Properties

Label 5850.2.e.bk.5149.3
Level $5850$
Weight $2$
Character 5850.5149
Analytic conductor $46.712$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5850,2,Mod(5149,5850)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5850.5149"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5850, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 5850 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5850.e (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,-4,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(46.7124851824\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 390)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 5149.3
Root \(0.707107 - 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 5850.5149
Dual form 5850.2.e.bk.5149.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} -1.00000 q^{4} -2.82843i q^{7} -1.00000i q^{8} +5.65685 q^{11} -1.00000i q^{13} +2.82843 q^{14} +1.00000 q^{16} -4.82843i q^{17} +2.82843 q^{19} +5.65685i q^{22} -8.48528i q^{23} +1.00000 q^{26} +2.82843i q^{28} -3.17157 q^{29} +4.00000 q^{31} +1.00000i q^{32} +4.82843 q^{34} +0.343146i q^{37} +2.82843i q^{38} -3.65685 q^{41} -1.65685i q^{43} -5.65685 q^{44} +8.48528 q^{46} -8.00000i q^{47} -1.00000 q^{49} +1.00000i q^{52} +9.31371i q^{53} -2.82843 q^{56} -3.17157i q^{58} -13.6569 q^{59} +6.00000 q^{61} +4.00000i q^{62} -1.00000 q^{64} +5.65685i q^{67} +4.82843i q^{68} -5.65685 q^{71} +2.48528i q^{73} -0.343146 q^{74} -2.82843 q^{76} -16.0000i q^{77} -13.6569 q^{79} -3.65685i q^{82} -17.6569i q^{83} +1.65685 q^{86} -5.65685i q^{88} -4.34315 q^{89} -2.82843 q^{91} +8.48528i q^{92} +8.00000 q^{94} +8.82843i q^{97} -1.00000i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{4} + 4 q^{16} + 4 q^{26} - 24 q^{29} + 16 q^{31} + 8 q^{34} + 8 q^{41} - 4 q^{49} - 32 q^{59} + 24 q^{61} - 4 q^{64} - 24 q^{74} - 32 q^{79} - 16 q^{86} - 40 q^{89} + 32 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/5850\mathbb{Z}\right)^\times\).

\(n\) \(2251\) \(3251\) \(3277\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 0 0
\(4\) −1.00000 −0.500000
\(5\) 0 0
\(6\) 0 0
\(7\) − 2.82843i − 1.06904i −0.845154 0.534522i \(-0.820491\pi\)
0.845154 0.534522i \(-0.179509\pi\)
\(8\) − 1.00000i − 0.353553i
\(9\) 0 0
\(10\) 0 0
\(11\) 5.65685 1.70561 0.852803 0.522233i \(-0.174901\pi\)
0.852803 + 0.522233i \(0.174901\pi\)
\(12\) 0 0
\(13\) − 1.00000i − 0.277350i
\(14\) 2.82843 0.755929
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) − 4.82843i − 1.17107i −0.810649 0.585533i \(-0.800885\pi\)
0.810649 0.585533i \(-0.199115\pi\)
\(18\) 0 0
\(19\) 2.82843 0.648886 0.324443 0.945905i \(-0.394823\pi\)
0.324443 + 0.945905i \(0.394823\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 5.65685i 1.20605i
\(23\) − 8.48528i − 1.76930i −0.466252 0.884652i \(-0.654396\pi\)
0.466252 0.884652i \(-0.345604\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 1.00000 0.196116
\(27\) 0 0
\(28\) 2.82843i 0.534522i
\(29\) −3.17157 −0.588946 −0.294473 0.955660i \(-0.595144\pi\)
−0.294473 + 0.955660i \(0.595144\pi\)
\(30\) 0 0
\(31\) 4.00000 0.718421 0.359211 0.933257i \(-0.383046\pi\)
0.359211 + 0.933257i \(0.383046\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 0 0
\(34\) 4.82843 0.828068
\(35\) 0 0
\(36\) 0 0
\(37\) 0.343146i 0.0564128i 0.999602 + 0.0282064i \(0.00897957\pi\)
−0.999602 + 0.0282064i \(0.991020\pi\)
\(38\) 2.82843i 0.458831i
\(39\) 0 0
\(40\) 0 0
\(41\) −3.65685 −0.571105 −0.285552 0.958363i \(-0.592177\pi\)
−0.285552 + 0.958363i \(0.592177\pi\)
\(42\) 0 0
\(43\) − 1.65685i − 0.252668i −0.991988 0.126334i \(-0.959679\pi\)
0.991988 0.126334i \(-0.0403211\pi\)
\(44\) −5.65685 −0.852803
\(45\) 0 0
\(46\) 8.48528 1.25109
\(47\) − 8.00000i − 1.16692i −0.812142 0.583460i \(-0.801699\pi\)
0.812142 0.583460i \(-0.198301\pi\)
\(48\) 0 0
\(49\) −1.00000 −0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 1.00000i 0.138675i
\(53\) 9.31371i 1.27934i 0.768651 + 0.639668i \(0.220928\pi\)
−0.768651 + 0.639668i \(0.779072\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −2.82843 −0.377964
\(57\) 0 0
\(58\) − 3.17157i − 0.416448i
\(59\) −13.6569 −1.77797 −0.888985 0.457935i \(-0.848589\pi\)
−0.888985 + 0.457935i \(0.848589\pi\)
\(60\) 0 0
\(61\) 6.00000 0.768221 0.384111 0.923287i \(-0.374508\pi\)
0.384111 + 0.923287i \(0.374508\pi\)
\(62\) 4.00000i 0.508001i
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) 5.65685i 0.691095i 0.938401 + 0.345547i \(0.112307\pi\)
−0.938401 + 0.345547i \(0.887693\pi\)
