# Properties

 Label 588.2.a.c Level $588$ Weight $2$ Character orbit 588.a Self dual yes Analytic conductor $4.695$ Analytic rank $1$ Dimension $1$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [588,2,Mod(1,588)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(588, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("588.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$588 = 2^{2} \cdot 3 \cdot 7^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 588.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$4.69520363885$$ Analytic rank: $$1$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 84) Fricke sign: $$+1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q - q^{3} + q^{9}+O(q^{10})$$ q - q^3 + q^9 $$q - q^{3} + q^{9} - 6 q^{11} - 2 q^{13} + 4 q^{19} - 6 q^{23} - 5 q^{25} - q^{27} + 6 q^{29} - 8 q^{31} + 6 q^{33} + 2 q^{37} + 2 q^{39} - 12 q^{41} - 4 q^{43} - 12 q^{47} - 6 q^{53} - 4 q^{57} + 10 q^{61} + 8 q^{67} + 6 q^{69} + 6 q^{71} + 10 q^{73} + 5 q^{75} - 4 q^{79} + q^{81} + 12 q^{83} - 6 q^{87} - 12 q^{89} + 8 q^{93} + 10 q^{97} - 6 q^{99}+O(q^{100})$$ q - q^3 + q^9 - 6 * q^11 - 2 * q^13 + 4 * q^19 - 6 * q^23 - 5 * q^25 - q^27 + 6 * q^29 - 8 * q^31 + 6 * q^33 + 2 * q^37 + 2 * q^39 - 12 * q^41 - 4 * q^43 - 12 * q^47 - 6 * q^53 - 4 * q^57 + 10 * q^61 + 8 * q^67 + 6 * q^69 + 6 * q^71 + 10 * q^73 + 5 * q^75 - 4 * q^79 + q^81 + 12 * q^83 - 6 * q^87 - 12 * q^89 + 8 * q^93 + 10 * q^97 - 6 * q^99

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
0 −1.00000 0 0 0 0 0 1.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$3$$ $$+1$$
$$7$$ $$-1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 588.2.a.c 1
3.b odd 2 1 1764.2.a.g 1
4.b odd 2 1 2352.2.a.s 1
7.b odd 2 1 84.2.a.b 1
7.c even 3 2 588.2.i.f 2
7.d odd 6 2 588.2.i.c 2
8.b even 2 1 9408.2.a.co 1
8.d odd 2 1 9408.2.a.r 1
12.b even 2 1 7056.2.a.x 1
21.c even 2 1 252.2.a.b 1
21.g even 6 2 1764.2.k.e 2
21.h odd 6 2 1764.2.k.d 2
28.d even 2 1 336.2.a.b 1
28.f even 6 2 2352.2.q.s 2
28.g odd 6 2 2352.2.q.g 2
35.c odd 2 1 2100.2.a.a 1
35.f even 4 2 2100.2.k.a 2
56.e even 2 1 1344.2.a.o 1
56.h odd 2 1 1344.2.a.f 1
63.l odd 6 2 2268.2.j.i 2
63.o even 6 2 2268.2.j.f 2
84.h odd 2 1 1008.2.a.g 1
105.g even 2 1 6300.2.a.p 1
105.k odd 4 2 6300.2.k.r 2
112.j even 4 2 5376.2.c.x 2
112.l odd 4 2 5376.2.c.i 2
140.c even 2 1 8400.2.a.ct 1
168.e odd 2 1 4032.2.a.t 1
168.i even 2 1 4032.2.a.u 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
84.2.a.b 1 7.b odd 2 1
252.2.a.b 1 21.c even 2 1
336.2.a.b 1 28.d even 2 1
588.2.a.c 1 1.a even 1 1 trivial
588.2.i.c 2 7.d odd 6 2
588.2.i.f 2 7.c even 3 2
1008.2.a.g 1 84.h odd 2 1
1344.2.a.f 1 56.h odd 2 1
1344.2.a.o 1 56.e even 2 1
1764.2.a.g 1 3.b odd 2 1
1764.2.k.d 2 21.h odd 6 2
1764.2.k.e 2 21.g even 6 2
2100.2.a.a 1 35.c odd 2 1
2100.2.k.a 2 35.f even 4 2
2268.2.j.f 2 63.o even 6 2
2268.2.j.i 2 63.l odd 6 2
2352.2.a.s 1 4.b odd 2 1
2352.2.q.g 2 28.g odd 6 2
2352.2.q.s 2 28.f even 6 2
4032.2.a.t 1 168.e odd 2 1
4032.2.a.u 1 168.i even 2 1
5376.2.c.i 2 112.l odd 4 2
5376.2.c.x 2 112.j even 4 2
6300.2.a.p 1 105.g even 2 1
6300.2.k.r 2 105.k odd 4 2
7056.2.a.x 1 12.b even 2 1
8400.2.a.ct 1 140.c even 2 1
9408.2.a.r 1 8.d odd 2 1
9408.2.a.co 1 8.b even 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(588))$$:

 $$T_{5}$$ T5 $$T_{13} + 2$$ T13 + 2

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T$$
$3$ $$T + 1$$
$5$ $$T$$
$7$ $$T$$
$11$ $$T + 6$$
$13$ $$T + 2$$
$17$ $$T$$
$19$ $$T - 4$$
$23$ $$T + 6$$
$29$ $$T - 6$$
$31$ $$T + 8$$
$37$ $$T - 2$$
$41$ $$T + 12$$
$43$ $$T + 4$$
$47$ $$T + 12$$
$53$ $$T + 6$$
$59$ $$T$$
$61$ $$T - 10$$
$67$ $$T - 8$$
$71$ $$T - 6$$
$73$ $$T - 10$$
$79$ $$T + 4$$
$83$ $$T - 12$$
$89$ $$T + 12$$
$97$ $$T - 10$$