Properties

Label 588.2.ba
Level $588$
Weight $2$
Character orbit 588.ba
Rep. character $\chi_{588}(103,\cdot)$
Character field $\Q(\zeta_{42})$
Dimension $672$
Newform subspaces $2$
Sturm bound $224$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 588.ba (of order \(42\) and degree \(12\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 196 \)
Character field: \(\Q(\zeta_{42})\)
Newform subspaces: \( 2 \)
Sturm bound: \(224\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(11\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(588, [\chi])\).

Total New Old
Modular forms 1392 672 720
Cusp forms 1296 672 624
Eisenstein series 96 0 96

Trace form

\( 672 q - 12 q^{8} + 56 q^{9} + 18 q^{10} + 22 q^{14} + 8 q^{16} + 8 q^{21} + 12 q^{22} + 24 q^{24} - 52 q^{25} - 30 q^{26} + 36 q^{28} - 8 q^{30} - 10 q^{32} + 12 q^{33} + 112 q^{34} + 32 q^{37} - 18 q^{38}+ \cdots - 278 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(588, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
588.2.ba.a 588.ba 196.p $336$ $4.695$ None 588.2.ba.a \(0\) \(-28\) \(0\) \(2\) $\mathrm{SU}(2)[C_{42}]$
588.2.ba.b 588.ba 196.p $336$ $4.695$ None 588.2.ba.a \(0\) \(28\) \(0\) \(-2\) $\mathrm{SU}(2)[C_{42}]$

Decomposition of \(S_{2}^{\mathrm{old}}(588, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(588, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(196, [\chi])\)\(^{\oplus 2}\)