\(68\) 4.82843i 0.585533i
\(69\) 0 0
\(70\) 0 0
\(71\) −5.65685 −0.671345 −0.335673 0.941979i \(-0.608964\pi\)
−0.335673 + 0.941979i \(0.608964\pi\)
\(72\) 0 0
\(73\) 2.48528i 0.290880i 0.989367 + 0.145440i \(0.0464598\pi\)
−0.989367 + 0.145440i \(0.953540\pi\)
\(74\) −0.343146 −0.0398899
\(75\) 0 0
\(76\) −2.82843 −0.324443
\(77\) − 16.0000i − 1.82337i
\(78\) 0 0
\(79\) −13.6569 −1.53652 −0.768258 0.640140i \(-0.778876\pi\)
−0.768258 + 0.640140i \(0.778876\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) − 3.65685i − 0.403832i
\(83\) − 17.6569i − 1.93809i −0.246881 0.969046i \(-0.579406\pi\)
0.246881 0.969046i \(-0.420594\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 1.65685 0.178663
\(87\) 0 0
\(88\) − 5.65685i − 0.603023i
\(89\) −4.34315 −0.460373 −0.230186 0.973147i \(-0.573934\pi\)
−0.230186 + 0.973147i \(0.573934\pi\)
\(90\) 0 0
\(91\) −2.82843 −0.296500
\(92\) 8.48528i 0.884652i
\(93\) 0 0
\(94\) 8.00000 0.825137
\(95\) 0 0
\(96\) 0 0
\(97\) 8.82843i 0.896391i 0.893936 + 0.448195i \(0.147933\pi\)
−0.893936 + 0.448195i \(0.852067\pi\)
\(98\) − 1.00000i − 0.101015i
\(99\) 0 0
\(100\) 0 0
\(101\) 12.1421 1.20819 0.604094 0.796913i \(-0.293535\pi\)
0.604094 + 0.796913i \(0.293535\pi\)
\(102\) 0 0
\(103\) 9.65685i 0.951518i 0.879576 + 0.475759i \(0.157827\pi\)
−0.879576 + 0.475759i \(0.842173\pi\)
\(104\) −1.00000 −0.0980581
\(105\) 0 0
\(106\) −9.31371 −0.904627
\(107\) − 4.00000i − 0.386695i −0.981130 0.193347i \(-0.938066\pi\)
0.981130 0.193347i \(-0.0619344\pi\)
\(108\) 0 0
\(109\) −3.17157 −0.303782 −0.151891 0.988397i \(-0.548536\pi\)
−0.151891 + 0.988397i \(0.548536\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) − 2.82843i − 0.267261i
\(113\) 10.4853i 0.986372i 0.869924 + 0.493186i \(0.164168\pi\)
−0.869924 + 0.493186i \(0.835832\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 3.17157 0.294473
\(117\) 0 0
\(118\) − 13.6569i − 1.25722i
\(119\) −13.6569 −1.25192
\(120\) 0 0
\(121\) 21.0000 1.90909
\(122\) 6.00000i 0.543214i
\(123\) 0 0
\(124\) −4.00000 −0.359211
\(125\) 0 0
\(126\) 0 0
\(127\) 1.65685i 0.147022i 0.997294 + 0.0735110i \(0.0234204\pi\)
−0.997294 + 0.0735110i \(0.976580\pi\)
\(128\) − 1.00000i − 0.0883883i
\(129\) 0 0
\(130\) 0 0
\(131\) −22.1421 −1.93457 −0.967284 0.253697i \(-0.918353\pi\)
−0.967284 + 0.253697i \(0.918353\pi\)
\(132\) 0 0
\(133\) − 8.00000i − 0.693688i
\(134\) −5.65685 −0.488678
\(135\) 0 0
\(136\) −4.82843 −0.414034
\(137\) 5.31371i 0.453981i 0.973897 + 0.226990i \(0.0728886\pi\)
−0.973897 + 0.226990i \(0.927111\pi\)
\(138\) 0 0
\(139\) −17.6569 −1.49763 −0.748817 0.662776i \(-0.769378\pi\)
−0.748817 + 0.662776i \(0.769378\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) − 5.65685i − 0.474713i
\(143\) − 5.65685i − 0.473050i
\(144\) 0 0
\(145\) 0 0
\(146\) −2.48528 −0.205683
\(147\) 0 0
\(148\) − 0.343146i − 0.0282064i
\(149\) −7.65685 −0.627274 −0.313637 0.949543i \(-0.601547\pi\)
−0.313637 + 0.949543i \(0.601547\pi\)
\(150\) 0 0
\(151\) 12.0000 0.976546 0.488273 0.872691i \(-0.337627\pi\)
0.488273 + 0.872691i \(0.337627\pi\)
\(152\) − 2.82843i − 0.229416i
\(153\) 0 0
\(154\) 16.0000 1.28932
\(155\) 0 0
\(156\) 0 0
\(157\) 17.3137i 1.38178i 0.722958 + 0.690892i \(0.242782\pi\)
−0.722958 + 0.690892i \(0.757218\pi\)
\(158\) − 13.6569i − 1.08648i
\(159\) 0 0
\(160\) 0 0
\(161\) −24.0000 −1.89146
\(162\) 0 0
\(163\) − 11.3137i − 0.886158i −0.896483 0.443079i \(-0.853886\pi\)
0.896483 0.443079i \(-0.146114\pi\)
\(164\) 3.65685 0.285552
\(165\) 0 0
\(166\) 17.6569 1.37044
\(167\) − 24.9706i − 1.93228i −0.258018 0.966140i \(-0.583069\pi\)
0.258018 0.966140i \(-0.416931\pi\)
\(168\) 0 0
\(169\) −1.00000 −0.0769231
\(170\) 0 0
\(171\) 0 0
\(172\) 1.65685i 0.126334i
\(173\) − 13.3137i − 1.01222i −0.862468 0.506111i \(-0.831083\pi\)
0.862468 0.506111i \(-0.168917\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 5.65685 0.426401
\(177\) 0 0
\(178\) − 4.34315i − 0.325533i
\(179\) 24.4853 1.83012 0.915058 0.403322i \(-0.132145\pi\)
0.915058 + 0.403322i \(0.132145\pi\)
\(180\) 0 0
\(181\) 3.65685 0.271812 0.135906 0.990722i \(-0.456606\pi\)
0.135906 + 0.990722i \(0.456606\pi\)
\(182\) − 2.82843i − 0.209657i
\(183\) 0 0
\(184\) −8.48528 −0.625543
\(185\) 0 0
\(186\) 0 0
\(187\) − 27.3137i − 1.99738i
\(188\) 8.00000i 0.583460i
\(189\) 0 0
\(190\) 0 0
\(191\) 11.3137 0.818631 0.409316 0.912393i \(-0.365768\pi\)
0.409316 + 0.912393i \(0.365768\pi\)
\(192\) 0 0
\(193\) − 14.4853i − 1.04267i −0.853351 0.521337i \(-0.825434\pi\)
