e.f | ✓ | 24 |
28.f | even | 6 | 1 | 588.2.n.d | 24 | ||
28.f | even | 6 | 1 | 588.2.n.h | 24 | ||
28.g | odd | 6 | 1 | 588.2.n.d | 24 | ||
28.g | odd | 6 | 1 | 588.2.n.h | 24 | ||
84.h | odd | 2 | 1 | inner | 588.2.e.f | ✓ | 24 |
84.j | odd | 6 | 1 | 588.2.n.d | 24 | ||
84.j | odd | 6 | 1 | 588.2.n.h | 24 | ||
84.n | even | 6 | 1 | 588.2.n.d | 24 | ||
84.n | even | 6 | 1 | 588.2.n.h | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
588.2.e.f | ✓ | 24 | 1.a | even | 1 | 1 | trivial |
588.2.e.f | ✓ | 24 | 3.b | odd | 2 | 1 | inner |
588.2.e.f | ✓ | 24 | 4.b | odd | 2 | 1 | inner |
588.2.e.f | ✓ | 24 | 7.b | odd | 2 | 1 | inner |
588.2.e.f | ✓ | 24 | 12.b | even | 2 | 1 | inner |
588.2.e.f | ✓ | 24 | 21.c | even | 2 | 1 | inner |
588.2.e.f | ✓ | 24 | 28.d | even | 2 | 1 | inner |
588.2.e.f | ✓ | 24 | 84.h | odd | 2 | 1 | inner |
588.2.n.d | 24 | 7.c | even | 3 | 1 | ||
588.2.n.d | 24 | 7.d | odd | 6 | 1 | ||
588.2.n.d | 24 | 21.g | even | 6 | 1 | ||
588.2.n.d | 24 | 21.h | odd | 6 | 1 | ||
588.2.n.d | 24 | 28.f | even | 6 | 1 | ||
588.2.n.d | 24 | 28.g | odd | 6 | 1 | ||
588.2.n.d | 24 | 84.j | odd | 6 | 1 | ||
588.2.n.d | 24 | 84.n | even | 6 | 1 | ||
588.2.n.h | 24 | 7.c | even | 3 | 1 | ||
588.2.n.h | 24 | 7.d | odd | 6 | 1 | ||
588.2.n.h | 24 | 21.g | even | 6 | 1 | ||
588.2.n.h | 24 | 21.h | odd | 6 | 1 | ||
588.2.n.h | 24 | 28.f | even | 6 | 1 | ||
588.2.n.h | 24 | 28.g | odd | 6 | 1 | ||
588.2.n.h | 24 | 84.j | odd | 6 | 1 | ||
588.2.n.h | 24 | 84.n | even | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(588, [\chi])\):
\( T_{5}^{6} + 18T_{5}^{4} + 36T_{5}^{2} + 16 \)
|
\( T_{11}^{6} - 42T_{11}^{4} + 480T_{11}^{2} - 1536 \)
|
\( T_{13}^{6} - 48T_{13}^{4} + 576T_{13}^{2} - 392 \)
|