Defining parameters
Level: | \( N \) | \(=\) | \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 588.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 6 \) | ||
Sturm bound: | \(224\) | ||
Trace bound: | \(13\) | ||
Distinguishing \(T_p\): | \(5\), \(13\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(588))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 136 | 6 | 130 |
Cusp forms | 89 | 6 | 83 |
Eisenstein series | 47 | 0 | 47 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | \(7\) | Fricke | Dim. |
---|---|---|---|---|
\(-\) | \(+\) | \(+\) | \(-\) | \(1\) |
\(-\) | \(+\) | \(-\) | \(+\) | \(2\) |
\(-\) | \(-\) | \(-\) | \(-\) | \(3\) |
Plus space | \(+\) | \(2\) | ||
Minus space | \(-\) | \(4\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(588))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 3 | 7 | |||||||
588.2.a.a | $1$ | $4.695$ | \(\Q\) | None | \(0\) | \(-1\) | \(-2\) | \(0\) | $-$ | $+$ | $+$ | \(q-q^{3}-2q^{5}+q^{9}+2q^{11}-3q^{13}+\cdots\) | |
588.2.a.b | $1$ | $4.695$ | \(\Q\) | None | \(0\) | \(-1\) | \(-2\) | \(0\) | $-$ | $+$ | $-$ | \(q-q^{3}-2q^{5}+q^{9}+2q^{11}+4q^{13}+\cdots\) | |
588.2.a.c | $1$ | $4.695$ | \(\Q\) | None | \(0\) | \(-1\) | \(0\) | \(0\) | $-$ | $+$ | $-$ | \(q-q^{3}+q^{9}-6q^{11}-2q^{13}+4q^{19}+\cdots\) | |
588.2.a.d | $1$ | $4.695$ | \(\Q\) | None | \(0\) | \(1\) | \(-4\) | \(0\) | $-$ | $-$ | $-$ | \(q+q^{3}-4q^{5}+q^{9}+2q^{11}+6q^{13}+\cdots\) | |
588.2.a.e | $1$ | $4.695$ | \(\Q\) | None | \(0\) | \(1\) | \(2\) | \(0\) | $-$ | $-$ | $-$ | \(q+q^{3}+2q^{5}+q^{9}+2q^{11}-4q^{13}+\cdots\) | |
588.2.a.f | $1$ | $4.695$ | \(\Q\) | None | \(0\) | \(1\) | \(2\) | \(0\) | $-$ | $-$ | $-$ | \(q+q^{3}+2q^{5}+q^{9}+2q^{11}+3q^{13}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(588))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(588)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(42))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(49))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(84))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(98))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(147))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(196))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(294))\)\(^{\oplus 2}\)