Defining parameters
| Level: | \( N \) | \(=\) | \( 5850 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 5850.ef (of order \(15\) and degree \(8\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 225 \) |
| Character field: | \(\Q(\zeta_{15})\) | ||
| Sturm bound: | \(2520\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(5850, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 10144 | 2880 | 7264 |
| Cusp forms | 10016 | 2880 | 7136 |
| Eisenstein series | 128 | 0 | 128 |
Decomposition of \(S_{2}^{\mathrm{new}}(5850, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(5850, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(5850, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(225, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(450, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2925, [\chi])\)\(^{\oplus 2}\)