0.853351 0.521337i \(-0.174566\pi\)
\(194\) −8.82843 −0.633844
\(195\) 0 0
\(196\) 1.00000 0.0714286
\(197\) 9.31371i 0.663574i 0.943354 + 0.331787i \(0.107652\pi\)
−0.943354 + 0.331787i \(0.892348\pi\)
\(198\) 0 0
\(199\) −21.6569 −1.53521 −0.767607 0.640921i \(-0.778553\pi\)
−0.767607 + 0.640921i \(0.778553\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 12.1421i 0.854318i
\(203\) 8.97056i 0.629610i
\(204\) 0 0
\(205\) 0 0
\(206\) −9.65685 −0.672825
\(207\) 0 0
\(208\) − 1.00000i − 0.0693375i
\(209\) 16.0000 1.10674
\(210\) 0 0
\(211\) 23.3137 1.60498 0.802491 0.596664i \(-0.203508\pi\)
0.802491 + 0.596664i \(0.203508\pi\)
\(212\) − 9.31371i − 0.639668i
\(213\) 0 0
\(214\) 4.00000 0.273434
\(215\) 0 0
\(216\) 0 0
\(217\) − 11.3137i − 0.768025i
\(218\) − 3.17157i − 0.214806i
\(219\) 0 0
\(220\) 0 0
\(221\) −4.82843 −0.324795
\(222\) 0 0
\(223\) 5.17157i 0.346314i 0.984894 + 0.173157i \(0.0553968\pi\)
−0.984894 + 0.173157i \(0.944603\pi\)
\(224\) 2.82843 0.188982
\(225\) 0 0
\(226\) −10.4853 −0.697471
\(227\) 4.00000i 0.265489i 0.991150 + 0.132745i \(0.0423790\pi\)
−0.991150 + 0.132745i \(0.957621\pi\)
\(228\) 0 0
\(229\) 24.1421 1.59536 0.797679 0.603083i \(-0.206061\pi\)
0.797679 + 0.603083i \(0.206061\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 3.17157i 0.208224i
\(233\) − 22.4853i − 1.47306i −0.676405 0.736530i \(-0.736463\pi\)
0.676405 0.736530i \(-0.263537\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 13.6569 0.888985
\(237\) 0 0
\(238\) − 13.6569i − 0.885242i
\(239\) 16.0000 1.03495 0.517477 0.855697i \(-0.326871\pi\)
0.517477 + 0.855697i \(0.326871\pi\)
\(240\) 0 0
\(241\) −17.3137 −1.11527 −0.557637 0.830085i \(-0.688292\pi\)
−0.557637 + 0.830085i \(0.688292\pi\)
\(242\) 21.0000i 1.34993i
\(243\) 0 0
\(244\) −6.00000 −0.384111
\(245\) 0 0
\(246\) 0 0
\(247\) − 2.82843i − 0.179969i
\(248\) − 4.00000i − 0.254000i
\(249\) 0 0
\(250\) 0 0
\(251\) −5.17157 −0.326427 −0.163213 0.986591i \(-0.552186\pi\)
−0.163213 + 0.986591i \(0.552186\pi\)
\(252\) 0 0
\(253\) − 48.0000i − 3.01773i
\(254\) −1.65685 −0.103960
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 0.828427i 0.0516759i 0.999666 + 0.0258379i \(0.00822538\pi\)
−0.999666 + 0.0258379i \(0.991775\pi\)
\(258\) 0 0
\(259\) 0.970563 0.0603078
\(260\) 0 0
\(261\) 0 0
\(262\) − 22.1421i − 1.36795i
\(263\) 0.485281i 0.0299237i 0.999888 + 0.0149619i \(0.00476269\pi\)
−0.999888 + 0.0149619i \(0.995237\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 8.00000 0.490511
\(267\) 0 0
\(268\) − 5.65685i − 0.345547i
\(269\) 2.48528 0.151530 0.0757651 0.997126i \(-0.475860\pi\)
0.0757651 + 0.997126i \(0.475860\pi\)
\(270\) 0 0
\(271\) −15.3137 −0.930242 −0.465121 0.885247i \(-0.653989\pi\)
−0.465121 + 0.885247i \(0.653989\pi\)
\(272\) − 4.82843i − 0.292766i
\(273\) 0 0
\(274\) −5.31371 −0.321013
\(275\) 0 0
\(276\) 0 0
\(277\) − 26.0000i − 1.56219i −0.624413 0.781094i \(-0.714662\pi\)
0.624413 0.781094i \(-0.285338\pi\)
\(278\) − 17.6569i − 1.05899i
\(279\) 0 0
\(280\) 0 0
\(281\) −19.6569 −1.17263 −0.586315 0.810083i \(-0.699422\pi\)
−0.586315 + 0.810083i \(0.699422\pi\)
\(282\) 0 0
\(283\) − 6.34315i − 0.377061i −0.982067 0.188530i \(-0.939628\pi\)
0.982067 0.188530i \(-0.0603724\pi\)
\(284\) 5.65685 0.335673
\(285\) 0 0
\(286\) 5.65685 0.334497
\(287\) 10.3431i 0.610537i
\(288\) 0 0
\(289\) −6.31371 −0.371395
\(290\) 0 0
\(291\) 0 0
\(292\) − 2.48528i − 0.145440i
\(293\) − 28.6274i − 1.67243i −0.548401 0.836216i \(-0.684763\pi\)
0.548401 0.836216i \(-0.315237\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0.343146 0.0199449
\(297\) 0 0
\(298\) − 7.65685i − 0.443550i
\(299\) −8.48528 −0.490716
\(300\) 0 0
\(301\) −4.68629 −0.270113
\(302\) 12.0000i 0.690522i
\(303\) 0 0
\(304\) 2.82843 0.162221
\(305\) 0 0
\(306\) 0 0
\(307\) 10.3431i 0.590315i 0.955449 + 0.295157i \(0.0953720\pi\)
−0.955449 + 0.295157i \(0.904628\pi\)
\(308\) 16.0000i 0.911685i
\(309\) 0 0
\(310\) 0 0
\(311\) 24.0000 1.36092 0.680458 0.732787i \(-0.261781\pi\)
0.680458 + 0.732787i \(0.261781\pi\)
\(312\) 0 0
\(313\) 2.97056i 0.167906i 0.996470 + 0.0839531i \(0.0267546\pi\)
−0.996470 + 0.0839531i \(0.973245\pi\)
\(314\) −17.3137 −0.977069
\(315\) 0 0
\(316\) 13.6569 0.768258
\(317\) 2.68629i 0.150877i 0.997150 + 0.0754386i \(0.0240357\pi\)
−0.997150 + 0.0754386i \(0.975964\pi\)
\(318\) 0 0
\(319\) −17.9411 −1.00451
\(320\) 0 0
\(321\) 0 0
\(322\) − 24.0000i − 1.33747i
\(323\) − 13.6569i − 0.759888i
\(324\) 0 0
\(325\) 0 0
\(326\) 11.3137 0.626608
