Properties

Label 5850.2.e.u
Level $5850$
Weight $2$
Character orbit 5850.e
Analytic conductor $46.712$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5850,2,Mod(5149,5850)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5850.5149"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5850, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 5850 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5850.e (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,-2,0,0,0,0,0,0,4,0,0,-8,0,2,0,0,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(46.7124851824\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 130)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + i q^{2} - q^{4} + 4 i q^{7} - i q^{8} + 2 q^{11} - i q^{13} - 4 q^{14} + q^{16} + 2 i q^{17} - 6 q^{19} + 2 i q^{22} - 6 i q^{23} + q^{26} - 4 i q^{28} + 2 q^{29} - 6 q^{31} + i q^{32} - 2 q^{34} + \cdots - 9 i q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{4} + 4 q^{11} - 8 q^{14} + 2 q^{16} - 12 q^{19} + 2 q^{26} + 4 q^{29} - 12 q^{31} - 4 q^{34} - 20 q^{41} - 4 q^{44} + 12 q^{46} - 18 q^{49} + 8 q^{56} + 20 q^{59} + 4 q^{61} - 2 q^{64} - 20 q^{71}+ \cdots + 24 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/5850\mathbb{Z}\right)^\times\).

\(n\) \(2251\) \(3251\) \(3277\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
5149.1
1.00000i
1.00000i
1.00000i 0 −1.00000 0 0 4.00000i 1.00000i 0 0
5149.2 1.00000i 0 −1.00000 0 0 4.00000i 1.00000i 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5850.2.e.u 2
3.b odd 2 1 650.2.b.g 2
5.b even 2 1 inner 5850.2.e.u 2
5.c odd 4 1 1170.2.a.d 1
5.c odd 4 1 5850.2.a.cb 1
15.d odd 2 1 650.2.b.g 2
15.e even 4 1 130.2.a.c 1
15.e even 4 1 650.2.a.c 1
20.e even 4 1 9360.2.a.by 1
60.l odd 4 1 1040.2.a.b 1
60.l odd 4 1 5200.2.a.bd 1
105.k odd 4 1 6370.2.a.l 1
120.q odd 4 1 4160.2.a.t 1
120.w even 4 1 4160.2.a.c 1
195.j odd 4 1 1690.2.d.e 2
195.s even 4 1 1690.2.a.e 1
195.s even 4 1 8450.2.a.n 1
195.u odd 4 1 1690.2.d.e 2
195.bc odd 12 2 1690.2.l.a 4
195.bf even 12 2 1690.2.e.g 2
195.bl even 12 2 1690.2.e.a 2
195.bn odd 12 2 1690.2.l.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
130.2.a.c 1 15.e even 4 1
650.2.a.c 1 15.e even 4 1
650.2.b.g 2 3.b odd 2 1
650.2.b.g 2 15.d odd 2 1
1040.2.a.b 1 60.l odd 4 1
1170.2.a.d 1 5.c odd 4 1
1690.2.a.e 1 195.s even 4 1
1690.2.d.e 2 195.j odd 4 1
1690.2.d.e 2 195.u odd 4 1
1690.2.e.a 2 195.bl even 12 2
1690.2.e.g 2 195.bf even 12 2
1690.2.l.a 4 195.bc odd 12 2
1690.2.l.a 4 195.bn odd 12 2
4160.2.a.c 1 120.w even 4 1
4160.2.a.t 1 120.q odd 4 1
5200.2.a.bd 1 60.l odd 4 1
5850.2.a.cb 1 5.c odd 4 1
5850.2.e.u 2 1.a even 1 1 trivial
5850.2.e.u 2 5.b even 2 1 inner
6370.2.a.l 1 105.k odd 4 1
8450.2.a.n 1 195.s even 4 1
9360.2.a.by 1 20.e even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(5850, [\chi])\):

\( T_{7}^{2} + 16 \) Copy content Toggle raw display
\( T_{11} - 2 \) Copy content Toggle raw display
\( T_{17}^{2} + 4 \) Copy content Toggle raw display
\( T_{19} + 6 \) Copy content Toggle raw display
\( T_{29} - 2 \) Copy content Toggle raw display
\( T_{31} + 6 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 1 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 16 \) Copy content Toggle raw display
$11$ \( (T - 2)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 1 \) Copy content Toggle raw display
$17$ \( T^{2} + 4 \) Copy content Toggle raw display
$19$ \( (T + 6)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 36 \) Copy content Toggle raw display
$29$ \( (T - 2)^{2} \) Copy content Toggle raw display
$31$ \( (T + 6)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 4 \) Copy content Toggle raw display
$41$ \( (T + 10)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 100 \) Copy content Toggle raw display
$47$ \( T^{2} + 144 \) Copy content Toggle raw display
$53$ \( T^{2} + 4 \) Copy content Toggle raw display
$59$ \( (T - 10)^{2} \) Copy content Toggle raw display
$61$ \( (T - 2)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 144 \) Copy content Toggle raw display
$71$ \( (T + 10)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 100 \) Copy content Toggle raw display
$79$ \( (T - 4)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} \) Copy content Toggle raw display
$89$ \( (T + 14)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 196 \) Copy content Toggle raw display
show more
show less