[N,k,chi] = [588,2,Mod(103,588)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(588, base_ring=CyclotomicField(42))
chi = DirichletCharacter(H, H._module([21, 0, 29]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("588.103");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
This newform subspace can be constructed as the kernel of the linear operator
\( T_{11}^{336} - 6 T_{11}^{335} + 189 T_{11}^{334} - 1230 T_{11}^{333} + 16023 T_{11}^{332} - 109080 T_{11}^{331} + 693180 T_{11}^{330} - 4574286 T_{11}^{329} + 4014444 T_{11}^{328} + 13601918 T_{11}^{327} + \cdots + 41\!\cdots\!16 \)
acting on \(S_{2}^{\mathrm{new}}(588, [\chi])\).