\(327\) 0 0
\(328\) 3.65685i 0.201916i
\(329\) −22.6274 −1.24749
\(330\) 0 0
\(331\) 8.48528 0.466393 0.233197 0.972430i \(-0.425081\pi\)
0.233197 + 0.972430i \(0.425081\pi\)
\(332\) 17.6569i 0.969046i
\(333\) 0 0
\(334\) 24.9706 1.36633
\(335\) 0 0
\(336\) 0 0
\(337\) 22.9706i 1.25129i 0.780109 + 0.625643i \(0.215163\pi\)
−0.780109 + 0.625643i \(0.784837\pi\)
\(338\) − 1.00000i − 0.0543928i
\(339\) 0 0
\(340\) 0 0
\(341\) 22.6274 1.22534
\(342\) 0 0
\(343\) − 16.9706i − 0.916324i
\(344\) −1.65685 −0.0893316
\(345\) 0 0
\(346\) 13.3137 0.715749
\(347\) 1.65685i 0.0889446i 0.999011 + 0.0444723i \(0.0141606\pi\)
−0.999011 + 0.0444723i \(0.985839\pi\)
\(348\) 0 0
\(349\) 16.1421 0.864069 0.432034 0.901857i \(-0.357796\pi\)
0.432034 + 0.901857i \(0.357796\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 5.65685i 0.301511i
\(353\) 17.3137i 0.921516i 0.887526 + 0.460758i \(0.152422\pi\)
−0.887526 + 0.460758i \(0.847578\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 4.34315 0.230186
\(357\) 0 0
\(358\) 24.4853i 1.29409i
\(359\) 28.2843 1.49279 0.746393 0.665505i \(-0.231784\pi\)
0.746393 + 0.665505i \(0.231784\pi\)
\(360\) 0 0
\(361\) −11.0000 −0.578947
\(362\) 3.65685i 0.192200i
\(363\) 0 0
\(364\) 2.82843 0.148250
\(365\) 0 0
\(366\) 0 0
\(367\) − 14.3431i − 0.748706i −0.927286 0.374353i \(-0.877865\pi\)
0.927286 0.374353i \(-0.122135\pi\)
\(368\) − 8.48528i − 0.442326i
\(369\) 0 0
\(370\) 0 0
\(371\) 26.3431 1.36767
\(372\) 0 0
\(373\) − 25.3137i − 1.31069i −0.755328 0.655347i \(-0.772522\pi\)
0.755328 0.655347i \(-0.227478\pi\)
\(374\) 27.3137 1.41236
\(375\) 0 0
\(376\) −8.00000 −0.412568
\(377\) 3.17157i 0.163344i
\(378\) 0 0
\(379\) 24.4853 1.25772 0.628862 0.777517i \(-0.283521\pi\)
0.628862 + 0.777517i \(0.283521\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 11.3137i 0.578860i
\(383\) 18.3431i 0.937291i 0.883386 + 0.468645i \(0.155258\pi\)
−0.883386 + 0.468645i \(0.844742\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 14.4853 0.737281
\(387\) 0 0
\(388\) − 8.82843i − 0.448195i
\(389\) 10.4853 0.531625 0.265812 0.964025i \(-0.414360\pi\)
0.265812 + 0.964025i \(0.414360\pi\)
\(390\) 0 0
\(391\) −40.9706 −2.07197
\(392\) 1.00000i 0.0505076i
\(393\) 0 0
\(394\) −9.31371 −0.469218
\(395\) 0 0
\(396\) 0 0
\(397\) 26.2843i 1.31917i 0.751630 + 0.659585i \(0.229268\pi\)
−0.751630 + 0.659585i \(0.770732\pi\)
\(398\) − 21.6569i − 1.08556i
\(399\) 0 0
\(400\) 0 0
\(401\) −6.97056 −0.348093 −0.174047 0.984737i \(-0.555684\pi\)
−0.174047 + 0.984737i \(0.555684\pi\)
\(402\) 0 0
\(403\) − 4.00000i − 0.199254i
\(404\) −12.1421 −0.604094
\(405\) 0 0
\(406\) −8.97056 −0.445202
\(407\) 1.94113i 0.0962180i
\(408\) 0 0
\(409\) −7.65685 −0.378607 −0.189304 0.981919i \(-0.560623\pi\)
−0.189304 + 0.981919i \(0.560623\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) − 9.65685i − 0.475759i
\(413\) 38.6274i 1.90073i
\(414\) 0 0
\(415\) 0 0
\(416\) 1.00000 0.0490290
\(417\) 0 0
\(418\) 16.0000i 0.782586i
\(419\) −5.17157 −0.252648 −0.126324 0.991989i \(-0.540318\pi\)
−0.126324 + 0.991989i \(0.540318\pi\)
\(420\) 0 0
\(421\) 4.14214 0.201875 0.100938 0.994893i \(-0.467816\pi\)
0.100938 + 0.994893i \(0.467816\pi\)
\(422\) 23.3137i 1.13489i
\(423\) 0 0
\(424\) 9.31371 0.452314
\(425\) 0 0
\(426\) 0 0
\(427\) − 16.9706i − 0.821263i
\(428\) 4.00000i 0.193347i
\(429\) 0 0
\(430\) 0 0
\(431\) 16.0000 0.770693 0.385346 0.922772i \(-0.374082\pi\)
0.385346 + 0.922772i \(0.374082\pi\)
\(432\) 0 0
\(433\) 10.9706i 0.527212i 0.964630 + 0.263606i \(0.0849118\pi\)
−0.964630 + 0.263606i \(0.915088\pi\)
\(434\) 11.3137 0.543075
\(435\) 0 0
\(436\) 3.17157 0.151891
\(437\) − 24.0000i − 1.14808i
\(438\) 0 0
\(439\) 22.6274 1.07995 0.539974 0.841682i \(-0.318434\pi\)
0.539974 + 0.841682i \(0.318434\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) − 4.82843i − 0.229665i
\(443\) − 41.6569i − 1.97918i −0.143926 0.989588i \(-0.545973\pi\)
0.143926 0.989588i \(-0.454027\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −5.17157 −0.244881
\(447\) 0 0
\(448\) 2.82843i 0.133631i
\(449\) −30.2843 −1.42920 −0.714602 0.699532i \(-0.753392\pi\)
−0.714602 + 0.699532i \(0.753392\pi\)
\(450\) 0 0
\(451\) −20.6863 −0.974079
\(452\) − 10.4853i − 0.493186i
\(453\) 0 0
\(454\) −4.00000 −0.187729
\(455\) 0 0
\(456\) 0 0
\(457\) − 15.1716i − 0.709696i −0.934924 0.354848i \(-0.884533\pi\)
0.934924 0.354848i \(-0.115467\pi\)
\(458\) 24.1421i 1.12809i
\(459\) 0 0
\(460\) 0 0
\(461\) −14.0000 −0.652045 −0.326023 0.945362i \(-0.605709\pi\)
−0.326023 + 0.945362i \(0.605709\pi\)
\(462\) 0 0
\(463\) 35.7990i 1.66372i 0.554985 + 0.831860i \(0.312724\pi\)
−0.554985 + 0.831860i \(0.687276\pi\)
\(464\) −3.17157 −0.147237
\(465\) 0 0
\(466\) 22.4853 1.04161
\(467\) − 15.3137i − 0.708634i −0.935125 0.354317i \(-0.884713\pi\)
0.935125 0.354317i \(-0.115287\pi\)
\(468\) 0 0
\(469\) 16.0000 0.738811
\(470\) 0 0
\(471\) 0 0
\(472\) 13.6569i 0.628608i
\(473\) − 9.37258i − 0.430952i
\(474\) 0 0
\(475\) 0 0
\(476\) 13.6569 0.625961
\(477\) 0 0
\(478\) 16.0000i 0.731823i
\(479\) 11.3137 0.516937 0.258468 0.966020i \(-0.416782\pi\)
0.258468 + 0.966020i \(0.416782\pi\)
\(480\) 0 0
\(481\) 0.343146 0.0156461
\(482\) − 17.3137i − 0.788618i
\(483\) 0 0
\(484\) −21.0000 −0.954545
\(485\) 0 0
\(486\) 0 0
\(487\) 0.485281i 0.0219902i 0.999940 + 0.0109951i \(0.00349992\pi\)
−0.999940 + 0.0109951i \(0.996500\pi\)
\(488\) − 6.00000i − 0.271607i
\(489\) 0 0
\(490\) 0 0
\(491\) 9.85786 0.444879 0.222440 0.974946i \(-0.428598\pi\)
0.222440 + 0.974946i \(0.428598\pi\)
\(492\) 0 0
\(493\) 15.3137i 0.689695i
\(494\) 2.82843 0.127257
\(495\) 0 0
\(496\) 4.00000 0.179605
\(497\) 16.0000i 0.717698i
\(498\) 0 0
\(499\) 16.4853 0.737983 0.368991 0.929433i \(-0.379703\pi\)
0.368991 + 0.929433i \(0.379703\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) − 5.17157i − 0.230819i
\(503\) 40.4853i 1.80515i 0.430533 + 0.902575i \(0.358326\pi\)
−0.430533 + 0.902575i \(0.641674\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 48.0000 2.13386
\(507\) 0 0
\(508\) − 1.65685i − 0.0735110i
\(509\) −14.6863 −0.650958 −0.325479 0.945549i \(-0.605526\pi\)
−0.325479 + 0.945549i \(0.605526\pi\)
\(510\) 0 0
\(511\) 7.02944 0.310964
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) −0.828427 −0.0365404
\(515\) 0 0
\(516\) 0 0
\(517\) − 45.2548i − 1.99031i
\(518\) 0.970563i 0.0426441i
\(519\) 0 0
\(520\) 0 0
\(521\) 6.97056 0.305386 0.152693 0.988274i \(-0.451205\pi\)
0.152693 + 0.988274i \(0.451205\pi\)
\(522\) 0 0
\(523\) 34.6274i 1.51415i 0.653327 + 0.757076i \(0.273373\pi\)
−0.653327 + 0.757076i \(0.726627\pi\)
\(524\) 22.1421 0.967284
\(525\) 0 0
\(526\) −0.485281 −0.0211593
\(527\) − 19.3137i − 0.841318i
\(528\) 0 0
\(529\) −49.0000 −2.13043
\(530\) 0 0
\(531\) 0 0
\(532\) 8.00000i 0.346844i
\(533\) 3.65685i 0.158396i
\(534\) 0 0
\(535\) 0 0
\(536\) 5.65685 0.244339
\(537\) 0 0
\(538\) 2.48528i 0.107148i
\(539\) −5.65685 −0.243658
\(540\) 0 0
\(541\) −2.48528 −0.106851 −0.0534253 0.998572i \(-0.517014\pi\)
−0.0534253 + 0.998572i \(0.517014\pi\)
\(542\) − 15.3137i − 0.657780i
\(543\) 0 0
\(544\) 4.82843 0.207017
\(545\) 0 0
\(546\) 0 0
\(547\) − 23.3137i − 0.996822i −0.866941 0.498411i \(-0.833917\pi\)
0.866941 0.498411i \(-0.166083\pi\)
\(548\) − 5.31371i − 0.226990i
\(549\) 0 0
\(550\) 0 0
\(551\) −8.97056 −0.382159
\(552\) 0 0
\(553\) 38.6274i 1.64260i
\(554\) 26.0000 1.10463
\(555\) 0 0
\(556\) 17.6569 0.748817
\(557\) 33.3137i 1.41155i 0.708437 + 0.705774i \(0.249400\pi\)
−0.708437 + 0.705774i \(0.750600\pi\)
\(558\) 0 0
\(559\) −1.65685 −0.0700775
\(560\) 0 0
\(561\) 0 0
\(562\) − 19.6569i − 0.829174i
\(563\) 41.6569i 1.75563i 0.479002 + 0.877814i \(0.340998\pi\)
−0.479002 + 0.877814i \(0.659002\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 6.34315 0.266622
\(567\) 0 0
\(568\) 5.65685i 0.237356i
\(569\) 20.3431 0.852829 0.426415 0.904528i \(-0.359776\pi\)
0.426415 + 0.904528i \(0.359776\pi\)
\(570\) 0 0
\(571\) −12.9706 −0.542801 −0.271401 0.962466i \(-0.587487\pi\)
−0.271401 + 0.962466i \(0.587487\pi\)
\(572\) 5.65685i 0.236525i
\(573\) 0 0
\(574\) −10.3431 −0.431715
\(575\) 0 0
\(576\) 0 0
\(577\) − 27.4558i − 1.14300i −0.820601 0.571501i \(-0.806361\pi\)
0.820601 0.571501i \(-0.193639\pi\)
\(578\) − 6.31371i − 0.262616i
\(579\) 0 0
\(580\) 0 0
\(581\) −49.9411 −2.07191
\(582\) 0 0
\(583\) 52.6863i 2.18204i
\(584\) 2.48528 0.102842
\(585\) 0 0
\(586\) 28.6274 1.18259
\(587\) − 42.6274i − 1.75942i −0.475509 0.879711i \(-0.657736\pi\)
0.475509 0.879711i \(-0.342264\pi\)
\(588\) 0 0
\(589\) 11.3137 0.466173
\(590\) 0 0
\(591\) 0 0
\(592\) 0.343146i 0.0141032i
\(593\) 11.6569i 0.478690i 0.970935 + 0.239345i \(0.0769326\pi\)
−0.970935 + 0.239345i \(0.923067\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 7.65685 0.313637
\(597\) 0 0
\(598\) − 8.48528i − 0.346989i
\(599\) 40.0000 1.63436 0.817178 0.576386i \(-0.195537\pi\)
0.817178 + 0.576386i \(0.195537\pi\)
\(600\) 0 0
\(601\) 6.68629 0.272740 0.136370 0.990658i \(-0.456456\pi\)
0.136370 + 0.990658i \(0.456456\pi\)
\(602\) − 4.68629i − 0.190999i
\(603\) 0 0
\(604\) −12.0000 −0.488273
\(605\) 0 0
\(606\) 0 0
\(607\) 4.97056i 0.201749i 0.994899 + 0.100874i \(0.0321640\pi\)
−0.994899 + 0.100874i \(0.967836\pi\)
\(608\) 2.82843i 0.114708i
\(609\) 0 0
\(610\) 0 0
\(611\) −8.00000 −0.323645
\(612\) 0 0
\(613\) − 34.2843i − 1.38473i −0.721548 0.692364i \(-0.756569\pi\)
0.721548 0.692364i \(-0.243431\pi\)
\(614\) −10.3431 −0.417415
\(615\) 0 0
\(616\) −16.0000 −0.644658
\(617\) 2.00000i 0.0805170i 0.999189 + 0.0402585i \(0.0128181\pi\)
−0.999189 + 0.0402585i \(0.987182\pi\)
\(618\) 0 0
\(619\) 29.1716 1.17250 0.586252 0.810129i \(-0.300603\pi\)
0.586252 + 0.810129i \(0.300603\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 24.0000i 0.962312i
\(623\) 12.2843i 0.492159i
\(624\) 0 0
\(625\) 0 0
\(626\) −2.97056 −0.118728
\(627\) 0 0
\(628\) − 17.3137i − 0.690892i
\(629\) 1.65685 0.0660631
\(630\) 0 0
\(631\) −22.3431 −0.889467 −0.444733 0.895663i \(-0.646702\pi\)
−0.444733 + 0.895663i \(0.646702\pi\)
\(632\) 13.6569i 0.543240i
\(633\) 0 0
\(634\) −2.68629 −0.106686
\(635\) 0 0
\(636\) 0 0
\(637\) 1.00000i 0.0396214i
\(638\) − 17.9411i − 0.710296i
\(639\) 0 0
\(640\) 0 0
\(641\) −40.6274 −1.60469 −0.802343 0.596863i \(-0.796414\pi\)
−0.802343 + 0.596863i \(0.796414\pi\)
\(642\) 0 0
\(643\) − 39.5980i − 1.56159i −0.624786 0.780796i \(-0.714814\pi\)
0.624786 0.780796i \(-0.285186\pi\)
\(644\) 24.0000 0.945732
\(645\) 0 0
\(646\) 13.6569 0.537322
\(647\) − 8.48528i − 0.333591i −0.985992 0.166795i \(-0.946658\pi\)
0.985992 0.166795i \(-0.0533419\pi\)
\(648\) 0 0
\(649\) −77.2548 −3.03252
\(650\) 0 0
\(651\) 0 0
\(652\) 11.3137i 0.443079i
\(653\) − 14.2843i − 0.558987i −0.960148 0.279493i \(-0.909834\pi\)
0.960148 0.279493i \(-0.0901665\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −3.65685 −0.142776
\(657\) 0 0
\(658\) − 22.6274i − 0.882109i
\(659\) −24.4853 −0.953811 −0.476906 0.878955i \(-0.658242\pi\)
−0.476906 + 0.878955i \(0.658242\pi\)
\(660\) 0 0
\(661\) 20.1421 0.783438 0.391719 0.920085i \(-0.371880\pi\)
0.391719 + 0.920085i \(0.371880\pi\)
\(662\) 8.48528i 0.329790i
\(663\) 0 0
\(664\) −17.6569 −0.685219
\(665\) 0 0
\(666\) 0 0
\(667\) 26.9117i 1.04202i
\(668\) 24.9706i 0.966140i
\(669\) 0 0
\(670\) 0 0
\(671\) 33.9411 1.31028
\(672\) 0 0
\(673\) − 12.6274i − 0.486751i −0.969932 0.243376i \(-0.921745\pi\)
0.969932 0.243376i \(-0.0782548\pi\)
\(674\) −22.9706 −0.884793
\(675\) 0 0
\(676\) 1.00000 0.0384615
\(677\) 23.6569i 0.909207i 0.890694 + 0.454603i \(0.150219\pi\)
−0.890694 + 0.454603i \(0.849781\pi\)
\(678\) 0 0
\(679\) 24.9706 0.958282
\(680\) 0 0
\(681\) 0 0
\(682\) 22.6274i 0.866449i
\(683\) − 22.3431i − 0.854937i −0.904030 0.427468i \(-0.859406\pi\)
0.904030 0.427468i \(-0.140594\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 16.9706 0.647939
\(687\) 0 0
\(688\) − 1.65685i − 0.0631670i
\(689\) 9.31371 0.354824
\(690\) 0 0
\(691\) 11.7990 0.448855 0.224427 0.974491i \(-0.427949\pi\)
0.224427 + 0.974491i \(0.427949\pi\)
\(692\) 13.3137i 0.506111i
\(693\) 0 0
\(694\) −1.65685 −0.0628933
\(695\) 0 0
\(696\) 0 0
\(697\) 17.6569i 0.668801i
\(698\) 16.1421i 0.610989i
\(699\) 0 0
\(700\) 0 0
\(701\) 28.1421 1.06291 0.531457 0.847085i \(-0.321645\pi\)
0.531457 + 0.847085i \(0.321645\pi\)
\(702\) 0 0
\(703\) 0.970563i 0.0366055i
\(704\) −5.65685 −0.213201
\(705\) 0 0
\(706\) −17.3137 −0.651610
\(707\) − 34.3431i − 1.29161i
\(708\) 0 0
\(709\) 12.8284 0.481782 0.240891 0.970552i \(-0.422560\pi\)
0.240891 + 0.970552i \(0.422560\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 4.34315i 0.162766i
\(713\) − 33.9411i − 1.27111i
\(714\) 0 0
\(715\) 0 0
\(716\) −24.4853 −0.915058
\(717\) 0 0
\(718\) 28.2843i 1.05556i
\(719\) −18.3431 −0.684084 −0.342042 0.939685i \(-0.611118\pi\)
−0.342042 + 0.939685i \(0.611118\pi\)
\(720\) 0 0
\(721\) 27.3137 1.01722
\(722\) − 11.0000i − 0.409378i
\(723\) 0 0
\(724\) −3.65685 −0.135906
\(725\) 0 0
\(726\) 0 0
\(727\) − 21.9411i − 0.813751i −0.913484 0.406876i \(-0.866618\pi\)
0.913484 0.406876i \(-0.133382\pi\)
\(728\) 2.82843i 0.104828i
\(729\) 0 0
\(730\) 0 0
\(731\) −8.00000 −0.295891
\(732\) 0 0
\(733\) − 11.6569i − 0.430556i −0.976553 0.215278i \(-0.930934\pi\)
0.976553 0.215278i \(-0.0690657\pi\)
\(734\) 14.3431 0.529415
\(735\) 0 0
\(736\) 8.48528 0.312772
\(737\) 32.0000i 1.17874i
\(738\) 0 0
\(739\) −14.1421 −0.520227 −0.260113 0.965578i \(-0.583760\pi\)
−0.260113 + 0.965578i \(0.583760\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 26.3431i 0.967087i
\(743\) − 20.2843i − 0.744158i −0.928201 0.372079i \(-0.878645\pi\)
0.928201 0.372079i \(-0.121355\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 25.3137 0.926801
\(747\) 0 0
\(748\) 27.3137i 0.998688i
\(749\) −11.3137 −0.413394
\(750\) 0 0
\(751\) −11.3137 −0.412843 −0.206422 0.978463i \(-0.566182\pi\)
−0.206422 + 0.978463i \(0.566182\pi\)
\(752\) − 8.00000i − 0.291730i
\(753\) 0 0
\(754\) −3.17157 −0.115502
\(755\) 0 0
\(756\) 0 0
\(757\) 47.9411i 1.74245i 0.490884 + 0.871225i \(0.336674\pi\)
−0.490884 + 0.871225i \(0.663326\pi\)
\(758\) 24.4853i 0.889345i
\(759\) 0 0
\(760\) 0 0
\(761\) −16.3431 −0.592439 −0.296219 0.955120i \(-0.595726\pi\)
−0.296219 + 0.955120i \(0.595726\pi\)
\(762\) 0 0
\(763\) 8.97056i 0.324756i
\(764\) −11.3137 −0.409316
\(765\) 0 0
\(766\) −18.3431 −0.662765
\(767\) 13.6569i 0.493120i
\(768\) 0 0
\(769\) 14.0000 0.504853 0.252426 0.967616i \(-0.418771\pi\)
0.252426 + 0.967616i \(0.418771\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 14.4853i 0.521337i
\(773\) 30.6863i 1.10371i 0.833940 + 0.551855i \(0.186080\pi\)
−0.833940 + 0.551855i \(0.813920\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 8.82843 0.316922
\(777\) 0 0
\(778\) 10.4853i 0.375916i
\(779\) −10.3431 −0.370582
\(780\) 0 0
\(781\) −32.0000 −1.14505
\(782\) − 40.9706i − 1.46510i
\(783\) 0 0
\(784\) −1.00000 −0.0357143
\(785\) 0 0
\(786\) 0 0
\(787\) 24.0000i 0.855508i 0.903895 + 0.427754i \(0.140695\pi\)
−0.903895 + 0.427754i \(0.859305\pi\)
\(788\) − 9.31371i − 0.331787i
\(789\) 0 0
\(790\) 0 0
\(791\) 29.6569 1.05448
\(792\) 0 0
\(793\) − 6.00000i − 0.213066i
\(794\) −26.2843 −0.932794
\(795\) 0 0
\(796\) 21.6569 0.767607
\(797\) − 28.6274i − 1.01404i −0.861936 0.507018i \(-0.830748\pi\)
0.861936 0.507018i \(-0.169252\pi\)
\(798\) 0 0
\(799\) −38.6274 −1.36654
\(800\) 0 0
\(801\) 0 0
\(802\) − 6.97056i − 0.246139i
\(803\) 14.0589i 0.496127i
\(804\) 0 0
\(805\) 0 0
\(806\) 4.00000 0.140894
\(807\) 0 0
\(808\) − 12.1421i − 0.427159i
\(809\) −9.31371 −0.327453 −0.163726 0.986506i \(-0.552351\pi\)
−0.163726 + 0.986506i \(0.552351\pi\)
\(810\) 0 0
\(811\) −30.1421 −1.05843 −0.529217 0.848487i \(-0.677514\pi\)
−0.529217 + 0.848487i \(0.677514\pi\)
\(812\) − 8.97056i − 0.314805i
\(813\) 0 0
\(814\) −1.94113 −0.0680364
\(815\) 0 0
\(816\) 0 0
\(817\) − 4.68629i − 0.163953i
\(818\) − 7.65685i − 0.267716i
\(819\) 0 0
\(820\) 0 0
\(821\) 22.2843 0.777726 0.388863 0.921296i \(-0.372868\pi\)
0.388863 + 0.921296i \(0.372868\pi\)
\(822\) 0 0
\(823\) − 19.0294i − 0.663324i −0.943398 0.331662i \(-0.892391\pi\)
0.943398 0.331662i \(-0.107609\pi\)
\(824\) 9.65685 0.336412
\(825\) 0 0
\(826\) −38.6274 −1.34402
\(827\) − 1.65685i − 0.0576145i −0.999585 0.0288072i \(-0.990829\pi\)
0.999585 0.0288072i \(-0.00917090\pi\)
\(828\) 0 0
\(829\) 30.6863 1.06578 0.532889 0.846185i \(-0.321106\pi\)
0.532889 + 0.846185i \(0.321106\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 1.00000i 0.0346688i
\(833\) 4.82843i 0.167295i
\(834\) 0 0
\(835\) 0 0
\(836\) −16.0000 −0.553372
\(837\) 0 0
\(838\) − 5.17157i − 0.178649i
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) −18.9411 −0.653142
\(842\) 4.14214i 0.142747i
\(843\) 0 0
\(844\) −23.3137 −0.802491
\(845\) 0 0
\(846\) 0 0
\(847\) − 59.3970i − 2.04090i
\(848\) 9.31371i 0.319834i
\(849\) 0 0
\(850\) 0 0
\(851\) 2.91169 0.0998114
\(852\) 0 0
\(853\) − 18.2843i − 0.626042i −0.949746 0.313021i \(-0.898659\pi\)
0.949746 0.313021i \(-0.101341\pi\)
\(854\) 16.9706 0.580721
\(855\) 0 0
\(856\) −4.00000 −0.136717
\(857\) − 15.1716i − 0.518251i −0.965844 0.259126i \(-0.916566\pi\)
0.965844 0.259126i \(-0.0834343\pi\)
\(858\) 0 0
\(859\) 29.9411 1.02158 0.510789 0.859706i \(-0.329353\pi\)
0.510789 + 0.859706i \(0.329353\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 16.0000i 0.544962i
\(863\) − 28.2843i − 0.962808i −0.876499 0.481404i \(-0.840127\pi\)
0.876499 0.481404i \(-0.159873\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −10.9706 −0.372795
\(867\) 0 0
\(868\) 11.3137i 0.384012i
\(869\) −77.2548 −2.62069
\(870\) 0 0
\(871\) 5.65685 0.191675
\(872\) 3.17157i 0.107403i
\(873\) 0 0
\(874\) 24.0000 0.811812
\(875\) 0 0
\(876\) 0 0
\(877\) − 39.2548i − 1.32554i −0.748822 0.662771i \(-0.769380\pi\)
0.748822 0.662771i \(-0.230620\pi\)
\(878\) 22.6274i 0.763638i
\(879\) 0 0
\(880\) 0 0
\(881\) −46.2843 −1.55936 −0.779678 0.626180i \(-0.784617\pi\)
−0.779678 + 0.626180i \(0.784617\pi\)
\(882\) 0 0
\(883\) 8.68629i 0.292317i 0.989261 + 0.146158i \(0.0466909\pi\)
−0.989261 + 0.146158i \(0.953309\pi\)
\(884\) 4.82843 0.162398
\(885\) 0 0
\(886\) 41.6569 1.39949
\(887\) − 23.5147i − 0.789547i −0.918778 0.394773i \(-0.870823\pi\)
0.918778 0.394773i \(-0.129177\pi\)
\(888\) 0 0
\(889\) 4.68629 0.157173
\(890\) 0 0
\(891\) 0 0
\(892\) − 5.17157i − 0.173157i
\(893\) − 22.6274i − 0.757198i
\(894\) 0 0
\(895\) 0 0
\(896\) −2.82843 −0.0944911
\(897\) 0 0
\(898\) − 30.2843i − 1.01060i
\(899\) −12.6863 −0.423112
\(900\) 0 0
\(901\) 44.9706 1.49819
\(902\) − 20.6863i − 0.688778i
\(903\) 0 0
\(904\) 10.4853 0.348735
\(905\) 0 0
\(906\) 0 0
\(907\) 48.2843i 1.60325i 0.597825 + 0.801626i \(0.296032\pi\)
−0.597825 + 0.801626i \(0.703968\pi\)
\(908\) − 4.00000i − 0.132745i
\(909\) 0 0
\(910\) 0 0
\(911\) 8.97056 0.297208 0.148604 0.988897i \(-0.452522\pi\)
0.148604 + 0.988897i \(0.452522\pi\)
\(912\) 0 0
\(913\) − 99.8823i − 3.30562i
\(914\) 15.1716 0.501831
\(915\) 0 0
\(916\) −24.1421 −0.797679
\(917\) 62.6274i 2.06814i
\(918\) 0 0
\(919\) 25.9411 0.855719 0.427859 0.903845i \(-0.359268\pi\)
0.427859 + 0.903845i \(0.359268\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) − 14.0000i − 0.461065i
\(923\) 5.65685i 0.186198i
\(924\) 0 0
\(925\) 0 0
\(926\) −35.7990 −1.17643
\(927\) 0 0
\(928\) − 3.17157i − 0.104112i
\(929\) 45.5980 1.49602 0.748011 0.663687i \(-0.231009\pi\)
0.748011 + 0.663687i \(0.231009\pi\)
\(930\) 0 0
\(931\) −2.82843 −0.0926980
\(932\) 22.4853i 0.736530i
\(933\) 0 0
\(934\) 15.3137 0.501080
\(935\) 0 0
\(936\) 0 0
\(937\) 28.6274i 0.935217i 0.883936 + 0.467608i \(0.154884\pi\)
−0.883936 + 0.467608i \(0.845116\pi\)
\(938\) 16.0000i 0.522419i
\(939\) 0 0
\(940\) 0 0
\(941\) −21.0294 −0.685540 −0.342770 0.939419i \(-0.611365\pi\)
−0.342770 + 0.939419i \(0.611365\pi\)
\(942\) 0 0
\(943\) 31.0294i 1.01046i
\(944\) −13.6569 −0.444493
\(945\) 0 0
\(946\) 9.37258 0.304729
\(947\) 41.6569i 1.35367i 0.736137 + 0.676833i \(0.236648\pi\)
−0.736137 + 0.676833i \(0.763352\pi\)
\(948\) 0 0
\(949\) 2.48528 0.0806756
\(950\) 0 0
\(951\) 0 0
\(952\) 13.6569i 0.442621i
\(953\) 56.1421i 1.81862i 0.416117 + 0.909311i \(0.363391\pi\)
−0.416117 + 0.909311i \(0.636609\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −16.0000 −0.517477
\(957\) 0 0
\(958\) 11.3137i 0.365529i
\(959\) 15.0294 0.485326
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) 0.343146i 0.0110635i
\(963\) 0 0
\(964\) 17.3137 0.557637
\(965\) 0 0
\(966\) 0 0
\(967\) 24.4853i 0.787394i 0.919240 + 0.393697i \(0.128804\pi\)
−0.919240 + 0.393697i \(0.871196\pi\)
\(968\) − 21.0000i − 0.674966i
\(969\) 0 0
\(970\) 0 0
\(971\) −32.4853 −1.04250 −0.521251 0.853403i \(-0.674535\pi\)
−0.521251 + 0.853403i \(0.674535\pi\)
\(972\) 0 0
\(973\) 49.9411i 1.60104i
\(974\) −0.485281 −0.0155494
\(975\) 0 0
\(976\) 6.00000 0.192055
\(977\) − 19.6569i − 0.628878i −0.949278 0.314439i \(-0.898184\pi\)
0.949278 0.314439i \(-0.101816\pi\)
\(978\) 0 0
\(979\) −24.5685 −0.785214
\(980\) 0 0
\(981\) 0 0
\(982\) 9.85786i 0.314577i
\(983\) 13.6569i 0.435586i 0.975995 + 0.217793i \(0.0698858\pi\)
−0.975995 + 0.217793i \(0.930114\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −15.3137 −0.487688
\(987\) 0 0
\(988\) 2.82843i 0.0899843i
\(989\) −14.0589 −0.447046
\(990\) 0 0
\(991\) 58.9117 1.87139 0.935696 0.352808i \(-0.114773\pi\)
0.935696 + 0.352808i \(0.114773\pi\)
\(992\) 4.00000i 0.127000i
\(993\) 0 0
\(994\) −16.0000 −0.507489
\(995\) 0 0
\(996\) 0 0
\(997\) − 38.6863i − 1.22521i −0.790390 0.612604i \(-0.790122\pi\)
0.790390 0.612604i \(-0.209878\pi\)
\(998\) 16.4853i 0.521832i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5850.2.e.bk.5149.3 4
3.2 odd 2 1950.2.e.o.1249.1 4
5.2 odd 4 1170.2.a.o.1.2 2
5.3 odd 4 5850.2.a.cl.1.1 2
5.4 even 2 inner 5850.2.e.bk.5149.2 4
15.2 even 4 390.2.a.h.1.2 2
15.8 even 4 1950.2.a.bd.1.1 2
15.14 odd 2 1950.2.e.o.1249.4 4
20.7 even 4 9360.2.a.ch.1.1 2
60.47 odd 4 3120.2.a.bc.1.1 2
195.47 odd 4 5070.2.b.q.1351.3 4
195.77 even 4 5070.2.a.bc.1.1 2
195.122 odd 4 5070.2.b.q.1351.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
390.2.a.h.1.2 2 15.2 even 4
1170.2.a.o.1.2 2 5.2 odd 4
1950.2.a.bd.1.1 2 15.8 even 4
1950.2.e.o.1249.1 4 3.2 odd 2
1950.2.e.o.1249.4 4 15.14 odd 2
3120.2.a.bc.1.1 2 60.47 odd 4
5070.2.a.bc.1.1 2 195.77 even 4
5070.2.b.q.1351.2 4 195.122 odd 4
5070.2.b.q.1351.3 4 195.47 odd 4
5850.2.a.cl.1.1 2 5.3 odd 4
5850.2.e.bk.5149.2 4 5.4 even 2 inner
5850.2.e.bk.5149.3 4 1.1 even 1 trivial
9360.2.a.ch.1.1 2 20.7 even 4